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Interventions to treat cerebral palsy should be initiated as soon as possible in order to
restore the nervous system to the correct developmental trajectory. One drawback to this
approach is that interventions have to undergo exceptionally rigorous assessment for both
safety and efficacy prior to use in infants. Part of this process should involve research using
animals but how good are our animal models? Part of the problem is that cerebral palsy is
an umbrella term that covers a number of conditions. There are also many causal pathways
to cerebral palsy, such as periventricular white matter injury in premature babies, perinatal
infarcts of the middle cerebral artery, or generalized anoxia at the time of birth, indeed
multiple causes, including intra-uterine infection or a genetic predisposition to infarction,
may need to interact to produce a clinically significant injury. In this review, we consider
which animal models best reproduce certain aspects of the condition, and the extent to
which the multifactorial nature of cerebral palsy has been modeled. The degree to which
the corticospinal system of various animal models human corticospinal system function
and development is also explored. Where attempts have already been made to test early
intervention in animal models, the outcomes are evaluated in light of the suitability of the
model.
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INTRODUCTION

It is widely accepted that research with animal models is crucial
to developing and testing new therapies. We need to understand
the cellular mechanisms that underlie the organism’s response to
brain injury in the short and long term, and it is assumed that
at the cellular level all mammals share these responses. How-
ever, there are drawbacks to this approach. It is important not
to fall into the traps identified in pre-clinical adult stroke research,
which may explain the massive failure rate in clinical trials of
novel neuroprotective agents identified in animal experiments (1).
These include omission of fundamental aspects of experimen-
tal design such as blinding, randomization, exclusion reporting,
and sample size, but also “cherry picking” the data to publish to
maximize impact (2). But it also seems to us that not enough
time is spent asking how directly applicable to humans are our
models?

Careful consideration has to be given as to the extent the animal
model reflects human in terms of the way the nervous system func-
tions and develops. Timing of experiments is crucial; for instance
one of the significant drawbacks with studying rodents is the rapid-
ity with which the CNS develops over days, compared to months in
primate species, whereas, cellular processes of neuroinflammation
are likely to occur on a more similar timescale between species.
In this article, we ask what exactly are we trying to model? How
similar are our animal models to the human condition? What have
our animal models told us so far, and what outcomes should we
be measuring in order to gage the likely success of our proposed
therapies?

WHAT ARE WE TRYING TO MODEL?

CEREBRAL PALSY IN HUMANS

The incidence of cerebral palsy in the developed world is high,
around 2 per 1000 live births or more (3). It is therefore a com-
mon condition that causes disability throughout life, which is often
severe. Cerebral palsy is an umbrella term for a number of condi-
tions including cerebellar ataxia and basal ganglia disorders, but
this article will largely concentrate on the most common condi-
tion, spastic cerebral palsy (80% of cases) primarily arising from
insults to the cerebral cortex and associated, sub-cortical white
matter (4). Causal pathways are many and may interact with each
other, indeed multiple causes, including a genetic predisposition
to infarction, may need to interact to produce a clinically sig-
nificant injury (4-6). The most commonly encountered causes
are summarized in Figure 1 and include periventricular white
matter injury (PVWMI) in premature babies, which results from
hypoxia/ischemia (H/I) in the periventricular regions around the
lateral ventricles. This results, primarily, in damage to the subplate
and developing sub-cortical axon tracts of the intermediate zone
whilst the overlying gray matter is relatively spared. It generally
causes spastic diplegia. In all, bilateral spasticity has a prevalence
of 1.2/1000 live births (7). Unilateral spasticity and weakness
is also common (prevalence 0.6/1000 live births) with roughly
one-third of cases resulting from focal periventricular white mat-
ter lesions and one-third involving cortical or deep gray matter
lesions, mainly as a result of infarcts of the middle cerebral artery.
A further fifth of such cases result from brain maldevelopments,
mainly focal cortical dysplasia or unilateral schizencephaly (8).
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FIGURE 1 | A summary of the causes of spastic cerebral palsy, and the
particular outcomes they lead to [reproduced with permission from
Ref. (11)]. Asphyxia at birth may arise from prolapsed cord, intrapartum
hemorrhage, uterine rupture, or maternal cardiac arrest. As arrows

Spastic cerebral palsy; causes and outcomes
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indicate, multiple causes may combine to produce cerebral palsy (4) and
may also interact with subtle genetic variations in individuals that cause
predisposition to stroke (6). PCW, post-conceptional weeks; PVWMI,
periventricular white matter injury.

More severe hypoxia or anoxia at the time of birth is associated
with widespread injury of white and gray matter resulting in spas-
tic quadraparesis along with severe cognitive deficits. In all cases,
there is a progressive evolution of the movement disorder over
months and years. Perinatal lesions of the corticospinal system
give rise to subtle but observable changes in spontaneous gen-
eral movements without giving rise to the traditional neurological
signs observed in older children and adults (9, 10).

PERIVENTRICULAR WHITE MATTER INJURY

Periventricular white matter injury is commonly seen in pre-
mature and low birth weight babies. It leads to lesions which
range from regions of hypomyelination up to cystic lesions of
the sub-cortical white matter adjacent to the external angles of
the lateral ventricles (12) that largely leave the cortical gray mat-
ter intact, although cortical projection neurons may subsequently
make aberrant intracortical axonal projections (13) and neu-
roimaging and neuropathological studies do show some reduction
of cerebral cortical gray matter volume and reduced gyrification
(14-16). PVWMI is the most important cause of cerebral palsy
in prematurity and its incidence, along with the severity of cere-
bral palsy, have actually increased over time as medical advances
have led to a greater survival rate for premature infants (17).
Its etiology is multifactorial and possibly combinatorial, involv-
ing both prenatal and perinatal factors that may include genetic
causes, ischemic-reperfusion failure, growth factor deficiency, and
infection or inflammation ante- or postnatally (18, 19).

Thus age dependent regional susceptibility is a major character-
istic of PVWMI with the highest susceptibility in the human brain
between 24 and 32 weeks post-conceptional age (PCW); a stage of
vascular development that leaves the periventricular regions at risk
of hypoperfusion and hypoxia (20). Lesions occurring in PVWMI
are located at the termination of major cerebral vessels in a border

zone between anterior and middle and posterior cerebral arteries
(21). These termination areas or “watershed areas” are located
most distal from direct blood supply and are poorly vascularized
(22). The temporal window during which PVWMI occurs closes
between 30-32 weeks PCW, coincident with a marked increase in
vascular supply to the white matter (23).

At these vulnerable stages of development, the white matter
grows rapidly. This requires more energy but at the same time dis-
tance from the blood vessels is increased. The combination of these
factors explains why the white matter is particularly vulnerable
to asphyxia, hypoxia, ischemia, and trauma (13). The sub-cortical
white matter is populated predominantly by premyelinating oligo-
dendrocytes (24, 25) including precursor cells and immature
oligodendrocytes. Such cells are more vulnerable than mature
oligodendrocytes to a variety of H/I injury-related insults includ-
ing glutamate receptor-mediated excitotoxicity (26, 27) and gluta-
mate transporter malfunction (28, 29) as well as arrested develop-
ment (30, 31), which may arise out of oxidative stress on the cells
(32) or inhibition of differentiation by extracellular components
of any astrocytic scar (33). A comparison between the timetables
for oligodendrocyte production, maturation, and myelination in
human and rodent forebrain is presented in Figure 2.

Developing white matter is vulnerable to intra-uterine infec-
tion. This can cause severely altered fetal pulmonary function
and cardiovascular control, contributing to H/I brain injury, while
pro-inflammatory cytokines can interact directly with various cell
populations in the brain (19, 37). In particular, the external angles
of the lateral ventricles, a “crossroads” site for various axonal pro-
jections, are a location for accumulation of microglia cells, which
may be involved in axonal guidance but also provide a substrate
for an enhanced inflammatory reaction in PVWMI (38) producing
pro-inflammatory cytokines, as well as excitotoxic glutamate and
free radicals (32, 39, 40). Pro-inflammatory cytokines are also able
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FIGURE 2 | A comparative timetable of oligodendrocyte development between rodent and human. The time of greatest vulnerability to hypoxia/ischemia
(arrow) is at the pre-oligodendrocyte stage of development. Based on the information from Ref. (34-36). E, Embryonic day; PCW, post-conceptional weeks.
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to disrupt glutamate homeostasis and inhibit glutamate transport
in oligodendrocytes and astrocytes (29, 41).

In addition to white matter injury, the transient subplate zone
of the developing human cortex peaks in size between 24 and 32
PCW (42). It is located between the periventricular white matter
and the smaller, developing cortical plate and has been shown to
be vulnerable to H/I injury in the preterm (43). It is relatively more
mature than the cortical plate, having a better developed synaptic
circuitry (44) and a higher expression of glutamate receptors mak-
ing its neurons relatively more vulnerable to excitotoxic injury (45,
46). Subplate neurons play an essential role in the development
of connections between thalamus and cortex and of connections
within the cortex (47, 48). The time period of vulnerability to
PVWMI, with its secondary damage to axon tracts and to subplate
neurons, coincides with the timing of thalamocortical and cortico-
cortical (49) and corticospinal synaptogenesis (50) and thus can be
viewed as perturbing the trajectory of sensorimotor development
at a crucial stage leading to aberrant development of connectivity
and mapping of functions (51, 52).

PERINATAL STROKE LEADING TO SPASTIC HEMIPLEGIA

The incidence of stroke is highest in prematurely born babies com-
pared to any other time of life and is also high for babies born at
term (53). Two-thirds of children who suffer from perinatal stroke
develop cerebral palsy and nine tenths of these will develop hemi-
plegic cerebral palsy (54). The outcome after adult onset stroke
is largely determined by the extent of the initial brain injury and
motor recovery occurs if a critical amount of corticospinal system
function has been spared (55). However, this is not the case for a
perinatal stroke and infants with a significant corticospinal pro-
jection from the infarcted cortex soon after the stroke, detected
by transcranial magnetic stimulation (TMS), can still have a poor
motor outcome (56). A longitudinal study has shown that in the
first 24 months after stroke, progressive loss of corticospinal pro-
jections from the affected cortex may occur. Findings at 24 months
were predictive of outcome; those in whom TMS failed to evoke
responses in the affected limb had a poor outcome, failing to
develop functional use of their paretic hand, whilst those in whom

a response has been preserved had a better outcome, developing
functionally useful dexterity in childhood (56).

After a unilateral stroke, although a corticospinal projection
may be present, activity in the infarcted cortex is suppressed. Thus
it has been proposed that surviving, but not very active, corti-
cospinal projections may lose out in competition for spinal cord
synaptic space, leading to these projections being withdrawn as
their potential targets are taken over by more active ipsilateral cor-
ticospinal projections from the unaffected hemisphere and also by
proprioceptive muscle afferents (51, 57).

COMPARISONS BETWEEN SPECIES

PERIVENTRICULAR ZONES AND SUBPLATE

As discussed above, hypoxic-ischemic lesions in very premature
babies target the proliferative zones around the lateral ventricles,
the developing white matter tracts and subplate. At what stage of
development are these structures comparable to human in our
animal models? In rodent, ages ranging from embryonic day (E)
18 to post-natal day (P) 7 as the time of insult have been proposed
to model human lesions in the early third trimester.

White matter vulnerability is developmental regulated, and
it has been related to the presence of pre-oligodendrocytes in
developing axon tracts of the forebrain during the time of peak
incidence of PVWMI (see Section “Periventricular White Mat-
ter Injury”, Figure 2). In the neonatal rat, pre-oligodendrocytes
are predominant in the corpus callosum and cortex between
P2 and P5, whereas, immature oligodendrocytes predominate
by P7 (58). Both in vitro and in vivo experiments have pro-
vided the evidence that the pre-oligodendrocytes are much more
susceptible than immature oligodendrocytes to oxidative stress
(59), oxygen—glucose deprivation (27), and glutamate receptor-
mediated excitotoxicity (26, 60, 61). Transient synapses between
growing axons and pre-oligodendrocytes play an important role
in white matter development (62—-64) and these are rapidly lost
during hypoxic-ischemic episodes, prior to any cellular loss (65).
Diffuse hypomyelination was seen in response to injections of
excitotoxic ibotenic acid (IBA) into the periventricular white
matter at P5 but not at P7 (66).
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Therefore, most experimenters model PVWMI in rodents by
delivering an H/I or excitotoxic lesion (67, 68) during the period
P2-P5. At this very early stage, the corticospinal tract (CST) has
reached the spinal cord but has barely begun innervating the
gray matter (69). Thalamic afferents are making global, rather
than lamina specific, connections throughout the cortical plate
and subplate (70). Spontaneous movements, generated by bursts
of activity in the spinal cord, feedback sensory information to
the somatosensory cortex producing gamma oscillations followed
by spindle shaped bursts of oscillatory activity (71, 72). Similar
processes are occurring in human development between 24 and
32 post-conception although cortical oscillatory bursts may con-
tinue until birth (73, 74). This synchronized oscillatory network
activity is proposed to drive the generation of cortical circuits
(75). Thus it would appear that the period white matter vulner-
ability in rodents and humans is broadly comparable in terms
of the stage of development of corticospinal and thalamocortical
connectivity, arguably making rodents an appropriate model at
this age.

The other major target for periventricular injury is the sub-
plate, which is strikingly different in humans and rodents. In any
species, the subplate is a highly dynamic compartment containing
both stationary and migrating glutamatergic and GABAergic neu-
rons, various corticopetal and corticofugal projections, glial cells,
and blood vessels (48, 76, 77). In rodents, most of the subplate
cells are in a thin band separating the white matter from layer 6,
but some scattered cells in the upper intermediate zone are also
considered to be part of the rodent subplate (78). In primates,
the proportion of the subplate in relation to the rest of the cor-
tical compartments is much greater (79). In human, the subplate
zone proper becomes visible as a cell-poor/fiber-rich layer situ-
ated between the intermediate zone and cortical plate (79, 80) at
around 14/15 PCW. It forms from the merging of the deepest layer
of the cortical plate, with an already formed pre-subplate that con-
tains few neurons but a differentiated neuropil featuring dendritic
arborizations (81) and synapses (79), which include GABAergic
elements (82) and monoaminergic innervation from the brain-
stem (83). This coincides with the invasion of the subplate region
by thalamocortical afferents and basal forebrain afferents (84—86)
as causing rapid expansion of the subplate so that it comprises a
third of the cerebral wall by 16 PCW.

Birth-dating studies in rodent reveal that the subplate is among
the earliest generated and earliest maturing cortical neuron popu-
lation (87, 88) and in rat, becomes distinct structure from around
embryonic day E16-18 (89). In contrast, in primates, neurons
are continuously added to the subplate until relatively late stages
of corticogenesis, including glutamatergic neurons (80, 90, 91).
The subplate reaches its maximum thickness at the late second
and early third trimester, and thereafter the subplate gradually
decreases in size and becomes unrecognizable around the sixth
post-natal month (79). The beginning of subplate neurogenesis
and the arrival of the first GABAergic neurons in the subplate
occur at similar stages in rodent and human (92). However, the
continued addition of neurons to the primate subplate and the rel-
atively larger proportion of the cortical wall it occupies represent
major differences at later stages. Furthermore, the human sub-
plate is compartmentalized, with neurons of different phenotypes

(82, 92) and different axonal pathways (15, 77, 93) appearing in
deep and superficial layers.

In summary, any lesion to the developing cortex is likely to
occur at a time point when the subplate is very different in rodent
and human. The human subplate will contain more glutamatergic
neurons, perhaps giving greater scope for excitotoxic damage. The
role of the subplate as a waiting zone for the massively increased
number of intracortical fibers seen in primates will not be explored
in rodent models. For instance, a recent study that explored the
effect of in utero hypoxia at E18 on the subplate and subsequent
cortical development in rodent (94) targeted the early subplate
when human and rodent are more similar, but would be a model
of a lesion caused during extreme prematurity in human and thus
of limited clinical relevance, although otherwise of great interest
from a developmental neuroscientist’s perspective.

CORTICOSPINAL SYSTEM

A major factor in the development of spastic cerebral palsy is
injury to the sensorimotor cortex and its sub-cortical white mat-
ter. Our ability to model cerebral palsy is crucially dependent
on understanding similarities and differences in the corticospinal
system function and development in human and other species.
Corticospinal projections act in parallel with a number of other
descending pathways and their fields of termination overlap. In
addition, the sensorimotor cortex, as well as making direct connec-
tions to the spinal cord, also connects with the origins of the other
descending pathways (95). The CST provides excitation/inhibition
of motoneurons, along with descending control of selection, gat-
ing, and gain control of exteroreceptive and proprioceptive sensory
afferent inputs, as well as mediating plasticity in spinal cord cir-
cuits (95, 96). All descending pathways function as part of a large
network rather than as separate controllers of spinal cord centers,
and the spinal cord, along with segmental inputs, are part of the
network.

Developmental damage to the cortical component not only
removes this element of motor control, but, as has been already
been alluded to (see Section “Perinatal Stroke Leading to Spas-
tic Hemiplegia”), removes an important influence on the way in
which this distributed network is developing. Although it has often
been proposed that the developing motor system has increased
plasticity with which to compensate for these deficits (97, 98)
there is also abundant evidence that aberrant plasticity leads to
the increased and different symptoms seen in cerebral palsy com-
pared to adult stroke (51, 99). Therefore, in choosing an animal
model and interpreting the results of lesions we need to know how,
and the extent to which, the sensorimotor cortex plays a role in
the motor control network, and how it develops. A comparative
timetable of development between rodent and human is shown
in Figure 3. As the figure shows, to begin with, spinal cord and
sensorimotor cortex develops independently, but at the same time
as corticospinal axons begin innervate the spinal cord gray mat-
ter, ascending thalamic afferents begin to innervate layer IV of the
somatosensory cortex. At this stage, damage to one element of
the system, CST or subplate, perturbs development of the whole
system.

Rodents have a CST that projects the full length of the spinal
cord (102, 103) and is involved in fine movement control (104)
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Rodent E17-19
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FIGURE 3 | This figure compares four stages of development of the
corticospinal system in rodent and human. At stage 1 segmental circuits
are connected, and local circuitry is also forming in the forebrain, but there is
no connectivity between the two. Stage 2; thalamic afferents invade the
subplate, and the corticospinal tract waits in the white matter to innervate the
spinal cord gray matter. Stage 3; thalamic afferents innervate layer IV of the
cortex at the same time as corticospinal fibers innervate the spinal cord, thus
the spinal cord and sensorimotor cortex become reciprocally connected.

Human 14-23 PCW
Rodent E19-P3

2)

Cortex VI

Oligodendrogenesis

Thalamus

DCN

Muscle

Spinal cord

Human Post-natal
Rodent >P12

4)

Myelination in
forebrain
Thalamus

Muscle
Spinal cord

Spindle bursts in response to spontaneous movement are recorded in
somatosensory cortex. Stage 4; the subplate dissolves and corticospinal
connections and muscle afferent projections are refined in the spinal cord and
dorsal column nuclei. DCN, dorsal column nuclei; DH, dorsal horn; DRG,
dorsal root ganglion; SF. subplate; VH, ventral horn; IV, V, VI, cortical layers.
Arrows represent ingrowth of axons, dashed lines withdrawal of axon
terminals. Axon projections colored gray have not changed at that stage in the
figure. Based on information from Ref. (42, 50, 57, 75, 92, 100, 107).
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however, the primate CST arises from a proportionally larger area
of the cerebral cortex (105), possesses a fast-conducting compo-
nent and the corticospinal axons are largely situated in the lateral,
not dorsal, columns of the spinal cord, as they are in rodents.
Kittens have also been studied as they also have the advantage of
being born early in the development of the motor system, and
that there is a wealth of previous research on the feline locomotor
system (96).

Differences between rodents and primates in the pattern of CST
terminations are both qualitative and quantitative. In rodents, the
CST almost entirely projects to dorsal horn neurons and premotor
spinal circuits (102, 103). In many non-human primates, such as
the rhesus monkey, the projection pattern of the CST is much more
complex: a significant proportion of CST fibers projects to the ven-
tral horn, and some axons synapse directly on motoneurons, in
particular those innervating hand muscles (106). In humans, this
trend is even more marked (107). For example, there is a strong
correlation between the number of direct connections between
cortex and motor neurons and the level of manual dexterity of
non-human primate species (106, 108). Rodents have very few, if
any, direct connections (103, 109, 110) and this observation has
been employed to explain a perceived relative lack of ability to con-
trol hand/paw musculature (111) although it has been claimed that
rodents have more dexterity than is generally appreciated, which is
impaired by CST or sensorimotor cortex lesions (112, 113). Sim-
ilarly, damage to the CST in rhesus monkeys causes permanent
deficits during stepping (114) as in humans where CST damage is
severe enough to compromise independent walking (115). It has
been claimed CST lesions have little effect on stepping in rodents
(116) however, a more recent study have demonstrated that CST
function is necessary for the avoidance of obstacles during stepping
(117). In conclusion, although subtle, rodents do suffer deficits in
skilled motor performance following injury to the CST, but these
require subtle outcome measures to be detected.

There has also been an evolution in the role that parallel
descending pathways play. In both cats and rodents, there is a
prominent contralateral rubrospinal projection mostly from large
neurons in the red nucleus to premotor neurons and motoneurons
in the spinal cord (118-121). This is greatly reduced in macaques,
which have, instead, an expanded rubro-olivary projection from
small cells in the nucleus with projections from the sensorimotor
cortex predominantly target the small cells (122). In human, the
rubrospinal tract is greatly reduced, although still present (123,
124). Similarly, cats possess C3—C4 propriospinal interneurons
that are the relays for a significant di-synaptic pathway between the
cortex and motoneurons of the lower cervical cord (125) but here
is no evidence for such a pathway in macaques unless inhibition
in the spinal cord is greatly reduced (126). Indirect measurements
have provided evidence for this pathway in humans and it may
be up-regulated in patients with hemiplegia after stroke (127).
However, this pathway appears not to exist in rodents (110).
Cortico-reticular pathways to the spinal cord, including direct
projections to motoneurons in monkeys (128, 129) have been
described, although it is worth noting that even in rodents there
are inter species differences with mice having a much weaker exci-
tatory pathway than rats (110). Exactly what plasticity may occur
in unlesioned descending pathways is species dependent, and this
needs to be taken into account when interpreting animal models.

Another important consideration is the extent of the ipsilat-
eral CST. In macaques it is quite large; 13% of all corticospinal
axons fail to decussate in the medulla (130) and this is similar
to the human CST (131) whereas in rodents only 2—4% remain
uncrossed (132). The adult ipsilateral projection is also similarly
small in the cat (133). To confuse matters more, in monkeys there
are bilateral projections and fibers crossing from the ipsilateral
to contralateral side at the spinal cord segmental level, as well as
contralateral axons re-crossing to terminate on the ipsilateral side
(130, 134) but in rodents nearly all corticospinal axon terminate
without crossing the spinal cord midline (135, 136). However, it
should be born in mind that ipsilateral corticospinal connections
in the monkey cervical spinal cord are different from contralateral
projections as they fail to make monosynaptic connections with
motoneurons (137).

Plasticity in the ipsilateral tract following a perinatal hemi-
plegic stroke could provide a gateway to improving function in
the affected limbs. Surprisingly, there is evidence for an exten-
sive transient ipsilateral projection in humans, where, in the
newborn, TMS is as likely to produce ipsilateral contractions in
arm muscles as it is contralateral muscles, only with a shorter
latency, suggesting a direct projection (56). These ipsilateral pro-
jections are down-regulated during normal post-natal develop-
ment, however in patients with hemiplegia derived from a pre-
or perinatal lesion, or developmental malformation, these ipsilat-
eral connections are retained (56, 138, 139), although they confer
no functional advantage (56). Hypertrophy of the pyramid con-
tralateral to the lesion has been interpreted as showing that the
fibers are retained projections from neurons in the intact hemi-
sphere normally lost during development (56). To what extent
this can be modeled in animals is discussed in Section “Modelling
Corticospinal Plasticity.”

Fast onset, low threshold, and aberrant reflex pathways are
observed in spastic cerebral palsy sufferers (140, 141) may result
from retention of developmental reflex pathways in the absence
of corticospinal input at a crucial stage of development (57). In
human and rodents alike the excitation threshold of stretch reflexes
increases with age (142, 143). This may partly be because mus-
cle afferents first target the cell bodies and proximal dendrites of
motoneurons in both rodent and human (144-147) although, in
maturity, these afferents principally target more distal dendritic
sites (148).

Activation of the stretch reflex in the biceps brachii of a
newborn human also results in fast heteronymous excitation
of antagonist muscles such as triceps brachii, providing evi-
dence for the existence of superfluous connectivity that is pre-
sumably eliminated later in development (143). However, in
rodents much research suggests that muscle afferents inner-
vate homonymous and synergistic motoneurons with a high
degree of accuracy from the outset (149—151). Nevertheless, pat-
terns of muscle afferent innervation change with development
in the rodent ventral horn (146) and cuneate nucleus (101)
and in the intermediate gray (152) of the kitten spinal cord.
Therefore, it may be possible to study some aspects of aber-
rant spinal cord development in response to cortical lesion,
but the high degree of spasticity and aberrant reflex forma-
tion observed in humans is not be substantially reproduced in
rodents.
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CRITICAL EXAMINATION OF ANIMAL MODELS IN USE
MODELS OF PERIVENTRICULAR WHITE MATTER INJURY

Based on the various risk factors discussed in Section “Cerebral
Palsy in Humans,” various animal models have been developed in
different species but mostly rodents, including models of hypop-
erfusion and models using infectious agents, bacterial products,
or excitotoxic insults. These varied approaches were extensively
reviewed by Hagberg et al. (67) and their reccommendations have
strongly influenced the field ever since. Approaches used in rodents
fall into two main classes; firstly, the induction of H/I by the main-
tenance in a hypoxic environment for a period of time, coupled
with unilateral ligation or cauterization of the common carotid
artery, the Rice—Vannucci model, which has been use for over
30 years and has the advantage of being extremely well character-
ized (153). The drawback is that although the lesion is reproducible
and bears some resemblance to lesions observed in affected infants,
the method for inducing it is artificial. Also, this approach is gen-
erally employed at P7 or slightly later, and as discussed in Section
“Cerebral Palsy in Humans,” the period of peak oligodendrocyte
vulnerability occurs a little earlier (Figure 2). Thus, although
the Rice—Vannucci method recently has been applied at earlier
ages [e.g., Ref. (31, 154)] because of the difficulty of employing
the Rice—Vannucci approach at younger ages other approaches
involving modeling the consequences of hypoxia have also been
employed including intracerebral injection of excitotoxic agents
(66,68,155, 156) or agents causing oxidative stress (157). Hypoxia
on its own has also been employed, for instance gestational hypoxia
between E5 and E20 in rats induced white matter damage due
to a local inflammatory response and oxidative stress linked to
re-oxygenation during the perinatal period (158) however, the
relevance of this model to most cases of cerebral palsy is not clear.

Systemic or intracerebral injection of inflammatory agents
between P3 and P7 has also been employed (159-161). These
approaches again yield reproducible lesions but only model some
aspects of the human condition. Because intra-uterine inflam-
mation may be a significant contributing factor to brain injury
leading to cerebral palsy, many animal models have been devel-
oped in which intra-uterine inflammation is instigated in rodents
and rabbits prior to birth [reviewed by Burd et al. (162)]. The
significant drawback with these experiments is that they are insti-
gated very early in development, as the species are born at a
very premature stage of development compared to humans (see
Figure 2). For instance, some experiments have taken place at E9—
10 in mouse (163—165) at a time when neocorticogenesis is only
just beginning [7-8 PCW in human (166)] and this really only
suitable for modeling proposed neurogenesis and cell migration
deficits seen in neurodevelopmental disorders such as autism or
schizophrenia. Even studies toward the end of rodent gestation
(167-169) or rabbit (170, 171) are modeling extreme prematurity,
that is, halfway through the second trimester (166) and therefore
of limited relevance to most cases of cerebral palsy.

The purpose of developing these models has included both
testing early interventions for preventing or reducing PVWMI,
and discovering other factors that exacerbate the condition.
For instance, a model of PVWMI induced by intracerebral
excitotoxin injection at P5 has been shown to be exacerbated by
additional systemically administered pro-inflammatory cytokines

and interleukin-9 (172) helping to establish the multifactorial
nature of the condition. Similarly, excitotoxic lesions were sig-
nificantly worsened in mouse pups exposed to gestational stress
caused by a significant rise of circulating corticosterone levels both
in pregnant mothers and in newborn pups, acting through gluco-
corticoid receptors (173). Using transgenic technology, the widely
expressed kinase GRK2 has been implicated in protecting white
matter against H/I injury (174) suggesting that genetic variability
between individuals may contribute to the severity of perinatal
brain damage. A recent study has revealed a novel, gender-specific
protective role for innate immune receptor signaling in a mouse
model of neonatal hypoxic-ischemic brain injury (175) revealing
another potential source of variability in injury severity.

Testing protective interventions has been carried out in many
and varied studies. For instance, the extent of injury has been
reduced by administration of glutamate antagonists (26) including
successful magnesium sulfate as ablocker of NMDA receptor chan-
nels (155, 176) leading to clinical trials of this approach, although
not, as yet, with any convincing evidence of beneficial effects (177).
A variety of other agents have been trialed pre-clinically with some
promise of efficacy, including vasoactive intestinal polypeptide
and melatonin, which act by modulating second messenger sys-
tems (178, 179). Stem cell therapies have been tested pre-clinically,
which may modulate the inflammatory response and/or stimulate
host production of new oligodendrocytes (180-185).

The antibiotic minocycline, which also inhibits the activity of
microglia, has been extensively tested and reduces white matter
damage and brain lesion size [e.g., Ref. (186—188)]. However,
minocycline studies also provide a lesson in the problems of scal-
ing up pre-clinical trials in rodents to human as explained by
Buller et al. (189). Preconditioning dosing strategies may be more
beneficial, however administration post-insult has more clinical
relevance, as a diagnosis of perinatal HI in the neonate is often not
made until 3 days after birth. Routes of administration appropriate
for babies have not undergone trials. Large single doses exacerbate
injury in mice (190) but this may be strain specific. Repeated doses
of the drug appear to be more effective (188) but it is difficult to
predict the length of treatment required when glial cells mature in
a matter of days in rodents but over months in humans, bearing in
mind the detrimental effects of tetracycline antibiotics on growth
of bones and teeth (191).

As well as differences in maturation time compared to the
gyrencephalic human brain, rodents also have a substantially
smaller proportion of sub-cortical white matter, substantial dif-
ferences in cerebral blood flow and metabolism and a greater
susceptibility to gray matter injury in response to white matter
lesions (153, 192). Thus, the fetal sheep has been proposed as an
alternative model for a number of reasons. It is possible to per-
form experiments and make repeated measurements in utero. The
stage of development of the ovine fetus at 95 days post-conception
shows strong similarity with the early third trimester human, both
in terms of oligodendrocyte development (193) and general brain
development including in terms of the completion of neurogene-
sis, the onset of cerebral sulcation, and the detection of the cortical
component of somatosensory evoked potentials (192). Melatonin
therapy has been pre-clinically tested, with success, in sheep (194).
Adaptive brain shut down and neuroinflammation have also been
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studied in the near term ovine fetus (195, 196). However, a sig-
nificant drawback is that although sheep might provide a good
model of white matter damage, they provide a poor model of cor-
ticospinal function as the CST fails to project below the upper
cervical level (197) and no protocols have been developed for
neurobehavioral studies of sheep receiving preterm lesions.

MODELS OF PERINATAL ISCHEMIC STROKE

In human neonates, perinatal arterial ischemic stroke (PIS) events
occur mostly in the middle cerebral artery (198, 199). There-
fore, focal MCAO models reflect the vascular distribution seen
in human neonates with ischemic stroke rather than other H/I
models that more accurately model PVWMI (see above). The het-
erogeneous nature of PIS in human leads to two types of studies.
Some investigators have used permanent focal MCAOQ for animal
models, while others apply transient occlusion that allows reper-
fusion for occluded vessels. The pathology of both types is similar
although the injury pattern and severity of brain injury differ. A
permanent occlusion results in a severe ischemic injury accompa-
nied by necrosis, whereas transient occlusion can produce a lower
injury severity, depending on the occlusion duration, accompa-
nied by apoptosis (200, 201). There is also apoptotic like cell death
during the first 24 h in permanent occlusion models (202). After
introducing these types of lesion to rat pups, two zones of ischemic
injury occur; a central, necrotic injury zone with little scope for
recovery, and a penumbra where apoptotic cell death is more usu-
ally seen and there is some scope for rescuing the tissue (200, 201,
203, 204).

Studies that used transient MCAO (200, 205-207) claim that
their model reflects neonatal PIS since reperfusion mimics what
happens to neonates when circulation is permitted by collateral
circulation to the penumbral part of the ischemic lesion (208). On
the other hand, studies not involving reperfusion in their MCAO
model argue that there is no consistency in reperfusion among
patients (209). The Left middle cerebral artery is most commonly
occluded in neonatal ischemic stroke (198, 210) and so is most
commonly targeted in animal models. The internal carotid artery
is catheterized by monofilament suture to occlude the middle cere-
bral artery permanently by retaining the filament, or temporarily
by removing it at the desired time (211).

This approach was first applied to young rats (P 14—18) by Ash-
wal et al. (205) to cause transient occlusion at the proximal middle
cerebral artery followed by reperfusion. Cytotoxic edema occurred
in the ischemic region immediately after the occlusion, then severe
injury in a similar region occurred after reperfusion (200). A study
that used high-field MRI over a 28-day period post-lesion demon-
strated that transient filament MCAO models induce infarction
with maximum volume at day 1-3 post-occlusion (207). Three
hours of occlusion resulted in infarcts that included the striatum
and affected 40-50% of the whole hemisphere and may resemble
human stroke (205). However, this method produced unaccept-
ably high mortality rates where only 21% of pups survived for
more than 28 days (207). Animal welfare concerns apart, this
does not allow for long term assessment of treatment outcomes.
Interestingly, transient occlusion of the common carotid artery
for 60-90 min, combined with permanent ligation of the middle
cerebral artery produced only neocortical injury (203) however,

whether occlusion of arteries external to the cranium really mod-
els human strokes is questionable. Nevertheless, such models have
a lower mortality rate and can cause sensorimotor and cogni-
tive impairments in early adulthood such as postural asymmetry,
motor incoordination, and cognitive impairments, although the
lesion site is small by this age (204).

The introduction of an embolus into the MCA, guided from
the CCA or ECA with a filament, was pioneered by Derugin et al.
(206) and further refined by individualizing embolus size to the
rat’s size (202). It was claimed that the infarction pattern in their
model mimics that of the MRI pattern for the human neonate
(212). Infarcts in this model are located in the cortex and the
striatum, and the infarcted area in the cortex is 51-56% of the
ipsilateral hemisphere in the forebrain and no mortality during
this time period (202).

Another approach is to ligate or electro-coagulate the distal
middle cerebral artery, approached following a craniotomy, to pro-
duce permanent occlusion. MCA ligation performed at the level
of inferior cerebral vein in mature and immature rats fails to cause
an infarction in all animals (203, 213, 214). If applied at the level
of the olfactory tract, infarction resulted in 13% of rats; occlusion
at the MCA origin caused infarction in 67% of rats. To achieve
100% of rats with cerebral injury, ligation 3-6 mm along the MCA
starting from its origin or proximal to the olfactory tract to the
level of inferior cerebral vein is required, which would include all
supplying arteries from the proximal to distal portion of MCA
(214). Recently, this model was applied in neonatal Cb-17 mice
producing selective and consistent cortical injury, mild corpus cal-
losum atrophy, and mild thalamic injury similar to what is seen
in infant stroke and leading to significant sensorimotor defects
(209). The method is highly reproducible in this mouse strain; the
operation requires <15 min and a 100% survival rate is reported.
Reproducibility may be due to the small variation in cerebrovas-
cular structure observed in these mice (215) and it advised that
rodent strains with a robust collateral blood supply to sensorimo-
tor areas, for instance Wistar rats, are avoided when contemplating
these experiments (208,216). Strain can also strongly influence the
ischemic injury pattern, for instance, CD1 mice after carotid liga-
tion on P12, are more vulnerable to epilepsy than C57Bl/6 mice,
as are the C3Heb/Fe] strain (217, 218).

Alternatively, thrombosis can be induced by injecting the vas-
cular system with a photosensitive dye and exposing blood vessels
to light resulting in permanent focal ischemia (219). Perma-
nent occlusion was produced in piglets by exposing the MCA.
Severe reduction in cerebral blood flow and gray and white matter
injury with 7.1-12.3% infarction volume of ipsilateral hemisphere
occurred in this model (220). This has also been applied in 7-day
old-rats causing direct injury to the sensorimotor cortex (221). As
laser exposure duration increased, so did severity and size of the
injury and the deficit in motor performance (221). Thus, infarc-
tion volume can be controlled according to the exposure time. In
addition it is a non-invasive method with low mortality rate (220,
221). However, the pathogenesis of this focal ischemic infarction
is of debatable relevance to human neonatal stroke.

The events of perinatal ischemia are suggested to occur any time
over a period of 20 weeks that spans late fetal and early neonatal
life (222). Thus human perinatal stroke are classified according
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to the infant age when diagnosis is made as well as radiological
assessment patterns of injury (199, 222). However, the first week
of life is the main period when PIS will occur (199). The use of
animal models, mainly rodent, to reflect ischemic stroke in the
perinatal human period depends on matching the appropriate age
between human neonate and animal models by correlating neu-
ronal events that occur during maturation. Correlating human
full term to model post-natal age (P) is an area of conflict in the
literature. Based on different criteria, authors claimed that human
term corresponds to either P7 (223) or P8—14 of rodent age [white
matter development (67); Corticospinal system development (57);
and EEG maturation (224)]. Several of the earlier studies discussed
above have used P7 rodents (200, 202—-204, 206, 221) based on
Hagberg et al. (223). Other studies have used a more appropriate
age either because of the difficulty of performing experiments in
younger animals (205, 207) or following Hagberg et al. (67) for
example Tsuji et al. (209).

Finally, it should be born in mind that an infarction that
destroys the sensorimotor cortex may not be required to model
cerebral palsy. Eyre et al. (56) demonstrated that in human devel-
opmental hemiplegia during the earliest stages, a corticospinal

projection is still present, which fails to develop and is withdrawn.
Therefore, the aim may be to induce a degree of hypoxia that
delays maturation of the cortical tissue rather than destroys it
completely, and it may be that more detailed measures of out-
comes are required in our animal models than the presence or
absence of tissue.

MEASURING OUTCOMES WITH MODELS OF PYWMI AND PIS

A problem with interpreting all animal models of PVWM and PIS
is the diversity of outcomes measured. We have surveyed a sample
of studies in rodents, taking as our sample the 36 studies cited
in Sections “Models of Periventricular White Matter Injury” and
“Models of Perinatal Ischemic Stroke” above. The results are sum-
marized in Figure 4. The majority of studies (56%) measured the
lesion size within a week of the insult, but only 36% measured
the lesion size in the longer term, either by MRI or histology. Less
than a quarter of studies investigated changes in molecular mark-
ers, such as markers of apoptosis, gliosis, or myelination, in either
the short or long term. Behavioral testing was even rarer. Testing of
sensorimotor function was most common, being carried out in a
quarter of studies, but cognition or anxiety has also been measured

% studies involving
outcome measure
50 4
40-
304
204
10-
0=
Short Long Short Long
Lesion size Molecular markers
FIGURE 4 | The outcome measures employed in a sample of 36 rodent
studies that modeled PVWMI or PIS, some of which involved
experimental therapies. Blue columns depict the proportion of studies that
studied lesion size in the short term (within a week) or in the longer term,
either using MRI, or histology. Green shows studies of changes in molecular
markers in response to lesions, e.g., markers of apoptosis, myelin, and

i

Anxiety

Sensorimotor

Behaviour

Memory/Cognition

gliosis. Red/orange shows behavioral testing in adolescent or adult animals
following perinatal lesions. These are divided into tests of memory and
cognition (e.g., mazes) sensorimotor (e.g., rotarod, reaching, and ladder
walking) and anxiety (open field). The 36 studies sampled are those involving
rodents cited in Sections “Models of Periventricular White Matter Injury” and
"Models of Perinatal Ischemic Stroke.”
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in around 17 or 6% of studies, respectively. Tests for sensorimo-
tor function employed are not necessarily very specific tests for
corticospinal function, often consisting of observing the righting
reflex or rotarod performance, and rarely testing limb placement
or reaching skill.

Thus it appears for most researchers, the aim is to show a reduc-
tion in brain damage inflicted by whatever lesion is employed,
sometimes simply by measuring the size of the damaged area, or
sometimes the extent of cell death or demyelination, often just
in the short term. Of course, any treatments that can be proven
to ameliorate the effects of H/I, if given early, are of value. Also,
cerebral palsy is not the only, or even the most common, out-
come of early brain injury and it is important to access the effects
on brain function other than sensorimotor co-ordination. But as
has been discussed above, and will be further explored below, the
mal-development of the sensorimotor system following a lesion
is protracted and complicated, and animal experiments designed
to model cerebral palsy must try and find ways of addressing this
problem. It is paradoxical that, in human, we have long been adept
atrecognizing and quantifying the neurological symptoms of cere-
bral palsy, and only more recently have been attempting to measure
the more subtle signs of deficits in cognition and attention. In
animal models, it has so far been easier to measure lesion size, or
standard behavioral tests such rotarod, water maze, and open field.
Evidence of corticospinal deficits is harder to observe and test for,
and this is the topic of the next section.

MODELING CORTICOSPINAL PLASTICITY

Spastic cerebral palsy is primarily a lesion of the CST, which results
in secondary maldevelopments of related circuitry, which may
include a retained ipsilateral tract and aberrant development of
spinal reflex pathways (see Section “Perinatal Stroke Leading to
Spastic Hemiplegia”). Might it be possible to gain useful under-
standing of these processes by making a controlled lesion of the
sensorimotor cortex that do not necessarily mimic the injuries
observed in a clinical setting? Such approaches have been adopted
including aspiration of brain tissue, prolonged inhibition of areas
of cortex by slow release of pharmacological agents, or genetic
ablation of corticofugal tracts.

An increased ipsilateral projection has been reported following
developmental unilateral lesions in animal models but the nature
of the projection varies depending on the timing of the lesion
and the species involved. For instance, in rodents it appears that
lesions made in the first week of birth, when the majority of the
corticospinal fibers are growing into the spinal cord (Figure 3)
results in an enlarged ipsilateral projections that predominantly
comprise a non-decussating pathway, or a double decussating
pathway (132, 225-227). However lesions at P7 or later tend to
cause branching of fibers to innervate both sides of the spinal cord
(228, 229). There is no evidence for a transient ipsilateral CST
in development that is proportionally larger than in maturity, in
either developing rodents (230) or monkeys (134) although as the
projection from cortex to spinal cord is generally from a larger pro-
portion of the cortical surface in development than in maturity,
there may still be a proportionate withdrawal of ipsilateral axons.
On the other hand, in kittens corticospinal fibers initially branch
and bilaterally innervate the spinal cord (231). Under normal

circumstances, the transient ipsilateral projection is withdrawn
whereas the contralateral projection expands and reinforces its
synaptic connections (133, 231). However, the ipsilateral projec-
tion can be maintained by removing the competing contralateral
projection (232) or blocking its activity pharmacologically by con-
tinuously infusing the gamma-aminobutyric acid (GABA)-agonist
drug muscimol within the developing motor cortex (233). Neural
inactivation is performed between post-natal weeks 5 and 7, a
developmental period during which most transient dorsoventral
and ipsilateral terminations are eliminated (233, 234).

Martin and colleagues have used their unilateral cortical inac-
tivation model in kittens to test two therapeutic strategies. Firstly,
the affected CST was electrically stimulated daily over three weeks
between post-natal weeks 8 and 11 (235) secondly the previously
uninvolved contralateral cortex was chronically inhibited at this
time (236). Both methods restored and strengthened contralateral
CST connections to their normal spinal targets in the interme-
diate gray matter and reduced aberrant ipsilateral connections.
They also led to motor recovery in a visually guided motor task.
This suggests that it is balancing activity in the two competing
tracts that leads to correct distribution of corticospinal inputs,
not the amount of activity per se. Their studies were extended
to non-invasive behavioral approaches mimicking potential inter-
ventions in infants (237) involving restraint of the non-involved
limb with or without reach training in kittens or young cats (238).
Interestingly, all three interventions restored normal contralateral
corticospinal termination patterns but did not reduce aberrant
ipsilateral connectivity. Only limb restraint combined with reach
training restored behavior. This showed that factors additional to
restoring CST connectivity contribute to motor recovery. These
include re-establishing a motor map, which was only achieved
with reach training.

Although these experiments in kittens appear to give useful
pointers to therapies for early interventions in hemiplegic cerebral
palsy, the situation as hypothesized in humans requires the pres-
ence of a large transient unbranched ipsilateral projection that is
retained following a unilateral lesion (56,239). Possibly any human
transient ipsilateral projection is actually quite small but is still able
to excite motoneurons directly, owing to the greater excitability of
immature motoneurons (240) in which case rodents receiving a
lesion before post-natal day 7 (which have unbranched ipsilateral
projections, see above) may provide an accurate model. Alterna-
tively, bilateral excitation of motoneurons from motor cortex may
result from up-regulation of a fast pathway via cortico-reticular
synapses, as reticular neurons bilaterally innervate motor columns
including those innervating hand or paw muscles (109, 241, 242).
This form of plasticity has yet to be adequately explored in develop-
mental models (243). Interestingly, following hemi-decortication
in rat at P5, aberrant connections were formed from the sur-
viving motor cortex to contralateral red nucleus, superior col-
liculus, pontine nuclei, and the ipsilateral dorsal column nucleus
and cervical spinal cord, which preserved forelimb function, but
no aberrant projection to reticulospinal neurons was seen (244)
perhaps because a bilateral corticoreticular projection is already
present.

Simple lesion experiments have explored the extent to which
normal development of intrinsic spinal cord circuitry, which
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extends beyond the period of CST innervation (57) depends
upon a functional CST. Unilateral lesions to the sensorimotor
cortex (245) or spinal cord transection during development (246)
in rodents leads to retention of muscle afferents in the ventral
horn and strengthened segmental reflex pathways. This is possi-
bly analogous to the fast onset, low threshold, and aberrant reflex
pathways that are observed in spastic cerebral palsy sufferers (141).
Both muscimol blockade, and lesioning of the sensorimotor cor-
tex unilaterally at P7, when the CST begins to innervate spinal
cord gray matter (Figure 3) prevented the normal up-regulation
of expression of the activity dependent marker parvalbumin in
spinal cord neurons contralaterally (245, 247, 248) in rat. A recent
study in mouse, in which corticospinal input was removed entirely
by genetic ablation of all cortifugal outputs, did not result in
loss of spinal cord parvalbumin expression (249). This might
be explained by species differences, but it seems possible that an
imbalance in activity, rather total loss of inputs, is required to cause
some alterations in gene expression. Changes were seen in other
interneuron subgroups and in motoneurons, including increased
detection of cholinergic interneurons (249).

An increase in spinal cholinergic interneurons between 4 and
8 weeks postnatally in kittens is another late developmental event
coincident with the re-organization of corticospinal input (250).
Inactivation of the developing CST, and resulting motor impair-
ments, significantly reduces the number of spinal cholinergic
interneurons unilaterally, again highlighting possible differences
between unilateral inactivation and total genetic ablation. Con-
straint combined with early reach training resulted in increases
in number of cholinergic interneurons on the injured side of
the spinal cord, far more than constraint alone or in combi-
nation with late reach training. Thus, behavioral recovery was
associated with the substantially larger cholinergic interneuron
response (238). Because these spinal interneurons are excita-
tory, they may augment the effect of CST input to spinal cord
circuitry. What is required now is evidence that cholinergic
interneurons play a role in human spinal cord function and
development.

CONCLUSION

When considering the outcome of testing experimental therapies
for cerebral palsy in animal models it is important to ask a number
of questions. Firstly, what type of cerebral palsy are we modeling?
As this review has shown, the timing and nature of the lesion
can be varied to model different types. Secondly, are we causing
behavioral deficits typical of the human condition? Rodents do
not suffer spasticity or severe locomotor impairment in response
to sensorimotor cortex lesions, but there is evidence of subtle, CST
dependent sensorimotor deficits that can be quantified. This leads
onto the third point, is re-organization of the CST the same in our
models following lesion compared to human? It is clear that pri-
mate CST organization is quite different from rodents or kittens,
and modeling, for instance, ipsilateral pathway plasticity is fraught
with difficulty. Finally, one of the trickiest problems with rodents
is the rapid development of nervous system, which can take place
in the time it takes for post-lesion inflammatory processes to take
place, which poses the question can we intervene quickly enough
in rodent models to change the course of maldevelopments in the
motor system?

It might seem that a serious pre-clinical trial of a therapy ought
to include non-human primate experiments, and yet there is only
one model of perinatal H/I injury in primates that has been devel-
oped, to our knowledge. This involved focused lesions to the visual
cortex caused by injection of endothelin to constrict blood vessels
in the P14 marmoset (251), which caused similar anatomical and
cellular pathology to that observed in post-ischemic humans at
a stage of visual cortex development equivalent to 3-5 months
postnatally in the human. However, very little is known about
sensorimotor cortex/CST development in any primate species,
and so knowing when to carry out lesions would be difficult.
CST ingrowth into the ventral horn and development cortico-
motoneuronal synapses occurs postnatally in macaque (252, 253)
but by concentrating on the elaboration of corticomotoneuronal
connections to hand muscles originating from specific areas of
the motor cortex, these studies ignored the higher density of corti-
cospinally projecting neurons, coming from a larger area of cortex,
in the neonate compared to the adult, as detected by retrograde
tracing experiments (134). Thus a whole process of corticospinal
axon elaboration and refinement, including elimination of tran-
sient projections including ipsilateral axons and projections from
non-motor areas, as has been proposed for human development
from indirect observations (51, 254) may, or may not, be present
in the non-human primate.

As always, more research is needed, but the considerable dif-
ficulties of doing even basic research on motor development in
non-human primates, let alone using them for neonatal lesion
studies, would seem to make it unlikely that this line of research
will be frequently taken in the future, in which case it is vital we
understand the limitations of translating pre-clinical research in
rodent and other species to human cerebral palsy. We hope this
review may be of some help in making those judgments.
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