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The study of large-scale functional interactions in the human brain with functional magnetic 
resonance imaging (fMRI) extends almost to the first applications of this technology. Due to 
historical reasons and preconceptions about the limitations of this brain imaging method, 
most studies have focused on assessing connectivity over extended periods of time. It is now 
clear that fMRI can resolve the temporal dynamics of functional connectivity, like other faster 
imaging techniques such as electroencephalography and magnetoencephalography (albeit on 
a different temporal scale). However, the indirect nature of fMRI measurements can hinder the 
interpretability of the results. After briefly summarizing recent advances in the field, we discuss 
how the simultaneous combination of fMRI with electrophysiological activity measurements 
can contribute to a better understanding of dynamic functional connectivity in humans both 
during rest and task, wakefulness, and other brain states.
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IntroductIon
Functional connectivity is a broad term used to denote statistical co-variation between activity 
time series in different brain regions (1). It should not come as a surprise that functional connec-
tivity is not static but under constant change. If functional connectivity is considered a proxy for 
how tightly brain regions interact, then static values represent a fixed scheme for the transmission 
of information between cortical areas. This view is incompatible with the dynamic nature of the 
challenges posed by our environment. Even during rest and sleep static connectivity cannot be 
expected, since spontaneous activity re-capitulates the patterns observed during task performance 
and sensory stimulation (2).

However, until recently functional magnetic resonance imaging (fMRI) studies focused on 
functional connectivity as computed from signals extracted over extended periods of time. In the 
case of resting-state analyses this usually corresponds to the whole duration of the scanning session 
(commonly 5–10 min). This is in contrast with other neuroimaging modalities such as electroen-
cephalography (EEG) and magnetoencephalography (MEG), for which long-dated precedents on 
how to measure and interpret dynamic changes in functional connectivity exist [see for instance 
(3)]. The relatively late blooming of assessing the temporal dynamics of connectivity using fMRI 
is likely based on preconceptions about the limitations of the technique. Compared to MEG and 
EEG, fMRI has a relatively slow temporal sampling rate. With one measurement every 2 s (a typi-
cal value) a 10 min session would yield 300 data points. Van Dijk et al. showed that connectivity 
estimates become unreliable when computed over windows shorter than approximately 4 min 
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3. Do apparent temporal changes in functional connectivity 
appear spuriously (by chance) or by meaningful neurophysio-
logical fluctuations? Computation of short-term correlations 
between random noise signals can give rise to apparently com-
plex dynamics (10, 11).

4. Are changes in functional connectivity related to cognition 
or behavior or do they represent changes in vigilance and 
arousal? The question of how ubiquitous is sleep during the 
resting-state is closely related to this issue (12).

In this focused review we discuss how, when faced with such 
questions, the combination of fMRI with other neuroimaging 
methods (such as EEG and MEG) can help prove or disprove the 
neurophysiological relevance of dynamic changes in functional 
connectivity. This strategy was fundamental for validating the 
neurophysiological origin of spontaneous activity fluctuations 
in resting-state fMRI measurements (13, 14) and its applica-
tion to the field of dynamic functional connectivity may prove 
equally important. We will first review recent demonstrations of 
BOLD connectivity fluctuations and their relevance for under-
standing changes in behavior, cognition, and vigilance states, 
as well as alterations caused by brain diseases, while discussing 
the contribution of multimodal imaging to these topics. We will 
then review the role of multimodal recordings in understanding 
the different contributions to temporal changes in functional 
connectivity.

FunctIonal connectIvIty Fluctuates over tIme
Extensive reviews already cover with detail the recent developments 
in the field (15, 16). Here we will only summarize selected results we 
deem important for the main topic of this review. A recent article 
also reviews the neural correlates of BOLD connectivity fluctua-
tions and is a valuable complementary reading (17).

A natural starting point is the work of Chang and Glover (18) 
and Sakoglu and colleagues (19). The authors of the first study 
performed a time–frequency coherence analysis based on the 
wavelet transform and demonstrated time-varying connectiv-
ity of the posterior cingulate cortex (PCC) with the rest of the 
Default Mode Network (DMN) (18). The use of sliding windows 

KEy coNcEpt 2 | fMRI and BoLD
Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique 
used to detect changes in magnetic susceptibility, which may correlate with 
oxygen consumption, and therefore with neural (synaptic) activity. The measured 
signal is termed Blood Oxygen Level Dependent (BOLD).

KEy coNcEpt 3 | Electroencephalography
Electroencephalography is a non-invasive method routinely used to measure 
changes in voltage at the scalp, which can be originated by synchronous 
assemblies of neurons. EEG measures changes in voltage resulting from the 
flow of ions implicated in the generation of action potentials. While EEG can 
be measured with very high temporal resolution, it is difficult to pinpoint 
where in the brain the voltages originate.

KEy coNcEpt 1 | Functional connectivity
This concept refers to signals of neural origin that co-vary over time, for 
instance, two regions showing similar temporal patterns of spontaneous 
activity fluctuations. In fMRI signals, functional connectivity is commonly 
measured by linear correlation. Functional connectivity does not imply a causal 
mechanism between the signals.

KEy coNcEpt 4 | convolution and de-convolution
Because of the indirect nature of fMRI measurements, precisely localized 
neural activity (in the time domain) is measured by fMRI as widespread and 
lagged. Formally, neural activity time series are said to be convoluted, i.e., 
blurred by a moving average weighted by a kernel (in this case, the 
hemodynamic response function). The (difficult) operation of inverting this 
process is termed de-convolution.

(4). In this context, “reliability” is relative to the static connec-
tivity estimates computed using whole time series. Additionally, 
electrophysiological activity is represented in blood oxygen level 
dependent (BOLD) signals as convolved with the hemodynamic 
response function, which acts as a low-pass filter and lags the 
BOLD response (5). At the core of using long time series for 
computing connectivity estimates are the following assumptions: 
(i) short temporal windows result in noisy estimates of connectiv-
ity, (ii) very short temporal windows might fail to disambiguate 
different neuroelectrical contributions due to their convolution 

with the hemodynamic response function, and (iii) longer time 
series are able to capture a temporal average of the short-term 
dynamics, i.e., a stationary state.

Leaving these assumptions aside, recent studies revealed mean-
ingful changes in functional connectivity over time. Furthermore, 
the analysis of single volume co-activation patterns emerged (6, 
7), thus exploiting fMRI datasets up to the limit allowed by the 
temporal resolution of the BOLD response. However, many issues 
and limitations have to be considered regarding the interpretation 
of these findings:

1. Are temporal changes in connectivity related to respiration 
or heart rate fluctuations? Since fMRI measures blood flow, 
physiological changes could impact directly on BOLD measu-
rements (8).

2. Are temporal changes in connectivity related to head motion? 
It has been shown that movements inside the scanner can 
strongly influence connectivity estimates (9).

KEy coNcEpt 5 | Sliding windows
Functional connectivity can be computed over a relatively short period or 
window of time (in the order of seconds for fMRI time series). In a sliding 
window analysis, this computation is repeated many times while displacing 
the window forward in time (either by one or many samples), therefore 
estimating temporal changes in functional connectivity. The window size and 
the overlap between windows are free parameters to be decided.

was also  introduced to quantify correlations between BOLD signals 
over time. In the second study, authors also used time–frequency 
analyses to study dynamic functional connectivity changes dur-
ing an auditory oddball task, as well as the differences between a 
group of schizophrenia patients and healthy controls. In (20) [and 
subsequently in Ref. (21)] non-overlapping windows were used to 
show that temporal dynamics of functional connectivity have an 
intrinsic burstiness, which is characteristic of critical phenomena. 
The use of sliding windows was applied to fMRI data from anesthe-
tized monkeys (therefore reducing movement issues) in Hutchison 
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et al. (22). Of particular interest was the observation of periods 
of high (global) correlation, reminiscent of the global avalanches 
of activity observed in fMRI (6), MEG (23), and LFP data (24). 
Dynamic functional connectivity was also established in rodents, 
with a temporal variation from positive to negative correlation 
except between homologous brain areas, which exhibit a predomi-
nantly positive correlation over time (25). In humans, functional 
connectivity time courses were obtained (using sliding windows) 
between time series extracted from all regions in the Automated 
anatomical labeling (AAL) template (26) and widespread correla-
tions between direct electrophysiological recordings (EEG) and 
dynamic functional connectivity time series were found, as well as 
changes due to vigilance fluctuations (27). This paper, as well as 
others applying similar multimodal approaches, will be discussed 
with more detail in the following sections.

Aside from establishing the existence of fluctuations in functional 
connectivity, others attempted to evaluate whether short-term pat-
terns of connectivity can be accurately classified or clustered into 
a discrete set of states. Clustering via k-means revealed short-term 
patterns of connectivity diverging from results obtained from whole 
recordings (28), whereas PCA revealed stereotypical “building 
blocks” of short-term whole functional connectivity (29). A more 
straightforward clustering of dynamic functional connectivity pat-
terns was performed in (30), in which all patterns between a set 
of four regions were enumerated. The limitation imposed on the 
number of regions allowed the explicit evaluation of information-
theoretic quantities, which depend on sufficient sampling of the 
patterns visited over time. This method was then applied to char-
acterize the temporal evolution of connectivity dynamics during 
the psychedelic state.

Most of the analyses outlined above were carried out using slid-
ing windows, basically an extension of standard linear correlation 
and therefore inheriting its bivariate nature. Higher order corre-
lations, however, are ubiquitous in brain activity (31) and a full 
understanding of transient connectivity states may not arise by con-
sidering pairwise interactions only. An exception is the extension of 
ICA to capture temporal independent modes (32). Another excep-
tion is the study of instantaneous activations and co-activations of 
brain activity (6). This approach is based on the identification of 
points of interest in resting-state data, which can be equivalently 
detected using blind de-convolution (33) or by identifying extreme 
events in the data (6). This multivariate approach reveals that co-
activation patterns (i.e., all voxels containing an event or point of 
interest, which are concurrently observed in the same temporal 
volume) can reproduce all major Resting-State Networks (RSN) 
(34) as observed with ICA, but with only a fraction of the data 
(approximately 4%). Clustering of co-activation maps converged 
toward the same result (7). Recently, co-activation patterns of the 
PCC were used to assess dynamic changes during unconsciousness 
as induced by propofol (35).

BehavIoral and cognItIve correlates oF Bold 
connectIvIty FluctuatIons
The human brain is inherently dynamic and variable, with oscilla-
tions over different frequencies paralleling changes in brain states 
(36). Non-static functional connectivity between BOLD time series 
is to be expected. However, it is important to understand how the 

intrinsic variabilities of brain activity and connectivity correlate 
with changes in behavior, cognitive states and environmental inter-
actions. This is the next natural step in the investigation of dynamic 
functional connectivity and remains to be explored with detail.

A relevant finding is the correlation between changes in func-
tional connectivity of the DMN and stimulus-independent thought, 
as demonstrated in (37). Authors performed resting-state fMRI 
recordings while intermittently probing mind wandering. Short-
term functional connectivity of the DMN was obtained over 30 s. 
windows and a positive correlation between its temporal variance 
and an index of day-dreaming frequency was found during rest. 
This is an interesting example of how assessing the temporal vari-
ability of functional connectivity can assist in the interpretation 
of temporal variability in cognition and behavior.

In another study, spatiotemporal ICA was introduced to cap-
ture the temporal evolution of networks in task fMRI data (38). 
This analysis (uninformed of task time courses and the regions 
involved) was able to capture the transitions between task and rest, 
suggesting a well-defined functional role for coupling fluctuations 
between regions. A similar blind analysis of dynamic connectivity 
changes associated with task performance was performed for EEG 
recordings (39).

One natural question is whether spontaneous fluctuations in 
connectivity can bias perception and action. This question has an 
affirmative answer for the amplitude of BOLD signals. For instance, 
when showing ambiguous images to subjects (faces being one of 
two possible interpretations) researchers found that increased 
activity in the fusiform face area predicted the perception of the 
stimulus as a face (40). How are cognition and behavior influenced 
by ongoing (de)synchronization of BOLD signals? One interesting 
possibility is the facilitation of conscious access during periods 
of transient “hypersynchronization” (22) in fronto-parietal net-
works. It is known that conscious access elicits sustained neuronal 
responses propagating beyond sensory cortices and results in a 
massive synchronization of brain activity (41, 42). A highly con-
nected brain state could facilitate this propagation, thus predicting 
conscious perception of stimuli flashed at the threshold for aware-
ness. This directly suggests an experiment that could be carried out 
to probe the relationship between transient global connectivity and 
perception (for instance, by adapting the experimental paradigm 
in (40) allowing for enough time to estimate baseline functional 
connectivity prior to the presentation of the stimuli).

Multimodal imaging (for instance, simultaneous EEG–fMRI 
recordings during rest) can offer insights on the functional role of 
spontaneous fluctuations in functional connectivity. A rich litera-
ture demonstrates how band-specific spontaneous changes in EEG 
oscillatory power can bias behavior and perception. Following the 
previous example, pre-stimulus gamma band in the lateral part 
of the occipital cortex can predict conscious awareness (43). As 
discussed in the next section with more detail, a positive corre-
lation between fronto-parietal BOLD connectivity and gamma 
power measured from occipital electrodes has been shown (27). 
While indirect, these are first steps in the direction of establishing 
a relationship between transient patterns of large-scale functional 
connectivity and behavior, using EEG features as a bridge between 
these two. We note that direct experiments should be carried out 
to verify such relationships, for example, by probing how baseline 
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functional connectivity can influence conscious perception [as 
suggested in the previous paragraph, by adapting the paradigm 
in Ref. (40) and attempting to predict conscious perception from 
large-scale connectivity prior to the presentation of the stimuli].

changes In FunctIonal connectIvIty over tIme track 
BraIn states
In line with the possibility of connectivity indexing fluctuations 
of attention and perception, we recently suggested that temporal 
changes of functional connectivity track more radical departures 
from wakefulness, i.e., toward drowsiness and sleep (12).

Implicit to the use of single connectivity estimates over extended 
resting-state sessions is the assumption that the brain state of sub-
jects will be homogeneous and will not depart from an idealized 
“resting-state wakefulness.” While the existence of the latter is 
disputed (as subjects will naturally exhibit different thought pat-
terns, levels of anxiety, attention, etc.), brain states associated with 
considerable neurophysiological changes (such as sleep) should be 
monitored and avoided. This is supported by many reports show-
ing different BOLD functional connectivity and dynamics during 
drowsiness and sleep (44–47).

Dynamical changes in functional connectivity can be used to 
decode sleep stages [as defined by AASM rules (48)]. This was first 
validated using EEG–fMRI recordings during sleep (49), further-
more, this classifier was then applied to fMRI resting-state studies 
acquired without simultaneous EEG to demonstrate the general 
pervasiveness of sleep during rest (12).

One lesson of these studies is that temporal fluctuations in func-
tional connectivity can be accounted (at least partially) by changes 
in vigilance levels and sleep stages. Vigilance shifts indeed occur 
during rest, therefore it is in the interest of researchers to maintain 
a steady brain state during fMRI acquisition (e.g., wakefulness) 
in order to avoid sleep-related confounds. This is of particular 
importance when comparing different clinical populations (it is 
known that neurological and psychiatric diseases are character-
ized by disturbances in sleep patterns (50, 51) in addition to those 
caused by medication).

Arguably, loss of vigilance and sleep onset are not the only factors 
contributing to spontaneous fluctuations in functional connectiv-
ity. Instead, subtler changes in cognitive states can be decoded from 
connectivity patterns [see for instance the results in Ref. (52)]. 
Thus, understanding their prevalence during rest and confining 
analyses to particular cognitive states could reduce the possibility 
of false positives and negatives when comparing different popula-
tions (especially in a clinical context).

alteratIons oF dynamIc FunctIonal connectIvIty In 
dIsease
Functional connectivity reflects to a large extent the underlying 
structural connectivity of the brain (53). Therefore, pathological 
alterations in the latter could be in principle detected by static 
functional connectivity analyses. It is also possible that pathological 
alterations in functional connectivity occur on a faster time scale 
and thus that averaging over many minutes obscures the differ-
ences. This could be the case for diseases associated with paroxys-
mal events, such as temporal lobe epilepsy and absence seizures. 
Indeed, dynamical changes in connectivity parallel the pre-ictal 

and post-ictal periods during absence seizures (54) (suggesting an 
ictal inhibition of DMN connectivity) as well as inter-ictal spikes 
in temporal lobe epilepsy (55). Increased temporal fluctuations of 
hippocampal connectivity in temporal lobe epilepsy likely reflect 
spike-induced variability (56). These examples show the potential 
of simultaneous EEG–fMRI to integrate large-scale BOLD con-
nectivity with faster information provided by EEG

The understanding of other diseases could benefit as well from 
analyses of dynamic changes in connectivity. In a recently published 
work, the short-term functional connectivity of schizophrenic 
patients (57) was studied. Clustering of connectivity patterns 
revealed abnormalities in some transient states but not in others. 
Furthermore, transition probabilities between states were altered 
for schizophrenic patients, suggesting a different dynamical explo-
ration of the repertoire of possible connectivity states. Future work 
using combined EEG–fMRI recordings should further characterize 
these abnormal transient states and their link to analogous electro-
physiological features [such as EEG microstates (58) and spectral 
changes].

correlatIons Between FunctIonal connectIvIty and 
Band-specIFIc oscIllatory power
A straightforward correlation between fMRI functional connec-
tivity and an electrophysiological measure can be obtained from 
band-specific EEG power extracted from different topographical 
locations, which indexes the local synchronization of neurons at 
specific frequencies (59). This was the approach followed in Ref. 
(27), as well in Ref. (60) and (61). In the first study, widespread 
correlations between fMRI functional connectivity changes over 
time and EEG power were observed. These were positive for the 
gamma band (>40 Hz) and negative for slower frequencies includ-
ing the alpha rhythm (8–12 Hz). This is in line with the hypoth-
esized role of oscillations in these frequencies. Gamma frequency 
is linked to the binding of information between distant cortical 
areas (thus enhancing large-scale connectivity) (62). On the other 
hand, the alpha rhythm has an inhibitory role, suppressing those 
connections that are irrelevant for the current demands (63). The 
main limitation of this analysis is volume conduction in scalp EEG 
recordings, imposing limitations on the localization of EEG power 
fluctuations correlated with BOLD functional connectivity. Still, 
this is an important first step to establish the neurophysiologi-
cal basis of dynamic functional connectivity. No correlations were 
found between dynamic functional connectivity and fluctuations 
in heart rate/respiration/head motion (27). With respect to changes 
in vigilance, subjects drifting between wakefulness and light sleep 
showed a different pattern of correlations between dynamic func-
tional connectivity and EEG. A positive correlation with the slower 
delta band (<4 Hz) and diminished positive correlations with the 
gamma band were found (27).

Consistent results were independently reported in Ref. (60) 
and (61). In the first paper, psychophysiological interaction (PPI) 
analysis was applied to study the relationship between alpha power 
and connectivity of a region located in the occipital cortex. A nega-
tive correlation with alpha (but not with other bands) was found, 
which was also interpreted by the authors as inhibition by alpha 
oscillations. The second study reported a negative modulation (i.e., 
anticorrelation) of fMRI connectivity between the DMN and the 
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the inverse (EEG from fMRI) across all bands, suggesting a loss 
of important information in the BOLD signal for the purpose of 
assessing connectivity.

electrophysIologIcal correlates oF fmrI  
co-actIvatIon patterns
The patterns observed in resting-state activity reflect to a large 
extent those observed during task execution and sensory stimula-
tion. For instance, by analyzing resting-state fMRI data and fMRI 
activation maps from a large database (BrainMap, www.brainmap.
org) (2) were able to show a striking correspondence between 
both sets of independent components (RSN and the BrainMap 
ICA). Furthermore, recent results show that these patterns do not 
arise only when averaged over extended scanning sessions but 
voxels also become spontaneously co-activated (i.e., their activ-
ity is jointly over a certain fixed threshold) at individual volumes 
(6, 7). Thus, brain activity is a dynamic succession of activated/
de-activated voxels and the patterns of spontaneous activations 
reproduce task-induced activations. This method for studying 
resting-state recordings resolves “instantaneous” (i.e., up to the 
temporal resolution of the BOLD response) and dynamic changes 
in co-activation.

It is yet necessary to establish the electrophysiological signatures 
of these spontaneous activation patterns. Besides the need to dis-
tinguish meaningful neuroelectrical activity from other confounds 
due to brain vasculature, head motion, etc., there is a rich history 
in cognitive neuroscience assigning band-specific frequencies and 
Evoked Reponse Potentials (ERPs) to particular tasks which, in 
turn, could be associated with these patterns of spontaneous co-
activations. To the present day, average activity in RSN was linked 
to characteristic distributions of EEG frequencies (14), but tempo-
ral signatures associated with particular patterns of instantaneous 
co-activations remain to be studied. Furthermore, a recent study 
reported temporally unstable correlations between EEG signals and 
RSN time series, which could arise due to an intermittent manifes-
tation of these networks (68).

The study of such correlations corresponds to an fMRI-
informed EEG analysis, which is exactly the opposite of the most 
common strategy (i.e., using EEG as a regressor in the analysis of 
fMRI data). The main difficulty is the relative temporal impreci-
sion of fMRI recordings, which complicates EEG analysis triggered 
by fMRI events. The improvement of fMRI sampling rates could 
reveal stable electrophysiological signatures of RSN in the temporal 
domain, by averaging temporal EEG data temporally locked to the 
spontaneous activation of different RSN. However, the use of scan-
ning sequences with shorter TRs (e.g., multiband sequences) has 
intrinsic limitations (such as hemodynamic convolution and the 
possibility of heterogeneous hemodynamic coupling throughout 
the cortex).

lImItatIons and caveats
Two inter-related problems arise when studying temporal changes 
in BOLD functional connectivity. First, how to adequately define 
states which through their temporal progression can be used to 
characterize dynamics. Second, the problem of spurious results 
when sliding windows is used to obtain temporally evolving 
connectivity.

Dorsal Attention Network (DAN) with alpha power. The correla-
tions between fMRI dynamic connectivity and EEG power fluctua-
tions for these studies are shown in Figure 1.

Correlations between both functional connectivity and BOLD 
signal amplitude (13) with EEG power in the alpha band can be 
reconciled given that simultaneously activated brain regions will be 
functionally connected when examined using very short window 
lengths. In other words, the shorter an observational window, the 
smaller will be the conceptual difference between co-activation 
and functional connectivity. It might be the case that correlating 
electrophysiological data with time-varying functional connectivity 
will yield a more meaningful fusion model than the direct correla-
tion of EEG band power with the BOLD signal amplitude, the latter 
being a limiting case of the former.

To overcome the limitations of volume conduction, concur-
rent direct electrophysiological recordings and BOLD signals were 
obtained in the somatosensory cortex of rats (64). The results 
diverge from those reported in humans (27, 61) in the observation 
of positive correlations with all frequency bands, including the 
alpha and gamma bands. It must be noted that this work assessed 
interhemispheric correlations only. Differences could arise due to 
the presence of source mixing and volume conduction in EEG, 
absent when signals are recorded on-site via invasive electrodes. 
Finally, animal studies are usually performed under anesthe-
sia whereas data from humans are commonly acquired during 
wakefulness, which could also explain the discrepancies. These 
results were partially concordant with those from another animal 
study (in this case in monkeys) in which a positive contribution 
of relatively slow (<20 Hz) LFP signals to BOLD connectivity 
was observed, but excluding a contribution from gamma (65). 
Concurrent fMRI and intra-cranial electrophysiological record-
ings can contribute to understanding the divergences between 
animal and human studies.

correlatIons Between FunctIonal connectIvIty and 
Band-specIFIc coherence
The studies mentioned in the preceding section do not directly 
relate measures of electrophysiological synchronization (i.e., coher-
ence) to BOLD functional connectivity between pairs of regions. 
For this purpose is necessary to source localize the EEG/MEG scalp 
sensor data, allowing more accurate estimation of the coordinates 
from where time series are extracted. To study the correlation 
between static BOLD functional connectivity and electrophysi-
ological coherence is not necessary to perform simultaneous com-
bined measurements, instead, both metrics can be obtained during 
two different offline recordings and subsequently correlated. This 
approach was followed by Brookes and colleagues (66) using non-
simultaneous MEG and fMRI data. Authors observed the strongest 
correlations when studying the beta band and when focusing on 
the sensorimotor cortex. A recent study overcame the limitations of 
offline measurements by combining simultaneous EEG–fMRI with 
beamforming for source localization (67). Connectivity between 
time series was computed via the precision matrix (i.e., the inverse 
of the covariance matrix) and the inference of fMRI connectivity 
from EEG (and vice-versa) was assessed using sparse canonical 
correlation analysis combined with cross-validation. The infer-
ence of fMRI connectivity from EEG connectivity was better than 
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FIGuRE 1 | three studies reporting an inverse correlation between BoLD 
functional connectivity fluctuations and power in the alpha (8–12 Hz) band 
in human subjects. (A) Left: brain regions showing a negative (blue) and 
positive (red) correlation between functional connectivity with the seed (in 
green) and posterior EEG alpha power. Right: Parameter estimates for high and 
low alpha conditions for the significant clusters depicted in the spatial map. 
Reproduced with permission from Ref. (60). (B) Mean correlation values and 

statistical significance of the correlation between functional connectivity (all 
pairs in the AAL template) and power in different EEG frequency bands: central 
alpha/beta (negative correlations) and central/frontal gamma (positive 
correlations). Reproduced with permission from Ref. (27). (c) Significance of 
correlation (in t-values) between time-varying functional connectivity and alpha 
(left) and theta (right) EEG power for 16 regions of interest. Reproduced with 
permission from Ref. (61).
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 fluctuating connectivity but longer time series, either offline [with 
MEG, (66)] or with simultaneous EEG-fMRI acquisition (67). In 
this last study, it was observed that EEG connectivity could more 
accurately infer fMRI connectivity than vice-versa, raising the 
question of the necessity of fMRI measurements, provided accu-
rate source localization from EEG or MEG data. Indeed, these 
imaging methods have many advantages over fMRI to quantify 
dynamic changes in connectivity, including the dissociation of 
band-specific contributions and the possibility of shorter temporal 
windows due to very high sampling rate. A main disadvantage is 
the relative inadequacy to resolve subcortical sources. There is also 
a rich literature on the large-scale organization of the human brain 
as measured with fMRI, since the study of large-scale patterns of 
brain activity (such as RSN) was pioneered using this methodol-
ogy. This opens the way for the expansion of these results in a 
dynamical sense, but it is also important to combine these analyses 
with contributions from other imaging methodologies due to the 
reasons mentioned above. Finally, we note that even though fMRI 
data are poorly sampled (in the temporal sense), it is still capable 
to capture short-lived events as well as fast electrophysiological 
frequencies (such as gamma) (14).

Given the limited temporal resolution of fMRI data, the study 
of single volume co-activation patterns is of substantial interest. At 
the core of this method is the realization that patterns appearing 
on average are also manifest “instantaneously” as groups of jointly 
activated voxels. The study of these patterns holds promise to map 
the spontaneous cognitive processes underlying the resting-state. 
The combination with simultaneous EEG could reveal signatures 
disentangling transient artifacts from real cognitive processes. Also, 
observing a correlation between different conscious contents and 
rapidly shifting patterns of co-activated regions could strengthen 
the observation that functional connectivity reflects mind wander-
ing or day-dreaming (37).

We want to note that simultaneous EEG–fMRI acquisition can 
pose difficult challenges [for detailed reviews see Ref. (73, 74)]. 
While advanced recording and preprocessing techniques can reduce 
EEG artifacts due to the time-varying magnetic fields of fMRI, a 
critical assessment of spurious residual EEG signals is always neces-
sary. Therefore, simultaneous EEG–fMRI experiments should only 
be performed when absolutely necessary.

In summary, the reviewed articles show widespread evidence that: 
(i) functional connectivity fluctuates over time in short temporal 
windows, (ii) these fluctuations are neural in origin and paralleled 
by electrophysiological changes, and (iii) these electrophysiologi-
cal correlates in humans are consistent with their purported role 
in binding/inhibitory processes. While some studies suggest that 
MEG and EEG are in general terms superior for tracking functional 
connectivity changes over time, the use of fMRI is still more com-
mon due to its ability to consistently map stable, high-resolution 
large-scale networks. Ideally, the advantages of both methods (and 
not their disadvantages) will be combined in the future to gain a 
deeper understanding of dynamic functional connectivity.
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