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Exposure of the brain to brief, non-harmful seizures can activate protective mechanisms
that temporarily generate a damage-refractory state. This process, termed epileptic toler
ance, is associated with large-scale down-regulation of gene expression. Polycomb group
(PcG) proteins are master controllers of gene silencing during development that are re-
activated by injury to the brain. Here, we explored the transcriptional response of genes
associated with polycomb repressive complex (PRC) 1 (Ring1A, Ring1B, and Bmi1) and
PRC2 (Ezh1, Ezh2, and Suz12), as well as additional transcriptional regulators Sirt1, Yy1,
and Yy2, in a mouse model of status epilepticus (SE). Findings were contrasted to changes
after SE in mice previously given brief seizures to evoke tolerance. Real-time quantita-
tive PCR showed SE prompted an early (1h) increase in expression of several genes in
PRC1 and PRC2 in the hippocampus, followed by down-regulation of many of the same
genes at later times points (4, 8, and 24 h). Spatio-temporal differences were found among
PRC2 genes in epileptic tolerance, including increased expression of Ezh2, Suz12, and Yy2
relative to the normal injury response to SE. In contrast, PRC1 complex genes including
Ring 1B and Bmi1 displayed differential down-regulation in epileptic tolerance. The present
study characterizes PcG gene expression following SE and shows prior seizure exposure
produces select changes to PRC1 and PRC2 composition that may influence differential

gene expression in epileptic tolerance.
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INTRODUCTION
Epigenetic processes are structural modifications to chromatin
which are indicative of and contribute to the transcriptional state
(1). These processes include DNA methylation and histone modi-
fication and they play an important role in gene expression control.
Such modifications are dynamic in the adult brain and may act as
important transcriptional determinants in plasticity and memory
(2, 3). Aberrant DNA methylation has been implicated in certain
neurological disorders (4, 5), and other studies have emphasized
the role of epigenetic mechanisms in seizures and epilepsy (6).
For instance, increased levels of enzymes regulating DNA methy-
lation has been reported in human temporal lobe epilepsy (TLE)
(7), which may have important effects on gene expression (8).
Further, changes in histone acetylation (at promoter elements
of Gria2, Bdnf, c-fos, and Creb) and altered histone deacetylase
(HDAC) activity have been noted after experimental status epilep-
ticus (SE) (9-11) and possibly human TLE (12). Changes in the
activity of transcriptional repressor RE1-silencing transcription
factor (REST) also play a role in events associated with seizures
(13), likely through altered histone modification (14).

Polycomb group (PcG) proteins are a large conserved family of
transcriptional repressors (15). Originally described in Drosophila

melanogaster as key silencers of Hox genes, they assemble as poly-
comb repressive complexes (PRCs) at the chromatin, regulating
its structure and altering transcriptional activity through histone
modification and effector recruitment (16—18). Deregulation of
developmentally silenced genes through alteration of PcG signal-
ing has been observed in various malignancies (19), while their
contribution to lineage specification during neurogenesis is well
established (20-22). Despite observations of dynamic PcG activ-
ity in postmitotic neurons (23, 24), few studies have addressed
the role of PcG-mediated repression in neurological disease, and
none in epilepsy. Derepression of PcG targets may be involved in
L-DOPA-induced dyskinesia (25) and ischemic excitotoxicity (26).
PcG-mediated repression has also been implicated in ischemic tol-
erance (27). This phenomenon shares many characteristics with
epileptic tolerance (28, 29), where brief seizures activate a coor-
dinated response of gene expression changes that render brain
tissue refractory to subsequent insults that would otherwise be
damaging (28, 30). Protection can be independent of changes to
seizure severity during SE (29), likely represents the recruitment
of active neuroprotective mechanisms and long-lasting changes in
gene expression (28, 30) and is accompanied by a reduction in the
number of spontaneous seizures evolving after SE (29).
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The molecular mechanisms regulating altered gene expression
in epileptic tolerance are not fully understood. Previous work
suggested transcription factors such as NFkB (31) and AP1 (32)
may drive gene synthesis-dependent tolerance, consistent with
observations of wide-ranging divergences in gene transcription
(29) and gene methylation (33) between epileptic injury (non-
preconditioned animals) and epileptic tolerance (preconditioned
animals). Given that epileptic tolerance is associated with a coordi-
nated suppression of excitability- and excitotoxicity-related genes
(29) and CpG island, hypermethylation is more common in tol-
erance that in injury (33), it seems likely that transcriptional
repression is also a key modality of epileptic tolerance. Here, we
performed an extensive spatio-temporal characterization of PcG
transcript expression following SE, comparing responses between
non-preconditioned and preconditioned mice.

MATERIALS AND METHODS

ANIMAL PROCEDURES

All animal experiments were carried out in accordance with guide-
lines outlined in the European Communities Council Directive
(86/609/EEC) and the European Union Directive (2010/63/EU).
All experimentation was approved by the Research Ethics Com-
mittee of the Royal College of Surgeons in Ireland (REC #205) and
performed under license from the relevant authority [Department
of Health, Dublin, Ireland (license number B100/4423)]. Adult
male C57BL/6 mice, aged 6-10weeks (20-30 g), were obtained
from Harlan (UK) and housed in a climate-controlled biomedical
facility on a 12h light/dark cycle with food and water provided
ad libitum.

Focal-onset SE was induced by intra-amygdala (i.a.) stereotaxic
microinjection of kainic acid (KA) as described previously (34).
Briefly, mice were anesthetized using isoflurane (5% induction,
1.5-2% maintenance) under normothermic conditions and placed
in a stereotaxic frame (Stoelting Co.). A midline scalp incision was
made, Bregma located and a craniectomy performed (stereotaxic
coordinates: AP = —0.95 mm; L = —2.85 mm). Next, a guide can-
nula was placed over the dura and the assembly fixed by dental
cement. Animals were then removed from the frame and placed in
an open-top container that allowed free movement for record-
ings. Microinjection of KA [3.75mm subdural depth; 1 g in
0.2 wL phosphate buffered saline (PBS)] (Sigma-Aldrich, Dublin,
Ireland) was carried out in awake mice. Non-seizure control
mice received injection of vehicle alone. Mice received lorazepam
(6 mg/kg, intraperitoneal, i.p.) 40 min following i.a. injections to
curtail seizures, reduce mortality, and restrict cerebral damage.
Seizure preconditioning was accomplished by i.p. injection of KA
(15 mg/kg) 24 h prior to SE induced by i.a. KA (29). Control and
injury (i.e., non-preconditioned) mice were sham-preconditioned
with i.p. saline.

Mice were euthanized between 1 and 24h following i.a.
injections. Saline-perfused whole brains were fresh-frozen in 2-
methylbutane at —30°C and sectioned on a cryostat (12 wm) prior
to immunostaining. Hippocampal subfield microdissection (of
CA3-,CAl-,and DG-enriched portions) was carried out as previ-
ously described (35). In brief, following bisection of isolated whole
brain and removal of the cerebellum and midbrain, the hippocam-
pal structures were separated and removed after placing a curved

forceps between the hippocampal fimbria and the lateral ventricle.
The isolated tissue was rolled out over the cortex and extrane-
ous tissue was removed, yielding intact whole hippocampus. The
hippocampus was microsurgically partitioned along a longitudi-
nal axis using fine curved forceps, with the CA1 located in the
superior/posterior partition. Microdissections were immediately
stored at —80°C.

GENE EXPRESSION ANALYSES

All tissue was homogenized in Trizol (Qiagen, West Sussex, UK)
and RNA was isolated using a standard extraction method.
Briefly, following homogenization, chloroform-mediated phase
separation and isopropanol-mediated precipitation were car-
ried out. RNA was washed and reconstituted in RNase-free
H,O. All nucleic acid extract concentrations were determined
using a NanoDrop 2000 (Thermo Scientific, Reading, UK) prior
to reverse transcription (RT). RNA extracts were treated with
DNAsel (Invitrogen, Dublin, Ireland) to eliminate contami-
nating genomic DNA and normalized to between 500 ng and
1 g prior to RT. RT was performed using random hexamer
primers (Fermentas, York, UK) and Superscript II reverse tran-
scriptase (Invitrogen). Following RT, qPCR was carried out
on a Lightcycler 2.0 (Roche, Sussex, UK) using Quantitect
SYBR Green PCR kits (Qiagen) and custom designed primers
(Primer 3.0, Sigma-Aldrich) for target genes. The following
primer sequences were used: Bmil, forward TGTCCAGGTTCA-
CAAAACCA and reverse TGCAACTTCTCCTCGGTCTT; Ringla,
forward CCTGGACATGCTGAAGAACA and reverse TCCCG-
GCTAGGGTAGATTTT; Ringlb, forward ACGGACCAAAAC-
CTCTGATG and reverse AGTGGCATTGCCTGAAGTCT; Ezh2,
forward GGCTAATTGGGACCAAAACA and reverse GAGC-
CGTCCTTTTTCAGTTG; Ezhl, forward CTCAGTGGCAACAT-
GCCTAA and reverse CCCACAAACACAACCAACAG; Suzl2,
forward AGAAAACGAAATCGCGAAGA and reverse CGTTG-
GTTTCTCCTGTCCAT; Yyl, forward TGAGAAAGCATCTGCA-
CACC and reverse CGCAAATTGAAGTCCAGTGA; Yy2, forward
GCCTCTTTTACGGGCTTTCT and reverse ACCATCGATCT-
GCTTCTGCT; Sirtl, forward GCCTGTTGAGGATTTGGTGT
and reverse TAAATTTGGGGGCAATGTTC; B-actin, forward
GGGTGTGATGGTGGGAATGG and reverse GGTTGGCCT-
TAGGGTTCAGG. B-actin was used for the normalization of
mRNA expression levels. Of those PcG genes for which tran-
script variants exist (Ezh2, Suzl2, and Sirtl code for two isoforms
each), primers targeted regions common to both isoforms. PCR
products for Bmil, Ringla, Ringlb, Ezh2, Suz12, and YyI spanned
exon—exon junctions, while those for Ezh1 and Sirt] targeted the
3'UTR. The PCR product for Yy2 (having just one exon) was
derived from within the coding sequence. Non-reverse transcribed
extracts and non-template reactions were used as negative con-
trols. For assessment of basal transcription levels of PcG subunits,
both the ACT value (versus the CT value of B-actin) and the
2~AACT (or RQ) value (versus a reference ACT value derived
from the mean ACT value for all PcG transcripts) were plotted.
Significant differences between subfields for each PcG subunit
were computed using the comparative cycle threshold method
(27AACT normalized against the average ACT value of the CA3).
For investigation of SE-induced changes in PcG transcription,
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the comparative cycle threshold method was again employed to
assess the relative fold change in target transcript levels for each
PcG subunit (versus the average ACT value of time-matched con-
trol samples). In parallel, primer specificity was investigated using
Taq Polymerase PCR in a Veriti Thermocycler (Applied BioSys-
tems, Warrington, UK). Amplification products were run in a
2% agarose gel (100V, 15 min, with 1:10000 ethidium bromide)
and imaged in a FujiFilm LAS-3000 (Fuji, Sheffield, UK) under
UV (312 nm, 0.125 s exposure). For RT-qPCR analyses comparing
control, injury and tolerance, three groups of mice (control, injury,
and tolerance, n = 4) were used. For those analyses looking at dif-
ferences in basal PcG expression between transcripts, control mice
from across all four sampled timepoints were grouped (n=16),
as sham surgery did not alter basal PcG transcription in the hip-
pocampus (Figure S1 in Supplementary Material). These samples
(ipsilateral CA3, CAl, and DG) were independent of those used in
immunohistochemistry and western blotting analyses.

SUBCELLULAR FRACTIONATION

Subcellular fractionation was undertaken to examine protein
localization in nuclear and cytosolic compartments. Ipsilateral
hippocampal tissue was pooled (two hippocampal dissections per
lysate) and homogenized in M-SHE buffer [210 mM mannitol,
70 mM sucrose, 10 mM HEPES-KOH pH 7.4, 1 mM EDTA, 1 mM
EGTA, and a protease inhibitor cocktail (P8340, Sigma-Aldrich)].
A nuclear-enriched pellet was isolated by repeated centrifugation
and trituration (two spin cycles at 1200 x g 10 min at 4°C); the
supernatant, containing a crude mix of mitochondrial, micro-
somal, and cytoplasmic constituents, was processed as detailed
below. Following further trituration and centrifugation (1000 x g,
10 min at 4°C), the nuclear fraction was resuspended in TSE buffer
(10mM Tris pH 7.5, 300mM sucrose, and 1 mM EDTA) with
0.1% NP-40. A pellet bilayer emerged upon further centrifugation
(8600 x g, 10 min at 4°C), whereby the upper opaque layer was
retained and purified through repeated centrifugation. The result-
ing pellet, representing a nuclear-enriched fraction, was resus-
pended in lysis buffer and analyzed through SDS-PAGE. A crude
cytoplasmic fraction was isolated and purified using repeated
high-speed centrifugation steps (two spins at 1200 x g 10 min;
two spins 10,000 x g, 15 min; one spin 16,000 x g, 5min; at each
stage the pellet was discarded and the upper 4/5 of supernatant
retained). Fraction quality was determined using immunoblotting
against subcellular fraction-specific markers (Lamin A/C, nucleus;
GAPDH, cytoplasm).

WESTERN BLOTTING

Western blotting was performed on hippocampal subfield
microdissections, whole hippocampus, cortex, and cerebellum.
Tissue was homogenized in SDS-lysis buffer (150 mM NaCl,
50 mM Tris-HCI, 1 mM EDTA, 1% NP-40, pH 8.0) or M-SHE
lysis buffer. All lysis buffers included protease and phosphatase
inhibitor cocktail (1:100, Cat P8340, Sigma-Aldrich) or individ-
ually added volumes of PMSF (1:500), aprotinin (1:1000), leu-
peptin (1:1000), and vanadate (1:1000). Homogenates were spun
(14,000 x g 10min at 4°C) and the supernatant was retained.
Nucleus-containing pellet was also retained and later resuspended
in SDS-lysis buffer for certain applications. Protein concentration

was determined using the micro BCA protein assay (Pierce,
Rockford, IL, USA). Lysates were boiled at 95°C in gel-loading
buffer and separated by SDS-PAGE (4/6-15%), before being
electroporated onto nitrocellulose or PVDF membranes. Mem-
branes were incubated overnight at 4°C with primary antibod-
ies against: trimethyl-H3K27 (1:500), EZH2 (1:500), RINGIA
(1:1000), RING1B (1:1000), BMI1 (1:400), SUZ12 (1:1000), and
Lamin A/C (1:1000), all rabbit polyclonal (Cell Signaling Technol-
ogy, Danvers, MA, USA). Band visualization was obtained through
incubation with secondary horseradish peroxidase-conjugated
antibodies (20°C, Jackson Immuno-Research, Suffolk, UK), fol-
lowed by Super Signal West Pico chemiluminescent substrate
(Pierce). Images were captured using a FujiFilm LAS-4000 (Fuji).
Densitometry was performed using Image]. Briefly, chemilumi-
nescent density plots for each sample were generated and the area
of the region of interest (corresponding to the expected molecular
weight) was normalized to the matching loading control (Lamin
A/C). For western blotting analyses, ipsilateral hippocampus from
three groups of mice (control, injury, and tolerance) were used.
For whole cell lysates, n=5 mice per group were assessed. For
analysis of nuclear-enriched fractions, n =3 samples were used
following pooling of two hippocampal isolates per sample. Ani-
mals were from an independent cohort to those used in RT-qPCR
and immunohistochemistry analyses.

IMMUNOHISTOCHEMISTRY

Immunostaining was performed on fresh-frozen coronal sections
(12 wm) prepared at the level of medial (1.9-2.1 mm posterior
of Bregma) hippocampus. Sections were air-dried, fixed in 4%
PFA solution, and processed for immunostaining using anti-
bodies [anti-EZH2, anti-Trimethyl-H3K27, anti-NeuN (mouse
monoclonal, Millipore, Cork, Ireland)], in 5% goat serum/0.1%
Triton-X in PBS. Immunoreactivity was visualized using Alexa
Fluor 488 and 568 secondary antibodies (Molecular Probes, OR,
USA). Sections were labeled with Hoechst nuclear stain to visu-
alize nuclei. Tissue was mounted in FluorSave (Sigma-Aldrich).
All images were captured using a Nikon 2000s epifluorescence
microscope. Control mice only (n = 3) were used for these analy-
ses. Animals were from an independent cohort to those used in
RT-qPCR and western blotting analyses.

STATISTICS

All data and statistical analyses were carried out using Microsoft
Excel, Graphpad Prism, and Stata. Comparisons were made using
one-way analysis of variance, followed by Tukey post hoc testing.
Significance was accepted at P < 0.05. All data are presented as
mean 3 SEM.

RESULTS

POLYCOMB REPRESSIVE COMPLEX COMPONENT EXPRESSION IN THE
ADULT MOUSE HIPPOCAMPUS

Previous studies have reported expression of particular PcG mem-
bers within the adult brain (21, 36, 37), but there has not been a
comprehensive characterization of the expression of PcG tran-
scripts and proteins in the hippocampus of the adult C57BL/6
mouse. Figure 1 shows the key genes forming the PRCs. The two
major polycomb complexes described, defined by the major cat-
alytic constituent, are PRC1 (containing RING1A and 1B) and
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FIGURE 1 | Polycomb and trithorax proteins regulate chromatin
structure and gene expression. Cartoon shows polycomb protein
complex organization in relation to transcription. PcG proteins regulate
chromatin structure through histone tail methylation and other
post-translational modifications. PcG proteins often localize about discrete
genetic elements with the functionally antagonist trithorax proteins, a
diverse group of transcriptional activators, to yield a bivalent, “primed”
state that is amenable to rapid alteration in response to signaling events.
Ancillary DNA-binding proteins, such as YY1 of the Pho Repressive
Complex, aid recruitment of PRC1 and PRC2 to target genes. They also
interact with other DNA and chromatin modifiers, including DNMTs,
histone deacetylases, histone acetyltransferases, and the Jarid pathway
proteins. H2A and H3, histone 2A and histone 3; Me, methyl group; PRC,
polycomb repressive complex; Ubg, ubiquitin.

PRC2 (containing EZH2). A third complex, known as the PhoRC
(containing Yin Yang 1, YY1), may also be involved (15, 19). Tran-
scriptional repression depends on the coordinated action of these
complexes, which may display significant redundancies (38).

In order to generate a comparative profile of basal PcG expres-
sion in the hippocampus, we performed RT-qPCR on microdis-
sected hippocampal subfields (CA3-, CAl-, and DG-enriched
fractions) and calculated the difference in cycle threshold (ACT)
value against B-actin in vehicle-injected control mice (used for
subsequent investigations of polycomb regulation following SE).
The transcripts analyzed were; Bmil, Ringla, and Ringlb of PRC1;
Ezh2, Ezh1, Suzl12, and Sirtuin 1 (Sirt]l) of PRC2; and YyI and Yy2
of the PhoRC; chosen on the basis of their roles in polycomb func-
tion, previous implications in neuronal function taken from the
literature, and the availability of other resources for further study,
including antibodies. It was found that all nine PcG transcripts
analyzed were expressed and detectable in the hippocampus. ACT
values for the expression of these transcripts in control mice were
plotted for CA3, CAl, and DG (n =16, Figure 2A). Qualitative
assessment suggested that Bmil is the highest expressed PcG tran-
script across all subfields, while Sirt] is the lowest. YyI expression
was higher than Yy2 expression in both the CA3 and the DG, and in
CA3 and CAl, Ezhl expression exceeded Ezh2 expression. Ringla
and Ringlb were expressed at similar levels.

We then quantitatively assessed differences in expression of PcG
transcripts between subfields. Again, using pooled data across all
timepoints in control mice (n=16), we calculated the RQ for
AACT values normalized to the mean ACT value for all tran-
scripts and subfields (Figure 2B). Normalizing to single ACT value
ensured that all summary data in this figure were relatable. These
analyses suggest that Bmil is expressed significantly higher in the
CA3 than in the CAl, which in turn was higher than the DG. Of
the other constituents of PRC1, Ringla appears to be higher in
CAL1 than CA3, while Ringlb is lowest in CA1, suggesting subfield-
specific regulation of PcG components. Concerning PRC2, only
Suz12 appears differentially expressed between subfields, with sig-
nificantly lower expression in CA1 when compared to CA3 and
DG. Finally, Yy2 of the PhoRC is higher in DG than in CA3. In
order to account for potential effects arising from surgery- and
cannula-associated manipulation prior to PBS injection, we plot-
ted ACT values for each timepoint (n=4) and confirmed that
time elapsed after PBS injection was not likely to contribute to the
observed ACT values (Figure S1 in Supplementary Material).

Protein levels of six PcGs were investigated by western blotting
using subcellular fractions (Figure 3A). For three of the six, pro-
tein was only observed in the nucleus. Cytosolic expression was
apparent for the remaining three proteins, though it appeared sig-
nificantly lower in comparison to nuclear levels (Figure 3A), in
keeping with functional roles in regulating transcription. We sus-
pect that the reason some proteins are not detected in whole lysate
preparations is that recovery of the nuclear fraction is poor using
a general homogenization procedure.

Immunofluorescence microscopy was also performed to assess
the spatial expression pattern of Ezh2 and trimethyl-histone 3
lysine 27 (trimethyl-H3K27), the characteristic histone modifi-
cation catalyzed by PcG proteins. In each case, nuclear-specific
immunoreactivity in neuronal populations was observed through-
out the hippocampal subregions (CA3, CA1, DG, and hilus), as
well as in certain non-specified glial cells (Figure 3B), as supported
by Hoechst stain and NeuN immunoreactivity.

STATUS EPILEPTICUS INDUCES RAPID, DISTINCT CHANGES IN
POLYCOMB TRANSCRIPT LEVELS
Next, a spatio-temporal expression profile of several major PcG
transcripts within the hippocampus was established for mice given
either i.a. vehicle (control), i.a. KA with sham-preconditioning
(injury) or i.a. KA with preconditioning (tolerance). The main site
of injury in this model is the CA3 subfield, with minor cell death
observed in the CA1 and DG regions. As before (29), animals pre-
conditioned by low-grade seizure activity 24 h earlier displayed
approximately 50% less hippocampal damage compared to injury
mice after an equally severe episode of SE (data not shown).
Using RT-qPCR, we quantified levels of nine principal PcG
members within hippocampal subfields at time points up to 24 h.
This included transcripts associated with PRC1 (Ringla, Ringlb,
and Bmil), PRC2 (Ezh2, Ezhl, Suzl2, and Sirtl) and the PhoRC
(YyI and Yy2). RT-qPCR data are summarized in Figure 4, with
significant up-regulation (green) or down-regulation (red) indi-
cated, as compared to control. Individual subfield data are pre-
sented for CA3 (Figures 5A-I), CAl (Figures 6A-G), and DG
(Figures 7A-T). Analyses show that SE induced rapid bidirectional
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FIGURE 2 | Polycomb group transcripts expression in the mouse
hippocampus. Graphs show gRT-PCR data and both the ACT and RQ for
various core PcG transcripts, relative to B-actin. Measurements of basal PcG
transcription, expressed as (A) the ACT value and (B) a derived RQ value
(2-24CT versus the mean ACT value for all transcripts and subfields) were
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injection (n = 16), with analysis performed on microdissected hippocampal
fractions enriched for CA3, CA1, and DG. Derived RQ values in (B) were
statistically appraised by one-way analysis of variance to determine
differences between subfields in basal transcription of each PcG subunit.
Data expressed as mean +SEM. *P <0.05, **P <0.01, ***P <0.001 for
n=16. CA, cornu ammonis; CON, control; DG, dentate gyrus; n.d., no data.

changes in mRNA levels of various PcG transcripts in CA3, CAl,
and DG, with down-regulation the broad response for both injury
and tolerance.

Considering changes after SE, there was pronounced down-
regulation of Ringla in all subfields, between 4 and 24h
(Figures 5A, 6A, and 7A). Ringlb levels were decreased at 4h in
CAl and 8 h in all subfields before recovering to baseline at 24 h
(Figures 5B, 6B, and 7B). Bmil was down-regulated in CA3 and
CA1 between 4 and 24 h (Figures 5C and 6C).

For PRC2 complex genes, we observed significant down-
regulation of EzhI at 4, 8, and 24 h across all subfields (Figures 5E,
6E, and 7E). In contrast, no instances of Ezh2 down-regulation
were observed (Figures 5D, 6D, and 7D). Similarly to EzhI, Suzl2
was down-regulated in CA3 at 4, 8, and 24 h, as well as at 4h
in CAl and 24h in DG (Figures 5F, 6F, and 7F). Sirt] down-
regulation was confined to CA3 at 4h (Figure 5G). Finally, Yy2
of the PhoRC was decreased at 4 and 8 h post-SE in the CA3 only
(Figure 5I). In general, down-regulation seemed more prevalent in
the CA3, but was seen in DG and CALl at later timepoints between
4 and 24 h (Figure 4). However, down-regulation of Sirtl and Yy2
was specific to the CA3 at all timepoints (Figure 4). The number
of down-regulation events in the CA3/CA1/DG was 1/0/0 (1h),
11/9/0 (4h), 7/6/3 (8 h), and 8/4/6 (24 h), respectively, suggesting
that the extent of down-regulation peaked at 4h in the CA3 and
CAL, but was greatest at 24 h in the DG. In contrast, up-regulation
was seen to occur dominantly at 1h (12 of 14 analyzed), and

was generally restricted to the CA3 (9 of 12 such events). Lev-
els of Ringlb (Figure 5A) and Bmil (Figure 5C) of PRCI were
increased at 1 h, while up-regulation of Ezh2 (Figures 5D, 6D, and
7D), Suzi12 (Figures 5F and 6F), and Sirt1 (Figure 7G) of PRC2
was observed. Yyl and Yy2, of the PhoRC, were also seen to be
significantly higher at 1h (Figures 5H,I). With the exception of
Ezh2, no PcG transcript was increased at 4 h or later following SE.

DIFFERENTIAL EXPRESSION OF PcG GENES IN EPILEPTIC TOLERANCE
Seizure preconditioning had relatively modest effects on SE-
induced changes in PcG transcript expression with notable excep-
tions. For transcripts of PRC1 components, decreases were more
associated with tolerance than injury. Ringlb down-regulation
at 8 h was hippocampus-wide in tolerance but restricted to the
CA3 in injury (Figures 5B, 6B, and 7B). Ringlb up-regulation
at 1h, meanwhile, was injury-specific (Figure 5B), and fur-
ther, there was tolerance-specific down-regulation of Bmil at
4h (CA3, Figure 5C) and 8h (CA1l, Figure 6C). Notably, there
was no instance of injury-specific down-regulation or tolerance-
specific up-regulation for transcripts of the PRC1. Conversely,
down-regulation of SuzI2 (of PRC2) was more associated with
injury.

Suz12 up-regulation was seen in the CA3 and CALI of tolerance
mice at 1 h but was restricted to CA3 in injury and at lower lev-
els than seen in tolerance (Figures 5F and 6F). Down-regulation
of Suzl2 at 4h (CAl, Figure 6F) and 24h (CA3, Figure 5F)
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on the migration of a protein ladder are given (right). (B) The neuronal
expression of the polycomb repressive complex 2 (PRC2) catalytic
subunit EZH2 was validated by immunofluorescence, with a similar
pattern of expression observed for the PRC2-associated epigenetic
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was injury-specific. There were also minor differences seen with
Sirt] and Yy2 (see Figure 4). Finally, Ezh2 was seen to increase
in both seizure groups in a time- and subfield-specific manner
(Figures 5D, 6D, and 7D); at 1 h, up-regulation was specific to
the DG in injury, but was restricted to the CA3 in tolerance. Ezh2
was also increased at 8 and 24 h, in the CA1 of injury mice (8 h
only, Figure 6D) and in the DG of seizure-tolerant mice (24 h only,
Figure 7D). Interestingly, Ezh2 up-regulation in the CA3 at 1 h in
tolerance was coupled to a tolerance-specific down-regulation of
Ezhlin CA3 at 1 h (Figure 5E).

EXPRESSION OF INDIVIDUAL PRC COMPONENTS AFTER STATUS
EPILEPTICUS REFLECTS COMPLEX-WIDE EFFECTS IN THE
HIPPOCAMPUS

To determine if down-regulation of PcG transcripts aligned with
those associated with the same PRC, the mean RQ per complex was

calculated using RQ scores for each of the PRC constituents ana-
lyzed, across the CA3, CA1, and DG hippocampal subfields. These
scores revealed that expression of individual PRC constituents
predicts complex-wide effects in the hippocampus. Following
transient up-regulation at 1h following SE, scores for PRCI,
PRC2, and PhoRC demonstrate coordinated down-regulation of
polycomb transcription from 4 h onward, with some divergence
between injury and tolerance (summarized in Figure 8A; see
also Figure S2 in Supplementary Material). As with individual
components, down-regulation of PRC1 was more extensive in
tolerance than with injury. For instance, in the CA3, there was
a significant increase in PRC1 scores in injury at 1h (P <0.01,
compared to control, Figure 8A; also Figures S2A,B in Supple-
mentary Material) and a tolerance-specific decrease in PRCI
score at 4 h in tolerance (P < 0.05, compared to control, injury).
PRC1 down-regulation also appeared to be more widespread
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versus control following one-way analysis of variance with Tukey post hoc injury; KA, kainic acid; PRC, polycomb repressive complex; TOL, tolerance.

throughout the hippocampus when considering tolerance, with
numerous decreases at 4 and 8 h following SE (Figure 8A). Con-
versely, PRC2 down-regulation was more prevalent at 4 and 8 h
after SE in injury groups, with injury-specific decreases in PRC2
score in CA1 (4h, P < 0.05, compared to control, Figure 8A; also
Figures S2C,D in Supplementary Material) and CA3 (8 h, P < 0.05,
compared to control, Figure 8A; also Figures S2A,B in Supplemen-
tary Material). As with individual constituents, changes in PcG
transcription in the DG were minimal before 24 h (Figure 8A; also
Figures S2E,F in Supplementary Material). In sum, it was appar-
ent that divergences between injury and tolerance concerned either
up-regulation (at 1 h) or diminished down-regulation (between 4
and 24 h) of specific PRCs, where increased PRC1 score was asso-
ciated with injury and increased PRC2 score was associated with
tolerance. There were no observed divergences between injury and

tolerance in the DG at 8 or 24 h (Figure 8A; also Figures S2E,F
in Supplementary Material). A full breakdown of significance is
shown in Figures S2B,D,F in Supplementary Material.

Given this association of changes in PRC component tran-
scription with either injury or tolerance, we analyzed protein
levels at 24 h following SE, when preceding changes in mRNA
expression might be expected to manifest. Through western blot-
ting and subcellular fractionation, SE-mediated effects on PcG
protein expression were assessed in injury and tolerance mice.
Assessment included the use of whole cell protein lysates as
well as nuclear fractions, isolated from whole hippocampus. Elu-
tion of nuclear-specific Lamin A/C is shown (Figure 8E). For
nuclear fractionation, hippocampal samples were pooled (two
hippocampal samples per lysate). We assessed protein levels of
RINGIA and RING1B of PRC1, EZH2, and SUZ12 of PRC2 and
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FIGURE 5 | Focal-onset SE causes rapid changes in polycomb seizure-tolerant (tolerance) mice at 1, 4, 8, and 24 h following SE.
transcript levels in the CA3 of sham-preconditioned and Expression was corrected to B-actin and normalized to control (n=4).
seizure-tolerant mice. (A-l) Relative fold expression of various PcG *P <0.05, **P <0.01, ***P <0.001 (versus control unless indicated),
mMRNA transcripts was measured in the CA3 using gRT-PCR in one-way analysis of variance with Tukey post hoc test. PRC, polycomb
vehicle-injected (control), sham-preconditioned (injury), and repressive complex.

trimethyl (Lys27)-Histone 3, the polycomb-associated chromatin
mark (Figures 8B—F). In whole cell lysates, RING1A (PRC1) levels
were higher in injury than tolerance at 24h in the hippocam-
pus (P < 0.05, Figures 8B,F). In nuclear-enriched fractions, there
were no significant differences in RING1B (PRC1), EZH2 (PRC2),
or SUZ12 (PRC2) protein levels (Figures 8B,C,F). There was an
apparent threefold increase in RING1B levels in injury compared
to tolerance, as well as a twofold increase in both EZH2 and
SUZ12levels in tolerance compared in injury, a PRC-specific align-
ment that was also seen in transcript analysis. Notably, we did not
observe an associated loss of trimethylation of lysine 27 in histone
3 in nuclear-enriched hippocampal lysates at 24 h after SE, sug-
gesting that acute global loss of this modification is not a feature
of SE (Figures 8D,F).

DISCUSSION

Polycomb group proteins are a conserved family of transcrip-
tional silencers which were recently linked to the neuroprotection
observed in ischemic tolerance (27). Here, we report the effect

of prolonged seizures on PcG expression in the adult mouse
hippocampus and how this is altered in the setting of epileptic
tolerance. The present study also comprises the first detailed com-
parison of the relative expression of the various transcripts of the
PRCs between hippocampal subfields. We found that in injury-
group mice, SE induced rapid, bidirectional changes in levels of
PcG family gene expression. We found an almost uniform pattern
of rapid up-regulation (1 h) followed by later down-regulation (4 h
and thereafter) of various transcripts. Broad down-regulation was
seen to continue to 24 h post-SE which may be relevant to gene
expression patterns beyond the initial period of cell death in the
model (34). The amount of time elapsed after SE is the major deter-
minant of the changes, though there are region-specific changes
evident. Alterations in PcG transcript levels were more extensive
and more rapid in the CA3 and CAl than the DG, suggesting
that SE-elicited gene expression responses are more pronounced
in those populations most vulnerable to damage in this model
(29). This is predictable, since transcription would be expected
to be reduced in damaged cells. Nevertheless, the finding that
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FIGURE 6 | Focal-onset SE causes rapid changes in polycomb seizure-tolerant (tolerance) mice at 1, 4, 8, and 24 h following SE.
transcript levels in the CA1 of sham-preconditioned and Expression was corrected to B-actin and normalized to control (n=4).
seizure-tolerant mice. (A-G) Relative fold expression of various PcG *P <0.05, **P <0.01, ***P <0.001 (versus control unless indicated),
mMRNA transcripts was measured in the CA1 using gRT-PCR in one-way analysis of variance with Tukey post hoc test. PRC, polycomb
vehicle-injected (control), sham-preconditioned (injury), and repressive complex.

all populations displayed reductions in transcription suggests the
prolonged seizures, rather than cell death per se, is responsible for
many changes.

Spatio-temporal-specific changes in gene expression may be
a common and important feature of SE. In a comprehensive
microarray study conducted across hippocampal subfields and
several timepoints, subfield represented a more discriminatory
parameter than seizure frequency when comparing changes in
gene expression following SE (39). Distinct functional clusters
were also associated with each of the sampled timepoints, rep-
resenting acute, latent, and chronic stages of evoked epilepsy
(39). Other microarray studies on individual subfields of the hip-
pocampus including the CA3 (40), the CAl (41), and the DG
(42) recapitulate this general trend, with each study noting clus-
tered expression changes in largely non-overlapping functional
groups. In terms of the well-characterized PcG proteins YY1 and
SIRT1, such temporal and regional dynamics in expression are also
evident. Region-specific expression of YY1 has been reported to
underlie differential expression of adenosine A2A receptors in the

brain (43). YY1 and its binding partners have also demonstrated
stimulus-specific patterns of expression and activity following
electroconvulsive shock, KA, and PTZ (44-46). Evoked changes
in SIRT1 expression, meanwhile, were noted in vitro and in vivo,
following induced epileptiform activity, SE, and electroconvulsive
shock (47-49). Changes to YY1 and SIRT1 were bidirectional and
evolved over time, depending on the model and stimulus.

The present study did not explore whether altered PcG expres-
sion influences the levels of genes under the control of PRCs.
This will require further studies targeting specific PcG genes or
entire PRC complexes in the model. We can, however, postulate
mechanisms by which altered PcG expression could influence cel-
lular outcomes after SE. In addition to direct control of genes
regulating apoptosis, various PcG proteins have been observed to
directly bind and modify p53, a protein implicated in seizures
and damage after SE. BMI1, for instance, can bind p53 with
PRCI subunits RING1A and RINGI1B, leading to ubiquitination
and degradation of p53 (50). This activity was directly attributed
to RING1B, an E3 ubiquitin ligase, where RING1B knockdown
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FIGURE 7 | Focal-onset SE causes rapid changes in polycomb seizure-tolerant (tolerance) mice at 1, 8, and 24 h following SE.
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seizure-tolerant mice. (A-l) Relative fold expression of various PcG *P <0.05, **P <0.01, ***P <0.001 (versus control unless indicated),
mMRNA transcripts was measured in the DG using gRT-PCR in one-way analysis of variance with Tukey post hoc test. PRC, polycomb
vehicle-injected (control), sham-preconditioned (injury), and repressive complex.

sensitized cells to apoptosis (51). BMI1 deficiency is associated
with p53 accumulation, Bcl-2 down-regulation, and increased
hippocampal apoptosis (52). Sirtl inhibition of p53 function is
well documented (53), while EZH2 has been noted to indirectly
modulate p53 signaling and depletion of EZH2 leads to increased
apoptosis in response to DNA damage (54). PcG repression has
also been linked to REST function. Transcriptional regulation by
REST has been implicated in epileptogenesis after SE (13) and
REST has been observed to bind and recruit both PRC1 and PRC2
to certain REST target genes (55). Indeed, REST depletion causes
loss of trimethyl-H3K27 in murine stem cells, and transgenic inser-
tion of promoter fragments containing REST-binding elements
can recruit trimethyl-H3K27 (56).

Changes to PcG expression may influence axonal and dendritic
structures, which could also be important after SE and for later
development of epilepsy. EZH2 recruitment to the Bdnflocus has
been implicated in nominal restriction of dendritic arborization
and activity-induced BDNF expression was linked to derepres-
sion of the Bdnf locus following reduced EZH2 binding (24).
EZH2 is crucial to the regulation of hippocampal neurogene-
sis and axonal guidance, with downstream deficits in memory
function following conditional knockout (22, 23). Neurogenesis is
enhanced following seizures and may contribute to seizure-related
pathologies (57) and polycomb as well as trithorax group pro-
teins have been implicated in neurogenic processes (20). Together,
the wide-ranging reductions in PcG expression that we observed
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following SE suggest functional studies could focus on the poten-
tial relationship between PcGs and p53 accumulation, alterations
in REST, and changes in neuronal morphology or neurogenesis.

A major focus of the present study was the differential expres-
sion of PcG family genes in epileptic tolerance. A damage-tolerant
state was generated by exposing mice to seizure preconditioning
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a day before SE. Tolerant mice display only ~50% of the normal
damage to the CA3 subfield after SE and previous work has shown
the neuroprotection is associated with widespread transcriptional
silencing (29). More recently, genome-wide methylation analysis
revealed a small number of genes were differentially hypermethy-
lated in tolerance compared to injury (33), suggesting epigenetic
processes are important in the protection. PcG proteins, as tran-
scriptional repressors, may contribute to this tolerant phenotype.
Indeed, BMI1 and Scmhl have been implicated as contributing
factors in ischemic tolerance through their repressive action on
potassium channel proteins (27). Accordingly, a reasonable pre-
diction would have been to see up-regulation of PcG genes in
epileptic tolerance. In fact, we generally found down-regulation of
PcG transcripts in both injury and tolerance. However, the extent
of down-regulation between PRC1 and PRC2 diverged for injury
and tolerance. The number of down-regulation events across hip-
pocampal subfields and timepoints was greater for injury than
tolerance for PRC2. Changes in protein expression of RING1A
and RINGI1B (of PRC1) and EZH2 and SUZ12 (of PRC2) were
concordant with this observation. The possibility of divergences
in activity of PRC1 and PRC2 between injury and tolerance is
interesting. Although polycomb complexes are generally recruited
together in a stepwise fashion, it has been shown that PRC2
can occupy certain genomic sites independently of PRC1 (58),
while PRC1 has been shown to be capable of chromatin binding
in the absence of PRC2 (59). Given that bivalent domains with
recruitment of both complexes may mediate stricter transcrip-
tional silencing (58) and that REST can differentially recruit PRC1
in a context-specific manner (60), SE-induced changes in the bal-
ance of PRC1 and PRC2 are likely to have significant effects on
transcriptional regulation. This is borne out by observations that
differential expression of PRC1 subunit BMI1 and PRC2 subunit
EZH2 results in repression of different targets (61).

Given its putative role in the regulation of neuronal morphol-
ogy and cell death pathways, the apparent increase of EZH2 in
tolerance at 24 h is particularly intriguing. We observed that, in
control mice, Ezh1 mRNA expression exceeds that of Ezh2, partic-
ularly in the CA3 and CAl, in keeping with previous profiles of
PcG expression in non-proliferative tissues (62). Ezhl expression
is profoundly decreased throughout the hippocampus following
SE, regardless of preconditioning. Does tolerance-specific up-
regulation of Ezh2 at 24 h following SE offset this Ezh1I deficiency?
EZH1 and EZH?2 are homologous members of the PRC2 that may
have partially overlapping roles and redundancy. For instance,
global K3K27me3 can be preserved by EZH1-containing PRC2
in EZH27/~ cells, where subsequent depletion of EZH1 leads to
translational derepression in these cells (63). Redundancy in EZH1
and EZH2 is supported by other double knockout studies (64), but
there is also conflicting data suggesting that EZH2 deficiency is suf-
ficient to destabilize global trimethyl-H3K27 (62). Notably, none
of these studies have reported extensive demethylation of H3K27
following EZH1 depletion alone, in keeping with our observations
that trimethyl-H3K27 levels are unchanged after SE. However,
some sub-functionalization of these proteins is apparent. EZH1
may only target a subset of EZH2 genes and has inferior methyl-
transferase activity (62). It has been suggested that PRC2-EZH2
is more active in de novo H3K27 di- and trimethylation, while

PRC2-EZH]1 isinvolved in maintenance of the mark and transcrip-
tional repression (65). Further, EZH1 and EZH2 have different
chromatin blinding and compaction properties. Our transcript
and protein analysis suggests that tolerance may be associated with
an increased retention of EZH?2 following widespread loss of Ezh1
expression. As such, changes to PRC2-EZH2 activity in both injury
and tolerance represents an ideal next step in delineating possible
transcriptional regulatory changes arising after SE. The lack of
destabilization in trimethyl-H3K27 at 24 h after SE suggests that
such changes, if any, may be restricted to a small number of sites.

The mechanisms of PcG recruitment to distinct genomic ele-
ments are also unclear (15) and it is not yet known whether
PRE are widespread in mammalian genomes (15). However, a
recent study confirmed that rapid derepression of PcG target
genes can occur following a pathological insult in the brain and
confirmed several neuronal PcG targets (25). Subsequent investi-
gations involving chromatin immunoprecipitation and proteomic
analyses represent a viable means of further delineating the struc-
ture, interactions, and targets of PcG complexes in the adult
brain.

In summary, we have characterized regional and temporal
changes in PcG expression in the adult mouse hippocampus. Our
data show that SE produces immediate changes in the transcrip-
tion of polycomb genes, with divergence noted for preconditioned
animals. Functional data are now required to link the observed
gene changes for PcG proteins to cell injury and other outcomes
after SE in injury and tolerance.
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