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In multiple sclerosis (MS) patients, fatigue is rated as one of the most common and dis-
abling symptoms. However, the pathophysiology underlying this fatigue is not yet clear.
Several lines of evidence suggest that immunological factors, such as elevated levels
of pro-inflammatory cytokines, may contribute to subjective fatigue in MS patients. Pro-
inflammatory cytokines represent primary mediators of immune-to-brain-communication,
modulating changes in the neurophysiology of the central nervous system. Recently, we
proposed a model arguing that fatigue in MS patients is a subjective feeling, which is related
to inflammation. Moreover, it implies that fatigue can be measured behaviorally only by
applying specific cognitive tasks related to alertness and vigilance. In the present review,
we focus on the subjective feeling of MS-related fatigue. We examine the hypothesis
that the subjective feeling of MS-related fatigue may be a variant of inflammation-induced
sickness behavior, resulting from cytokine-mediated activity changes within brain areas
involved in interoception and homeostasis including the insula, the anterior cingulate,
and the hypothalamus. We first present studies demonstrating a relationship between
pro-inflammatory cytokines and subjective fatigue in healthy individuals, in people with
inflammatory disorders, and particularly in MS patients. Subsequently, we discuss studies
analyzing the impact of anti-inflammatory treatment on fatigue. In the next part of this
review, we present studies on the transmission and neural representation of inflamma-
tory signals, with a special focus on possible neural concomitants of inflammation-induced
fatigue. We also present two of our studies on the relationship between local gray and
white matter atrophy and fatigue in MS patients. Finally, we discuss some implications of
our findings and future perspectives.
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INTRODUCTION
In multiple sclerosis (MS) patients, fatigue is rated as one of the
most common and disabling symptoms. Its prevalence ranges
from 65 to 97%, and it tends to seriously impair approximately
one-third of all MS patients (1–4). Fatigue significantly impairs
a patient’s quality of life, bearing negative effects on performance
at work and on the patient’s social and private life (2, 5). Despite
many investigations, the pathophysiology underlying MS-related
fatigue is not yet clear. Proposed mechanisms for fatigue include
primary causes such as gray matter atrophy (6–8), demyelination
and axonal loss (9), functional cortical reorganization (10, 11),
neuroendocrine dysregulation (12) as well as an immune system
dysfunction (13, 14). On the other hand, also secondary causes
such as sleep problems, medication, and depression have been
suggested to be associated with MS-related fatigue (15, 16).

Based on our recently performed review on the relation
between fatigue, cognitive performance, and brain atrophy in MS
patients (17), we proposed a new model of MS-related fatigue.
This model argues that subjective fatigue is a feeling resulting from
inflammation-induced neural processing within interoceptive and

homeostatic brain areas. Moreover, it argues that fatigue is only
associated with specific cognitive states, such as alertness and
vigilance, which depend on a high level of endogenous atten-
tion and which can be easily distracted by internal events like
thoughts, feelings, and emotions (18). Hence, increased focus-
ing on interoceptive aspects due to inflammation may disturb
information processing of external stimuli and may interfere with
sustained attention to a vigilance task causing a decrease in per-
formance. Additionally, we suggest that this specific performance
decrement may be exaggerated by brain atrophy or neurochemical
dysfunction affecting the alerting/vigilance system (see Figure 1).
Figure 1 (lower part) comprises the two different central phe-
nomena, which we believe a complete theory of fatigue has to
explain, i.e., subjective fatigue as a feeling and objective fatigue
as the measurable decrement in behavioral performance. It also
shows the two different causes (inflammation-induced changes in
neural activity and specified focal brain atrophy), which can lead
either to the feeling of fatigue and the objective impairment in sus-
tained attention tasks or to the impairment in sustained attention
tasks alone.
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FIGURE 1 | Proposed model for MS-related fatigue. Peripherally
released pro-inflammatory cytokines IL-1, IL-6, TNF-α, and INF-γ activate
immune-to-brain communication pathways such as afferent interoceptive
nerve fibers (particularly afferents of the vagus nerve). These afferent
nerve fibers innervate interoceptive and homeostatic brain areas
including regions of the brainstem, the hypothalamus, the insula, and the
anterior cingulate. Inflammation-induced activity changes within these

brain regions cause the subjective feeling of fatigue. Furthermore,
interoceptive information processing constitutes interoceptive
interference resulting in a distraction of cognitive processes such as
alertness and vigilance tasks that heavily rely on intrinsic alertness. This
specific fatigue-related alertness and vigilance decrement can be
exaggerated by focal brain atrophy affecting the alertness/vigilance
network.

In the present review, we focus on the first aspect, namely
the explanation of fatigue as a subjective feeling resulting
from inflammation. Pro-inflammatory cytokines are elevated
during inflammation and appear to represent primary medi-
ators of the immune-to-brain-communication. Peripheral pro-
inflammatory cytokines act specifically on brain regions involved
in interoception and homeostasis to initiate physiological and
behavioral changes such as fatigue (19). Consequently, we hypoth-
esize that the subjective feeling of MS-related fatigue may be a
variant of inflammation-induced sickness behavior, resulting from
cytokine-mediated activity changes within brain areas involved in
interoception and homeostasis including the insula, the anterior
cingulate, and the hypothalamus. To evaluate this hypothesis, we
will look at studies that investigated neural correlates of peripheral
inflammation.

FATIGUE AND PRO-INFLAMMATORY CYTOKINES IN
HEALTHY INDIVIDUALS
Assuming that subjective fatigue is a feeling resulting from cen-
tral actions of increased peripheral pro-inflammatory cytokine
concentrations, elevated levels of pro-inflammatory cytokines
should also cause fatigue in healthy individuals. Weisdorf et al.
(20) have demonstrated the important role of pro-inflammatory
cytokines in the generation of fatigue by showing that several
pro-inflammatory cytokines such as IL-1, IL-2, IL-6, IFN-γ, and
TNF-α cause fatigue and somnolence in healthy individuals when
administered exogeneously.

Furthermore, when healthy individuals become sick, they gen-
erate sickness behavior. The term sickness behavior has been
used to refer to behavior that may be regarded as an adaptive

response to acute infections or injuries (21). Everyone who has
been suffering from a viral or bacterial infection will know what
it means to “feel sick.” Major symptoms of sickness behavior may
include fatigue, depression, anhedonia, anorexia, and increased
pain sensitivity (22, 23). The syndrome may be fully present in
some patients but only partly in others, depending on the sever-
ity and nature of inflammatory processes (24). The physiological
and behavioral components of sickness behavior represent a highly
organized strategy of an organism to cope with the infection. Sick-
ness behavior appears to be primarily induced and regulated by
pro-inflammatory cytokines such as IL-1α, IL-1β, TNF-α, and IL-
6 (25–27). These cytokines are produced at the site of infection by
activated immune cells and act centrally to induce physiological
and behavioral components of sickness behavior (26, 28). This evi-
dence suggests that the neurophysiology of sickness behavior may
be responsible for the generation of inflammation-related fatigue.

Kerr et al. (27) studied healthy individuals, individuals at the
time of acute viral infection (human parvovirus B 19) and after
a mean follow-up period of 22.5 month. They demonstrated that
circulating levels of TNF-α and IFN-γ were raised during acute and
convalescent viral infection and that these elevated cytokine levels
were strongly associated with subjective feelings of fatigue. Simi-
lar findings were reported by Hannestad et al. (29). These authors
found that endotoxin-induced systemic inflammation increased
serum levels of TNF-α and IL-6 as well as subjective fatigue in
healthy individuals.

Kluge et al. (30, 31) analyzed immunomodulatory effects of
antipsychotic drugs olanzapine and clozapine, which frequently
produce sedation and sleepiness that share many similarities to
fatigue (32). These researchers found that both drugs activate the
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cytokine system. Clozapine treatment was predominantly asso-
ciated with an increase in TNF-α, sTNFr-1, sTNFr-2, IL-2r, and
IL-6, whereas olanzapine treatment was found to be related to an
increase in TNF-α, sIL-2r, and sTNFr-2.

FATIGUE AND PRO-INFLAMMATORY CYTOKINES IN
INFLAMMATORY DISORDERS
Assuming that subjective fatigue is a feeling related to elevated pro-
inflammatory cytokine levels, fatigue should be a major symptom
in disorders with an underlying inflammatory pathophysiology.
Actually, fatigue is a frequent complaint of patients suffering from
inflammatory disorders such as chronic fatigue syndrome (33, 34),
cancer (35), or autoimmune and autoinflammatory diseases such
as systemic lupus erythematosus (36, 37), rheumatoid arthritis
(38), Sjögren’s syndrome (39), and MS (3). Fatigue is also often
reported by patients suffering from diseases that show signs of
inflammation such as traumatic brain injury (40), stroke (41),
Parkinson disease (42), sleep apnea (43), and human immunode-
ficiency virus infection (44). All these disorders are characterized
by increased pro-inflammatory cytokine concentrations, strength-
ening the assumption that subjective fatigue may be due to elevated
pro-inflammatory cytokines and their effect on the central nervous
system (CNS).

Maes et al. (23) measured inflammatory markers in 107
patients with Myalgic Encephalomyelitis/Chronic Fatigue Syn-
drome (ME/CFS), 37 patients with chronic fatigue, and 20 healthy
individuals. They found higher serum levels of IL-1 and TNF-
α in patients with ME/CFS than in chronic fatigue patients and
healthy controls. Furthermore, they found a significant correla-
tion between increased serum IL-1, TNF-α, and subjective fatigue
in patients suffering from ME/CFS. Meyers et al. (45) studied 54
patients with acute myelogenous leukemia and myelodysplastic
syndrome before treatment initiation. They demonstrated signif-
icantly increased levels of circulating cytokines IL-1, IL-1ra, IL-6,
IL-8, TNF-α, impaired cognitive functions, and elevated levels of
subjective fatigue in these patients. Increased concentrations of
IL-6, IL-1ra, and TNF-α were significantly correlated to subjec-
tive fatigue. Similar results were obtained by Bower et al. (46)
who compared serum markers associated with pro-inflammatory
cytokine activity in 20 fatigued breast cancer survivors and 20
non-fatigued survivors. Fatigued breast cancer survivors showed
significantly higher serum levels of IL-1ra, sTNFr-2, and neopterin
than survivors without fatigue. Moreover, cancer-related fatigue
is commonly exacerbated by radio- and chemotherapy, which is
thought to increase serum levels of pro-inflammatory cytokines
(45, 47, 48). Greenberg et al. (49) examined this issue by evalu-
ating the effect of radiotherapy on subjective fatigue and serum
IL-1 in 15 men receiving radiation treatment for prostate cancer.
They observed an association between the rise in serum IL-1 and
the increase in subjective fatigue during radiotherapy. Cameron
et al. (50) performed a longitudinal study (from time of treatment
to 12 month later) investigating serum cytokine levels in 13 breast
cancer patients with fatigue and 15 controls without post-cancer
fatigue and did not find significant differences in cytokine lev-
els between these two groups. However, the blood sampling for
the analysis was conducted several weeks after the penultimate
treatment cycle. Thus, relevant changes in cytokine concentration

associated with treatment-related fatigue might have been missed.
Moreover, the number of participants was very small and might
have led to a Type II statistical error. Ormstad et al. (41) inves-
tigated the association between cytokine serum levels 72 h after
stroke onset and fatigue scores at 6 and 12 month in 45 ischemic
stroke patients. They found that acute serum levels of IL-1β

positively correlated with the fatigue score at 6 month after stroke.
Most of these studies point to an association between pro-

inflammatory cytokines such as IL-1, IL-6, and TNF-α and
fatigue in disorders characterized by elevated cytokine levels. This
well-documented association between elevated pro-inflammatory
cytokines and increased subjective fatigue may well have implica-
tions for the explanation of fatigue. Thus, research on the rela-
tion between subjective fatigue and pro-inflammatory cytokines
appears to be of great interest for a better understanding of
MS-related fatigue.

FATIGUE AND PRO-INFLAMMATORY CYTOKINES IN
MULTIPLE SCLEROSIS PATIENTS
Multiple Sclerosis is considered to be an autoimmune inflamma-
tory disorder of the CNS, in which autoreactive T-lymphocytes
recognize CNS-specific proteins resulting in inflammation,
demyelination, and axon degeneration (51). Pro- and anti-
inflammatory cytokines are commonly up-regulated in parallel
in most MS patients (52). Compared to healthy individuals, MS
patients display increased serum and cerebrospinal fluid levels of
pro-inflammatory cytokines such as IFN-γ, TNF-α, lymphotoxin-
α, IL-2, IL-1β, and anti-inflammatory cytokines such as IL-10,
IL-13, and TGF-β (52, 53). Given that pro-inflammatory cytokines
have been linked to fatigue in various conditions with an underly-
ing immunomodulatory pathology, it is not surprising that fatigue
is regarded as one of the most common and disabling symptoms
in MS (2–4).

Several lines of evidence suggest that immune factors play a
major role in MS-related fatigue, supporting our hypothesis that
MS-related fatigue might be some sort of inflammation-induced
sickness behavior resulting from cytokine-induced changes in
CNS neurophysiology. MS patients often complain of a higher
fatigue level during relapses, which are characterized by an
increased immune activation, representing an up-modulation
of pro-inflammatory cytokines such as TNF-α, IL-1, IL-6, and
lymphotoxin-α (52, 54–56). Moreover, the administration of
immunomodulatory medication such as interferon-beta fre-
quently causes short-term effects such as reversible fatigue in MS
(55, 57, 58). Goebel et al. (59) studied the effect of interferon-beta
(IFN-β-1b) on plasma levels of inflammatory cytokines in eight
healthy men. They found that interferon-beta injection led to an
immediate increase in TNF-α, IL-6, and IL-10 plasma levels. Nico-
letti et al. (60) studied the impact of short-term interferon-beta
treatment on blood cytokine levels in 14 relapsing-remitting MS
patients. They found that MS patients treated with interferon-beta
showed increased serum levels of IL-6, IFN-γ, and IL-10.

Studies on the relationship between pro-inflammatory
cytokines and MS-related fatigue demonstrated a significant asso-
ciation between subjective fatigue and the stimulated production
capacity for IFN-γ and TNF-α (14, 61). Pokryszko-Dragan et al.
(61) evaluated the stimulated production of IFN-γ by peripheral
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CD3+- and CD4+-T lymphocytes in 20 MS patients with and
20 without fatigue as determined by the Fatigue Severity Scale
(FSS). They found an increased stimulated IFN-γ production in
severely fatigued MS patients. Heesen et al. (14) compared whole
blood stimulatory capacity for pro- (TNF-α, IFN-γ) and anti-
inflammatory (IL-10) cytokines in 15 MS patients with and 15 MS
patients without fatigue as determined by the FSS. They found
that patients with fatigue displayed significantly increased TNF-α
and IFN-γ production capacities. Flachenecker et al. (13) reported
similar findings by studying 37 MS patients. They demonstrated
a significant association between TNF-α mRNA expression in
peripheral blood cells and FSS scores, independent from age, dis-
ease duration, disease course, disability, interferon treatment, or
signs of autonomic dysfunction. Finally, Bertolone et al. (62) mea-
sured serum levels of IL-1β, Il-6, β-2-microglobolin, sIL-2r, and
soluble CD8 in 30 MS patients with severe fatigue. They found
a significant correlation between beneficial effects of amantadine
and pemoline on subjective fatigue and reductions in serum levels
of IL-1β and IL-6.

On the other hand, Rudick and Barna (63) did not find signif-
icant differences in IL-2 levels comparing 8 fatigued MS patients
and 50 healthy controls. Other studies that failed to demonstrate an
association between inflammatory processes and MS-related sub-
jective fatigue did not measure direct pro-inflammatory cytokine
concentrations (64, 65). Instead, they analyzed concentrations of
inflammatory markers such as urinary neopterin or they measured
indirect effects of pro-inflammatory cytokines.

Summing up, studies on the relationship between pro-
inflammatory cytokines and MS-related subjective fatigue high-
light an association between elevated pro-inflammatory cytokines
IFN-γ, TNF-α, IL-1, IL-6, and increased feelings of fatigue.
These findings support our hypothesis that subjective fatigue in
MS patients might be a variant of inflammation-induced sick-
ness behavior resulting from cytokine-induced changes in CNS
neurophysiology.

ANTI-INFLAMMATORY TREATMENT AND FATIGUE
Providing that pro-inflammatory cytokines and their effect on the
CNS induce the feeling of fatigue, anti-inflammatory treatment
should reduce subjective fatigue. Actually, anti-TNF-α treatment
strategies have shown to ameliorate subjective fatigue in patients
suffering from rheumatoid arthritis and sleep apnea (66, 67).
Anakinra, an IL-1 receptor antagonist used in rheumatoid arthri-
tis, also showed significant improvements on fatigue scores (68).
In patients with Sjögren’s syndrome, inhibition of IL-1β caused
a 50% reduction in subjective fatigue (39). Finally, bupropion,
a psychopharmacological drug with anti-inflammatory prop-
erties against TNF-α, has shown to reduce excessive daytime
sleepiness (69).

If subjective fatigue in MS patients represents an internal state
resulting from increased pro-inflammatory cytokine levels, anti-
inflammatory treatment should also have beneficial effects on
fatigue in MS patients. However, there are hardly any studies on the
effect of anti-inflammatory cytokines on MS-related fatigue. Glati-
ramer acetate, used in the treatment of MS, has anti-inflammatory
properties and seems to reduce fatigue in MS patients (70, 71).
Furthermore, natalizumab treatment, which was found to reduce

circulating plasma levels of TNF-α, IL-6, and IL-10 as well as cere-
brospinal fluid levels of IL-1β, IL-6, and IL-8, seems to have a
beneficial effect on subjective fatigue in MS patients (72–75). Inter-
estingly, aerobic exercise leads to a reduction in subjective fatigue
in MS patients (76, 77). Regular aerobic exercise in MS patients was
found to induce anti-inflammatory actions such as the stimulated
production of anti-inflammatory cytokines and the inhibited pro-
duction of pro-inflammatory cytokines TNF-α and IFN-γ (78).
Therefore, the beneficial effect of aerobic exercise on MS-related
fatigue may be due to its anti-inflammatory implications. Finally,
body cooling, which was found to have a positive impact on MS-
related fatigue, also seems to decrease pro-inflammatory cytokine
(IL-1) production by peripheral blood cells (79, 80).

All these observations point to a beneficial effect of anti-
inflammatory treatment options on subjective fatigue in disor-
ders with elevated levels of pro-inflammatory cytokines, support-
ing our hypothesis of a relationship between pro-inflammatory
cytokines and fatigue.

NEURONAL ASPECTS OF FATIGUE – TRANSMISSION AND
REPRESENTATION OF INFLAMMATORY SIGNALS IN THE
BRAIN
If subjective fatigue is a feeling such as anxiety or pain, one would
expect this feeling to be represented cortically. Consequently, the
question arises which brain areas are associated with process-
ing the feeling fatigue. According to our hypothesis, we expect
brain areas, related to central effects of peripheral inflammation
and immunomodulation, to be associated with fatigue. To under-
stand how peripheral pro-inflammatory cytokines may produce
this feeling of fatigue, we will now review studies on the transmis-
sion and central representation of peripheral inflammatory signals
and its association with fatigue.

It is commonly presumed that peripherally released cytokines
act on the brain via two pathways: one fast neural transmis-
sion pathway involving primary afferent nerves innervating the
body site of inflammation and a slow humoral transmission path-
way involving cytokines originating from the choroid plexus and
circumventricular organs (22, 28, 81).

Studies have shown that primary afferent nerves, especially
afferents of the vagus nerve, play a key role in the neural trans-
mission of peripheral immune signals to the brain (82–86). For
example, immunohistochemical studies demonstrated an activa-
tion of vagal primary afferent neurons after having treated rats
with peripheral endotoxin or IL-1β (87, 88). Other animal studies
have shown that sectioning the abdominal vagus nerve abolished
most brain-mediated illness responses induced by the peripheral
administration of endotoxin or IL-1β (89, 90). Sensory neurons of
the vagal nerve appear to possess receptors for pro-inflammatory
cytokines and the activation of afferent nerve fibers by peripherally
released cytokines presumably represents a fast pathway and direct
activation of specified brain targets (26, 81). However, the spe-
cific neural substrates that process immunosensory information
remain elusive. Animal experiments using immunohistochem-
istry to detect the expression of c-Fos identified immunoreactive
neurons in the primary projection area of the afferent vagus
nerves, represented by the nucleus tractus solitaris, and in sec-
ondary projection areas such as the parabrachial nucleus, the
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hypothalamic paraventricular and supraoptic nuclei, the thala-
mus, the bed nucleus of the stria terminalis, the central nucleus
of the amygdala, the insular cortex, the anterior cingulate cor-
tex (ACC), and the medial prefrontal cortex (91–95). All these
brain structures are implicated in homeostasis and in the repre-
sentation of internal bodily states (interoception). However, only
few animal experiments analyzed the association between central
and behavioral effects of pro-inflammatory cytokines. Gaykema
et al. (90, 91) studied the effect of lipopolysaccharide challenge
on behavior and neural activity (Fos expression) in rats. Shortly
after systemic peripheral inflammation, rats presented symptoms
of sickness behavior, such as fatigue. Furthermore, researchers
demonstrated a significant relation between symptoms of sickness
behavior and suppressed activity of orexinergic and histaminergic
neurons located in the hypothalamus.

In humans, a growing number of neuroimaging studies have
investigated central effects of peripheral inflammation and have
generally confirmed the important role of the insula and the
ACC in immunomodulation (29, 96–99). Rosenkranz et al. (99)
used functional magnetic resonance imaging (fMRI) to study the
role of the CNS in the regulation of inflammation in allergic
asthmatic patients. They found an association between periph-
eral TNF-α in response to immunological challenge and activity
in the ACC as well as between eosinophils and activity in the
insula. Similar results were obtained by Eisenberger et al. (97)
who analyzed the relationship between neural activity using fMRI
and pro-inflammatory cytokine activity in individuals exposed to
endotoxin. The authors found an association between endotoxin-
induced elevations in IL-6 and increased neural activity in the dor-
sal ACC and the anterior insula in females but not in males. Ohira
et al. (98) recorded immune indices and regional cerebral blood
flow in men, using positron emission tomography. They observed
a correlation between the increase in natural killer cells and the
increase in regional cerebral blood flow in the left insula, the medial
and bilateral orbitofrontal cortex, and in the anterior middle
prefrontal cortex. Furthermore, they demonstrated a correlation
between a decrease in T helper cells and a decrease in regional
cerebral blood flow in the right insula and the medial orbitofrontal
cortex. Hannestad et al. (29) analyzed this issue by using positron
emission tomography to identify brain regions that are involved
in the response to endotoxin administration in humans. This
research group found that systemic inflammation causes an
increase in peripheral TNF-α and IL-6 concentrations. Moreover,
they found that endotoxin administration led to a higher normal-
ized glucose metabolism in the insula and to a lower normalized
glucose metabolism in the ACC. Summing up, nearly all of these
studies demonstrated a relationship between inflammatory mark-
ers and activity changes within the insula and the ACC. Only one
neuroimaging study, performed by Harrison et al. (96), examined
the relationship between inflammation-induced activity changes
within the brain and inflammation-induced fatigue. These authors
demonstrated that systemic inflammation in healthy individuals
causes an increase in neural activity in the insula and the ante-
rior cingulate and that these activity changes predict variations in
inflammation-associated fatigue. Moreover, the authors showed
that the association between inflammation-associated fatigue and
increased activity in the insula and anterior cingulate relies on

afferent, rather than on efferent autonomic effects, suggesting that
fatigue as a core symptom of sickness behavior emerges from
afferent interocepive information processing.

These findings point to an implication of interoceptive and
homeostatic brain regions like the insula, the anterior cingulate,
and the hypothalamus in immunomodulation and suggest that
these areas might represent neural correlates of inflammation-
induced fatigue.

THE POSSIBLE ROLE OF THE INSULA, THE ANTERIOR
CINGULATE AND THE HYPOTHALAMUS IN THE GENERATION
OF INFLAMMATION-RELATED SUBJECTIVE FATIGUE
Assuming that subjective fatigue is a feeling represented in corti-
cal areas that are involved in interoception and homeostasis, we
now take a closer look at the brain regions that have been found
frequently to be implicated in inflammation: the insula, the ACC,
and the hypothalamus.

In human beings, convergent afferent vagal and spinal intero-
ceptive fibers terminate in the anterior insula providing a central
representation of well-being. Craig et al. (100) found that activity
in the posterior insula correlated with stimulus intensities, whereas
activity in the anterior insula correlated with subjective feelings of
these stimuli intensities, suggesting that the anterior insula pro-
vides a basis for the generation of subjective feelings. The insula
and the ACC have both been implicated in sensing and respond-
ing to physiological disturbances (101). Some authors suggest that
afferent homeostatic signaling is integrated in the anterior insula
and that the subsequent efferent response is driven by the ACC
(101, 102). According to that hypothesis, inflammation would
activate all regions of the insula resulting in the generation of sub-
jective feelings of sickness behavior such as fatigue. On the other
hand, the ACC would provide the basis for ongoing adjustments to
behavior and physiology to restore and maintain our well-being.

The hypothalamus was found to be related to inflammation-
induced fatigue in animal experiments and is an important struc-
ture for regulating wakefulness and sleep. Orexinergic neurons in
the lateral hypothalamus and histaminergic neurons located in the
posterior hypothalamus play a key role in inducing and maintain-
ing wakefulness and vigilance (103). Consequentially, observed
inflammation-driven inhibition of orexinergic and histaminer-
gic neurons in the hypothalamus might contribute to subjective
fatigue as well as to fatigue-related vigilance impairment.

STUDIES ON THE INVOLVEMENT OF THE INSULA, THE
ANTERIOR CINGULATE AND THE HYPOTHALAMUS IN
MS-RELATED FATIGUE
Zellini et al. (104) used T1 relaxation time as a sensitive mea-
sure to indicate pathological changes in the hypothalamus in 44
relapsing-remitting MS patients. Compared to 13 healthy controls,
MS patients had a significantly higher T1 relaxation time in the
hypothalamus. Moreover, the authors found a significant posi-
tive correlation between T1 relaxation times and patients’ fatigue
scores, as assessed with the FSS. These findings point to an asso-
ciation between pathological changes in the hypothalamus and
MS-related fatigue, supporting our hypothesis that the hypothala-
mus, especially histaminergic and orexinergic neurons, might play
an important role for fatigue in MS patients.
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Recently, we investigated the association between the integrity
of posterior hypothalamic fibers and the level of cognitive fatigue
in 49 relapsing-remitting MS patients using diffusion tensor
imaging (105). We found that non-cognitively fatigued patients
revealed greater axial and radial diffusivity for fibers between
brainstem areas and the posterior hypothalamus, indicating tis-
sue loss. This tissue loss might have resulted from demyelination
and/or degeneration of investigated fibers including afferent inte-
roceptive fibers and afferents of the vagal nerve that innervate the
posterior hypothalamus, including the histaminergic system and
other brain regions such as the insular cortex. Consequently, loss
of fiber integrity might reduce inflammation-induced suppression
of histaminergic neurons as well as inflammation-induced activity
in the insula, resulting in a decreased feeling of fatigue.

In another recent study, we analyzed the association between
subjective fatigue and cortical thickness in two independent data
sets, encompassing in total 96 relapsing-remitting MS patients
(106). In both data sets, regression analysis revealed thickness
of the right insular cortex as an independent predictor of the
patients’ FSS score. Patients without fatigue had a thinner right
insular cortex than patients with fatigue, suggesting that the right
insular cortex plays an important role in the generation of fatigue
and that atrophy in this area apparently results in a decrease of
fatigue.

Hesse et al. (107) used positron emission tomography and a
serotonin transporter-selective tracer to investigate serotonergic
activity in 23 MS patients and 22 healthy controls. Compared
to healthy controls, MS patients had lower serotonin transporter
availability in the cingulate cortex, the thalamus, and the insula
and increased availability in the orbitofrontal cortex. Moreover, the
authors found a positive correlation between patients’ serotonin
transporter availability in the insula and fatigue scores (assessed
via the Würzburger Erschöpfungsinventar bei MS), pointing to an
involvement of the insular cortex in the generation of MS-related
fatigue.

Several lines of evidence suggest that atrophy as well as func-
tional changes in the ACC are related to fatigue in MS patients
(6, 8, 10, 108, 109). Multiple structural imaging studies found an
association between increased white and gray matter atrophy in
the ACC and subjective fatigue in MS patients (6, 8, 108). Fur-
thermore, functional imaging studies found that MS patients with
fatigue have a larger and more significant activation of the ACC
during the execution of simple motor tasks than patients with-
out fatigue (10, 109). These findings support our assumption that
the ACC is an important neural structure related to MS-related
fatigue.

IMPLICATIONS OF THESE FINDINGS FOR OUR FATIGUE
MODEL
We recently proposed a fatigue model arguing that two inde-
pendent mechanisms may contribute to subjective and objective
fatigue in MS patients: (1) subjective fatigue as a feeling is related
to inflammation-induced information processing within intero-
ceptive and homeostatic brain areas and (2) objective fatigue as
the measureable decrement in behavioral performance is related
to atrophy in the cortico-subcortical vigilance network [(17); see
Figure 1].

We propose that subjective fatigue in MS patients is a feel-
ing that reflects an internal state depending on interoceptive
information processing. Thus, similar to pain, fatigue may con-
tribute to increased interoceptive information processing and it
may act as a source of interoceptive interference. Hence, our
model proposes that subjective fatigue can be measured behav-
iorally only by applying specific cognitive tasks that rely on a
high degree of intrinsic alertness such as vigilance and alertness
tasks. Moreover, it argues that a vigilance and alertness decre-
ment may be enhanced by brain atrophy and/or neurochemical
dysfunction of the alerting/vigilance system. According to this
model, fatigue in MS patients may differ depending on the dis-
ease progress. During disease onset inflammatory processes might
predominantly cause subjective fatigue, whereas in later disease
stages advanced brain atrophy of specified brain regions might pre-
dominantly contribute to objective fatigue. This assumption has
implications for the treatment of MS-related fatigue: while anti-
inflammatory treatment options might show beneficial effects
during disease onset, it may not help any more in advanced disease
stages.

In this review we focused on the association between inflam-
mation, the subjective feeling of fatigue and its possible neural
correlates. The empirical findings discussed above all point to a
relationship between elevated levels of peripheral TNF-α, IFN-γ,
IL-1β, and IL-6 and subjective fatigue, supporting our hypothesis
that subjective fatigue in MS patients is related to inflamma-
tion. Furthermore, the findings demonstrate that elevated levels
of peripheral pro-inflammatory cytokines activate afferent inte-
roceptive fibers, including afferents of the vagus nerve which
innervate brain regions involved in interoception and home-
ostasis, such as the insula (particularly the anterior insula), the
anterior cingulate and the hypothalamus. Hence, we suggest that
inflammation-induced activity changes in these brain regions may
reflect the neural substrates of the feeling of fatigue.

In general, our fatigue model currently can best be tested
by using vigilance and alertness tasks. Furthermore, MRI tech-
niques like diffusion tensor imaging may be helpful in analyzing
afferent nerve fibers that transmit inflammatory signals to the
brain. Analysis of the relationship between cortical thickness or
localized lesions in interoceptive brain regions and fatigue might
support our fatigue model. To show that fatigue is a feeling related
to inflammation that is represented in interoceptive/homeostatic
brain regions like the insula, the ACC and the hypothalamus, func-
tional imaging studies combined with the assessment of subjective
fatigue and the evaluation of cytokine levels would be necessary.
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