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In brain, glycogen metabolism is predominantly restricted to astrocytes but it also indirectly
supports neuronal functions. Increased accumulation of glycogen in neurons is mysteri-
ously pathogenic triggering neurodegeneration as seen in “Lafora disease” (LD) and in
other transgenic animal models of neuronal glycogen accumulation. LD is a fatal neurode-
generative disorder with excessive glycogen inclusions in neurons. Autophagy, a pathway
for bulk degradation of obsolete cellular constituents also degrades metabolites like lipid
and glycogen. Recently, defects in this pathway emerged as a plausible reason for glyco-
gen accumulation in neurons in LD, although some contradictions prevail. Albeit surprising,
a reciprocal regulation of autophagy by glycogen in neurons has also just been proposed.
Notably, increasing evidences of interaction between proteins of autophagy and glycogen
metabolism from diverse model systems indicate a conserved, dynamic, and regulatory
cross-talk between these two pathways. Concerning these findings, we herein provide cer-
tain models for the molecular basis of this cross-talk and discuss its potential implication
in the pathophysiology of LD.
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INTRODUCTION
A common feature of many neurodegenerative disorders is the
defect in protein quality control mechanisms including ubiquitin
proteasome system (UPS) and macroautophagy (hereafter referred
as autophagy) leading to biogenesis and accumulation of protein
aggregates or inclusions (1). During the last decade, autophagy
has been increasingly recognized as the primary reason behind
pathogenesis of several neurodegenerative disorders. Defects in
autophagy perturb neuronal functions, progressively leading to
neurodegeneration (2). Beyond proteolysis, autophagy also plays
a pivotal role in nutrient recycling and metabolic homeostasis by
degrading lipids and glycogen (3). Surprisingly, while proteolytic
dysfunction of autophagy is well recognized to underlie patho-
genesis of neurodegenerative disorder, influence of its metabolic
aspect is comparatively less explored.

In animals, glycogen has evolved as an efficient means of
energy storage. In addition, the metabolism of this carbohydrate
in the liver helps to maintain the blood and cerebral glucose level
within the physiological limits during hypoglycemia and starva-
tion. Intriguingly, despite glucose being the preferential energy
source for the neurons and the presence of molecular machinery
to synthesize glycogen,neurons synthesize very low glycogen under
physiological conditions compared to most other cell types in ani-
mals (4). Glycogen or glycogen like inclusions called polyglucosan
bodies, nevertheless do accumulate in neurons in (a) pathologies
like Pompe disease (5), Lafora disease (LD) (6), Alzheimer’s dis-
ease (AD) (7) amyotrophic lateral sclerosis (8), adult polyglucosan
body disease (APBD) (9), (b) under pathophysiological conditions
like diabetes (10), hypoxia (11), and during aging (9). Surprisingly,
this accumulation correlates with neurodegeneration in Pompe

disease (5), in LD (6), in fly/mouse models expressing constitutive
active glycogen synthase (GS) in neurons (12), and with reduced
neuronal functions during aging (13). These findings, therefore,
suggest that glycogen or related inclusion bodies are a pathogenic
entity in the brain.

Remarkably, a direct impact of glycogen or its meta-
bolic/regulatory proteins in control of neuronal functions is slowly
growing. Thus, while induced glycogen accumulation in neu-
rons promotes neurodegeneration, the prevention of polyglu-
cosan accumulation in neurons by knocking down GS improves
neurological functions and increases life span in aged fly (13).
Notably, accumulation of carbohydrate inclusion (9) and reduced
autophagy activity (14) in neurons, are two independent hypothe-
ses proposed for the decline of neuronal functions with aging.
Autophagy degrades glycogen and a recent indication of converse
regulation of autophagy by glycogen or its constituent proteins,
has suggested a direct functional link between glycogen and this
proteolytic pathway. Mounting evidences for interaction between
proteins of these two pathways has further compelled us to uncover
the molecular mechanism linking autophagy activity, glycogen
accumulation, and neuronal survival. This review summarizes
all the recent findings of evolving autophagy–glycogen connec-
tion and its contribution to pathogenesis of neurodegenerative
disorders, particularly LD.

NEURONAL GLYCOGEN METABOLISM: GROWING
UNDERSTANDING FROM A RARE EPILEPSY – “LAFORA
DISEASE”
During the last decade, understanding the pathophysiological
mechanism of a rare progressive myoclonus epilepsy “LD” has
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uncovered many interesting aspects of neuronal glycogen metab-
olism. LD is a fatal neurodegenerative disorder characterized
by accumulation of insoluble, hyperphosphorylated, and less
branched form of glycogen called Lafora bodies (LBs or polyglu-
cosan more commonly) in several tissues including neurons of
patients and mouse models (6, 15–17). Laforin and malin, two
proteins pathologically linked to LD, were found to promote neu-
ronal survival by restricting glycogen synthesis (18). A complex of
these proteins was reported to keep neuronal glycogen synthetic
machinery constitutively silent by enforcing GS inactivation and
degradation of protein targeting to glycogen (PTG,an adaptor sub-
unit of protein phosphatase 1 and activator of glycogen synthesis),
through proteasome (18). This report is, however, challenged by
subsequent findings demonstrating no alteration in the level of
PTG (19, 20) and conflicting reports about GS activity in the brain
of LD mouse models (17, 19, 20). Increased phosphorylation of
glycogen in the absence of glucan phosphatase laforin is hypoth-
esized as another reason behind neuronal glycogen accumulation
(19). This hypothesis has also been recently challenged by Gayarre
et al. (21), who show that the phosphatase activity of laforin
is dispensable for prevention of LB formation and rescuing LD
pathogenesis. An inadequate understanding of the precise regula-
tory role of LD proteins in glycogen metabolism therefore makes
it inconceivable, how polyglucosan biogenesis is elicited in LD.

Inhibition of glycogen synthesis prevents polyglucosan accu-
mulation and neurodegeneration in double knockout mice of
PTG/laforin (22), GS/laforin (23), and PTG/malin (24). Thus, it
appears that glycogen is regulated primarily at the level of its syn-
thesis in neurons. Interestingly, potential significance of glycogen
degradation in buildup of neuronal glycogen is also now gaining
considerable attention. Thus, subsiding a previous report about
absence of glycogen and its degradative enzyme glycogen phos-
phorylase in neurons, Saez et al. have demonstrated the presence of
glycogen and its rapid turnover by glycogen phosphorylase (GP)
(4). Furthermore, identification of autophagy defect in LD par-
ticularly in the presence of functional glycogen phosphorylase
suggests this pathway as an alternative route of neuronal glyco-
gen degradation (25–27). Although the relative contribution of
glycogen phosphorylase and autophagy in glycogen degradation
is undetermined, autophagy axis is steadily gaining more attention.

INVOLVEMENT OF AUTOPHAGY IN NEURONAL GLYCOGEN
DEGRADATION: CURRENT UNDERSTANDING AND
EMERGING CONTROVERSIES
Several indirect evidences now exist that as in many other tissues,
autophagy may degrade the glycogen in neurons. For example,
defects in lysosomal enzyme “acid alpha-glucosidase (GAA)” are
linked to glycogen accumulation in many tissues including neu-
rons (5). Recently, autophagy defects at the level of compromised
autophagosome formation, defective lysosomal structure, activity,
and endosomal–lysosomal trafficking have been found in the brain
of LD mice models (25–27). Further, as a rather direct evidence,
Gayarre et al. have reported that forestalling autophagy defects
in EPM2A−/− mice correlates with the absence of LB in the brain
(21). These authors by expressing transgene encoding either active
laforin (wild type, LAFWT) or its phosphatase inactive mutant
(LAFC265S) in laforin-deficient mouse (Epm2a−/−) observed that

both proteins are equally efficient in forestalling autophagy defects
and prevent LBs formation in Epm2a−/−mouse. Still at molecular
level, a direct role of laforin in both these processes and involve-
ment of autophagy in neuronal glycogen degradation is not clear
from this study. Nonetheless, together these findings convincingly
indicate possible involvement of autophagy in neuronal glycogen
degradation.

In contrast to this, Kakhlon et al. (28) have demonstrated
failure of autophagy to degrade polyglucosan in a primary neu-
ronal model of polyglucosan accumulation created by knockdown
of glycogen branching enzyme (Gbe1). These authors failed to
detect polyglucosan within any of the vesicular compartments of
autophagy even after inducing autophagy by rapamycin (mam-
malian target of rapamycin, mTOR, inhibitor) treatment and star-
vation. Moreover, they noticed that rapamycin decreases polyglu-
cosan accumulation by inhibiting GS activity and that this decrease
is not prevented by autophagy blockade.

In the middle of this controversy, a completely new prospect
of autophagy–glycogen relation emerged when Duran et al. (29)
showed that in brain, autophagy activity corresponds to cellular
glycogen level. The authors using malin-deficient mice (malinKO,
an LD model) and double knockout mice with either partial
(malinKO

+MGSHet) or complete (malinKO
+MGSKO) disability

to store glycogen owing to partial (MGSHet) or complete (MGSKO)
lack of GS in the brain showed that, reduction in glycogen level
significantly rescued autophagy impairments and neurodegenera-
tion. Conversely, they found that transgenic mice overexpressing,
PTG (PTGOE) or non-inactivatable form of GS 9A-MGS (9A-
MGSOE) show increased glycogen accumulation and autophagy
impairments in the brain. Based on these observations, the authors
claim to have resolved the question whether glycogen accumula-
tion is a cause or consequence of autophagy defect, favoring the
former possibility. This could be possible that in neurons, polyglu-
cosan buildup hamper vesicular trafficking important for proper
autophagy function. The enigma will, however, continue until it
is ascertained that altered activity/level of GS/PTG protein does
not modulate autophagy function intrinsically and has no direct
involvement in this process. The reason for this concern is made
apparent in the following sections.

Although autophagy-mediated glycogen degradation is well
established, evidences for its existence in neurons are so far still
in the preliminary stage. In this regard, conflicting reports like
autophagy does not degrade neuronal polyglucosan (28), but at
the same time, autophagy might prevent LBs accumulation (21),
has created confusion as to whether, and under what context,
autophagy could degrade neuronal glycogen. The discrepancy is
further compounded by the finding that glycogen level determines
autophagy activity (29). We believe that all these findings could
have distinct physiological reasons and in a larger context, deter-
mining mutual regulation of autophagy and glycogen metabolism
could help us to understand these discrepancies. Therefore, an in-
depth discussion of these findings is prerequisite to evoke future
research interest in the field to suggest the possible directions of
investigation.

Herein, going against our own belief, we have first dis-
cussed how autophagy might fail to degrade neuronal glycogen.
Afterwards, we have provided logical assumptions to contradict
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models rejecting the role of autophagy in neuronal glycogen degra-
dation. Finally, envisaging certain models showing how proteins
of these two cellular pathways may interact and regulate each
other, we support the role of autophagy in neuronal glycogen
degradation and insist a fresh revisit to investigate this metabolic
nexus.

POSSIBLE PROSPECTS OF POLYGLUCOSAN DEGRADATION
BY AUTOPHAGY
Glycogen is seemingly pathogenic to neurons, yet it is poorly
understood why or how the neuronal machinery fails to clear it. It
is noteworthy that neurons preferentially synthesize polyglucosan
over glycogen. The term “Polyglucosan or Polyglucosan bodies”
is attributed to structure, which represents less branched form of
glycogen. These are hyperphosphorylated, poorly branched, amy-
lase insensitive, and insoluble entities in contrast to glycogen (19).
Perhaps, due to these structural and biochemical differences, the
protein/s recruiting glycogen for autophagic degradation might
fail to recognize polyglucosan. This opinion is based on finding
that LD protein laforin shows more affinity for polyglucosan than
glycogen (30). Therefore, altered affinity of proteins indispensable
for glycogen degradation toward polyglucosan would obviously
affect its metabolism. An interesting quest to this end would thus
be to find out proteins mediating glycogen–autophagy interaction
and identify their affinity for polyglucosan.

Glycogen degradation in tissues like liver and heart particu-
larly under starvation or hypoglycemic conditions primarily serves
the purpose of instant energy supply by providing glucose. The
neuronal energy demand under such conditions is, however, com-
pensated by surrounding glial cells (31) and therefore even under
glycogenolytic signals, polyglucosan degradation in neurons will
prove futile with no metabolic/physiological advantage to them.
The basal autophagy operates at low level in neurons and it is
quite resilient to induction under glycogenolytic condition like
starvation that otherwise induces autophagy in the liver and heart
tissues (31). Thus, with limited autophagy induction, neurons
seem more prone to accumulate polyglucosan inclusions when
the rate of synthesis of these inclusions exceeds the degradative
capacity of autophagy. An interesting exploration would thus be
to see if compensatory autophagy induction clears extra-neuronal
polyglucosan. This will also uncover whether there exists any
fundamental difference in metabolisms of this entity between
neuronal and non-neuronal tissues.

These hypotheses about failure of autophagy to degrade
polygucosan are, however, unjustified in realms of reports that,
a structurally similar storage carbohydrate of plant; “starch”
is degraded by autophagy (32) and autophagy might inhibits
polyglucosan accumulation (21). How then Kakhlon et al. might
have failed to observe autophagic clearance of polyglucosan?
Autophagy is a selective process and specific adaptor proteins
determine its substrate specificity in signal-dependent manner
(33). Therefore, one reason could be that rapamycin treatment
and starvation are not specific signals for glycogen degradation
through autophagy in neurons. In fact, the extent of in vivo
induction of autophagy in brain by both these manipulations
is quite debatable. Interestingly, as discussed in the following
section, these signals might rather inhibit glycogen recruitment to

autophagosome. Thus, specific pharmacological or genetic manip-
ulations that induce autophagy in brain must be tested before
abandoning autophagy’s role in neuronal polyglucosan clearance.
Additionally, it would be interesting to investigate whether such
manipulations also manage to clear extra-neuronal polyglucosan.

With emergence of glycogenic proteins at different steps of
autophagy (recruitment, and autophagosome synthesis), as dis-
cussed in the following section, glycogen metabolism seems a
relatively more complex process than believed to be previously.
Thus, it might be possible that despite active autophagy, loss of a
specific glycogenic protein hampers glycogen degradation by per-
turbing its recruitment to autophagosome. Exploration of the role
of glycogen branching enzyme (Gbe1) in this aspect would not
only assert this hypothesis but would also settle the controversy
stirred by Kakhlon et al. study.

Another intriguing exploration would be the impact of
phosphorylation–dephosphosphorylation of glucosyl unit of
glycogen over its autophagic degradation. Polyglucosan is hyper-
phosphorylated compared to glycogen and this biochemical mod-
ification of glucosyl unit in starch assists its degradation (34).
Understanding the effect of this modification in autophagic
degradation of starch might therefore uncover whether and how
polyglucosan could be degraded by autophagy machinery in ani-
mal. Together, autophagy-mediated polyglucosan degradation in
neurons is possibly provided, the process of autophagy induction,
polyglucosan recruitment to autophagosome and lysosomal activ-
ity are intact, and the burden of polyglucosan remains within the
physiological limit of autophagy capacity.

AUTOPHAGY–GLYCOGEN CROSS-TALK – A NEW PARADIGM
The metabolic fate of glycogen (synthesis vs. degradation) is a
function of active communication among its constituent proteins,
which are perhaps also involved in other cellular processes. For
example, GS has recently been found to interact with Atg8 (35),
its human ortholog GABARAPL1 (36), and to regulate autophagy.
Moreover, proteins like laforin, malin are supposed to play a role
in autophagosome synthesis (25, 26). In addition, there are pro-
teins like starch-binding domain-containing protein 1 (Stbd1)
(37) and receptor of activated protein kinase C 1 (Rack1) (38), with
poorly defined functions but, both interact with players of glyco-
gen metabolism and autophagy (Table 1). The studies performed
under loss or gain of function of these proteins, therefore would
obviously tell the eventual metabolic fate of glycogen resulting
from number of molecular changes happening “within, around,
and outside the domain of glycogen granules” and consequent
cellular adaptation. The autophagy–glycogen relationship derived
from such studies therefore, should be analyzed with extreme
caution.

With unfolding of interaction between protein of glycogen
metabolism and autophagy, it seems that these two pathways are in
continuous cross-talk and depending upon specific metabolic sig-
nals and/or, active/inactive state of specific proteins, they regulate
each other in a manner beneficial to the cell. For instance, GS–Atg8
interaction depends upon GS activity as mutation affecting GS
ability to bind with its allosteric activator glucose-6-phospate not
only inhibits its activity but also perturbs its interaction with Atg8
(35). Conversely, GS insensitive for starvation-induced activity
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Table 1 |The so far identified potential proteins with dual roles in glycogen metabolism and autophagy.

Proteins Co-localization with

glycogen/autophagosome

Loss of function phenotype Model system Reference

Glycogen level Autophagy activity

Laforin +/Not yet known ↑ ↓ Mouse (19, 25)

Malin +/Not yet known ↑ ↓ Mouse (26, 45)

Stbd1 +/+ Not yet known Not yet known HepG2 hepatoma cells (37)

Rack1 +/+ ↓ ↓ Fly (38)

GS (muscle) +/+ ↓ Not yet known Fly/mouse (35, 46)

The dual nature is assigned if protein already known to function in one pathway co-localizes, interacts (as shown in Figure 1) with other pathway components, or

even if its loss affects both the pathways.

FIGURE 1 | A model of autophagy–glycogen proteins interaction based
on current understanding and its potential implication in Lafora disease
(LD). The schematic representation shows the identified interaction until now

between the proteins of glycogen metabolism and autophagy network. The
physiological implication of these interactions in context of Lafora disease
(LD) is discussed in this review.

suppression by GS kinase 3 beta (GSK3β), still interact with Atg8
during starvation (35). Therefore, a dynamic balance between the
relative ratio of free GS (for glycogen synthesis) and GS–Atg8
(determining autophagy activity) is essential for both these process
to take place under basal condition. An activity-dependent change
in GS–Atg8 interaction therefore would perturb the cellular avail-
ability of free Atg8 for autophagosome formation and autophagy
activity as such, or recruitment of a specific substrate like glyco-
gen to the autophagosome. Going by this hypothesis, reduced
GS–Atg8 interaction and perturbed recruitment of polyglucosan
in autophagosome upon GS inhibition by rapamycin/starvation
could be a reason behind Kakhlon et al. failure to see polyglucosan
in autophagic compartment despite autophagy induction.

RELEVANCE OF GLYCOGEN–AUTOPHAGY CROSS-TALK IN LD
In neurons, change in the sub-cellular localization of GS and
not just its increased level or activity determines glycogen syn-
thesis (18). Therefore, signals that induce movement of GS from
nucleus to the cytoplasm particularly in the brain might promote
glycogen synthesis with concomitant suppression of autophago-
some synthesis due to increased GS–Atg8 interaction. Laforin
and GS both show nuclear–cytoplasmic translocation in response
to glycogen availability (39, 40) and laforin interacts with GS
(41). Therefore, loss of laforin-induced cytoplasmic translocation
of GS triggering glycogen synthesis and perturbing autophagy
could be a plausible reason of LB biogenesis. This functional
model of GS–Atg8 also explains the molecular basis of autophagy
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defect seen in malin knockout mice (malinKO) with increased
GS level (29) and unaltered mammalian target of rapamycin
activity (26). This also unequivocally explains how the loss of
GS in malin-GS double knockout mice (malinKO

+MGSHet and
malinKO

+MGSKO) could rescue autophagy defect and prevent
glycogen accumulation (29).

FUTURE DIRECTIONS
The discussed GS–Atg8 interaction is just one example of many
such possible interactions between the proteins of these two cellu-
lar pathways. As both these pathways encompass several proteins,
this cross-talk could supposedly be more complex involving several
axis, with each composed of a specific set of proteins functional
in one or other physiological conditions. For example, both GS
and Stbd1 bind with glycogen and contain Atg8-interacting motif
(AIM) predicted to be required for selective degradation of cargo
(perhaps glycogen). Moreover, Stbd1 interacts with GS and other
glycogenic proteins like laforin and debranching enzyme (42).
In the light of such a complex interaction network (Figure 1),
it would be difficult to predict the mechanism of Stbd1- or
GS-mediated glycogen degradation by autophagy at this stage.
Nevertheless, it can be speculated that, perhaps several indepen-
dent and redundant mechanisms operate for dynamic regulation
of autophagy–glycogen axis to meet metabolic demands under
different physiological conditions.

Importantly, since these interactions are identified in cells of
diverse origins, this cross-talk appears to be a conserved mecha-
nism. This though could have cell/tissues specificity in context of
the proteins involved particularly considering the tissue-specific
isoforms of several glycogen metabolism proteins (43) and the
fact that, glycogen proteome itself shows differences in its con-
stituent proteins among various tissues (44). Cumulatively, these
evidences postulate the existence of an intricate functional rela-
tionship between glycogen metabolism and autophagy and are
intriguingly encouraging to explore the autophagy–glycogen com-
munication with a fresher perspective, particularly in neurons.
For this, animal models of glycogen storage (GS, PTG overex-
pression mice) and deficiency (GS knockout mice) can be utilized
to study autophagy activity in brain. Likewise, autophagy-related
gene (Atg)-deficient mice could be beneficial in investigating the
status of neuronal glycogen metabolism.

CONCLUSION
The hypotheses proposed herein based on current evidences fully
support autophagy-mediated glycogen degradation in neurons.
In this direction, therefore, we urge to identify additional com-
ponents of glycogen metabolism and autophagy machinery that
interact and mutually regulate each other perhaps, under varied
physiological conditions. Furthermore, in order to identify a direct
link between these two pathways, an immediate challenge is to
generate an appropriate cellular/animal model for dynamic moni-
toring of both these pathways simultaneously. As autophagy defect
is seen in a number of neurodegenerative disorders and glyco-
gen accumulation induces neurodegeneration, understanding a
causal relationship between the two should be one of the prime
focuses of future investigations in order to enhance the therapeutic

potential of the diseases like LD, and to target proteins of glycogen
metabolism as novel therapeutic interventions.
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