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Tinnitus is the perception of a sound in the absence of a corresponding external sound source. 
Pathophysiologically it has been attributed to bottom-up deafferentation and/or top-down 
noise-cancelling deficit. Both mechanisms are proposed to alter auditory  thalamocortical 
signal transmission, resulting in thalamocortical dysrhythmia (TCD). In deafferentation, 
TCD is characterized by a slowing down of resting state alpha to theta activity associated 
with an increase in surrounding gamma activity, resulting in persisting cross-frequency 
coupling between theta and gamma activity. Theta burst-firing increases network synchrony 
and recruitment, a mechanism, which might enable long-range synchrony, which in turn 
could represent a means for finding the missing thalamocortical information and for gaining 
access to consciousness. Theta oscillations could function as a carrier wave to integrate 
the tinnitus-related focal auditory gamma activity in a consciousness enabling network, as 
envisioned by the global workspace model. This model suggests that focal activity in the 
brain does not reach consciousness, except if the focal activity becomes functionally coupled 
to a consciousness enabling network, aka the global workspace. In limited deafferentation, 
the missing information can be retrieved from the auditory cortical neighborhood, decreasing 
surround inhibition, resulting in TCD. When the deafferentation is too wide in bandwidth, it is 
hypothesized that the missing information is retrieved from theta-mediated parahippocampal 
auditory memory. This suggests that based on the amount of deafferentation TCD might 
change to parahippocampocortical persisting and thus pathological theta–gamma rhythm. 
From a Bayesian point of view, in which the brain is conceived as a prediction machine 
that updates its memory-based predictions through sensory updating, tinnitus is the result 
of a prediction error between the predicted and sensed auditory input. The decrease in 
sensory updating is reflected by decreased alpha activity and the prediction error results in 
theta–gamma and beta–gamma coupling. Thus, TCD can be considered as an adaptive 
mechanism to retrieve missing auditory input in tinnitus.

Keywords: thalamocortical dysrhythmia, theta, gamma, eeG, MeG, tinnitus, cross-frequency coupling, Bayes

introduction

Non-pulsatile tinnitus is the perception of a sound in the absence of a corresponding external sound 
source. As an auditory phantom phenomenon, it has been conceptualized to be either linked to bottom-
up deafferentation (see Figure 1, green box) with or without behaviorally measurable hearing loss, or 
a deficient top-down noise-cancelling mechanism (see Figure 1, blue box) or a combination of both.
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Based on phenomenological similarities it has been proposed that 
tinnitus is the auditory analog of phantom pain (1–4) with auditory 
deafferentation representing its causative factor. Many subsequent 
models are refinements of this concept and limit themselves to 
changes in the auditory system, zooming in on the specific aspects 
linked to auditory deprivation, such as hyperactivity (5), an increase 
in gain (6), plasticity (7), including map plasticity (8) and homeostatic 
plasticity (9–11), synchrony (5, 12), filling the missing information 
(3, 13, 14), or sensitization (15). Many of these models are still a mat-
ter of debate, such as the involvement of synchrony (16), or whether 
changes in gain explain really tinnitus and not only hyperacusis. Also, 
the memory-based filling in mechanism is still a rather speculative 
model with limited experimental evidence. Moreover, some models 
focus on somatosensory compensatory mechanisms in the dorsal 
cochlear nucleus (17), which in itself has been proposed to be a core 
region in the development of tinnitus (18).

A second complementary concept proposes that deafferentia-
tion-induced alterations in the central auditory pathways are not 
sufficient for the conscious perception of tinnitus. Tinnitus only 
arises, if auditory deafferentiation is accompanied by a deficient 
inhibitory top-down mechanism (19, 20), analogous to the anti-
nociceptive system deficit linked to some forms of spontaneous 
pain such as fibromyalgia (21).

Recently, the concept has been forwarded that tinnitus might 
be the expression of a global workspace hyperactivity rather than 
being limited to the auditory system (22), which has been extended 
in a heuristic model integrating the deafferentiation model, the 
noise-cancelling deficit, and the global workspace model. The 
global workspace model was first proposed by Baars (23) as a model 
for conscious cognitive processing. It is a model for the interface 
between multiple unconscious, parallel processing modules on one 

FiGuRe 1 | Overview of the different tinnitus models and how they are related to each other. All proposed pathophysiological models include or relate to 
thalamocortical dysrhythmia.

side, and conscious experience on the other side, proposing how 
different sources of information are integrated into one percept 
with internally consistent content. The global workspace model 
suggests that multiple, highly specialized; quasi-independent 
input processors compete for access to a broadcasting capability 
by which the winning processor can disseminate its information 
globally throughout the brain. Based on the global workspace 
concept, Dehaene and colleagues (24) have proposed a neuronal 
implementation of a global workspace architecture, the so-called 
“neuronal global workspace.” In this model, sensory stimuli mobi-
lize excitatory neurons with long-range cortico-cortical axons, 
leading to the genesis of a global activity pattern among workspace 
neurons, which are widely distributed throughout the brain. Any 
such global pattern can inhibit alternative activity patterns among 
workspace neurons, thus preventing the conscious processing of 
alternative stimuli and enabling a uniform conscious percept. 
Moreover, top-down attentional amplification is the mechanism by 
which modular processes can be temporarily mobilized and made 
available to the global workspace, and therefore to consciousness. 
This heuristic model is based on recent studies in consciousness 
research (25–27) and the philosophical concept of emergence in 
complex adaptive systems (3, 28–30). The emergence of a unified 
percept relies on the coordination of scattered mosaics of function-
ally specialized brain regions (31). This is proposed to be related 
to oscillatory activity and connectivity within the brain (32). 
Large-scale integration has been proposed to bind the distributed 
anatomical and functional organization of brain activity enabling 
the emergence of coherent behavior and cognition. Although the 
mechanisms involved in large-scale integration are still largely 
unknown, it has been convincingly argued that the most plausible 
candidate is the formation of dynamic links mediated by synchrony 
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over multiple frequency bands (31). Even though within-frequency 
phase synchronization may support the binding of anatomically 
distributed processing, it cannot coordinate neuronal processing 
distributed into distinct time windows or frequency bands (33). 
Thus, cross-frequency coupling might be important for large-scale 
integration via low-frequency coherence of distributed geographi-
cally focal high-frequency activity (34). This could be carried 
out by nested oscillations (phase–amplitude interactions) or by 
phase–phase interactions, such as n:m phase synchrony, at discrete 
frequencies (33), as shown in both invasive human recordings (35) 
and with MEG and EEG recordings related to sensory awareness 
(36). This notion is supported by very recent results demonstrating 
tinnitus-related cross-frequency-coupling (37). Multiple forms of 
cross-frequency coupling exist. The most commonly studied forms 
are phase–amplitude and phase–phase cross-frequency coupling, 
but amplitude–amplitude, phase–frequency cross-frequency cou-
pling exist (38). In tinnitus, intra-area cross-frequency coupling 
is known as thalamocortical dysrhythmia (TCD), and inter-area 
phase–amplitude coupling between anterior cingulate and audi-
tory cortex and dorsolateral prefrontal cortex has been shown 
as well (37). The other cross-frequency couplings have not been 
investigated yet.

What all models, the deafferentation neurophysiological model, 
the noise-cancelling deficit, and the multiple parallel overlapping 
dynamical network model have in common, is that they rely on 
a final common pathway called TCD (39) (see Figure 1, yellow 
box). However, the question arises, how to theoretically integrate 
TCD in the setting of consciousness as an emergent property of 
network activity (31, 40) and more specifically in tinnitus (41).

Tinnitus is perceived as a unified percept, incorporating a 
sound, which can be different in quality, location, loudness, con-
stancy, duration, as well as affective components such as mood and 
distress. It is assumed that each of these characteristics is related to 
a separate subnetwork, but linked by hubs that are part of multiple 
subnetworks (41). Furthermore, there are common associated 
symptoms in tinnitus, such as hearing loss, which can also generate 
distress (42, 43), and as distress is generated by a non-specific 
brain network (3, 44–49) this can be perceived or confounded as 
tinnitus distress. The lateralization of the tinnitus percept depends 
on gamma-band activity in the parahippocampal area, associated 
with functional connectivity between the parahippocampal area 
and auditory cortex.

Tinnitus has been likened to pain, both pathophysiologically, 
clinically, and treatment-wise (1–3, 39, 50–52). However, whereas 
different subtypes of pain have been clearly discerned, e.g., noci-
ceptive versus neuropathic pain, this has not been as obvious for 
tinnitus. It is likely that different forms or subtypes of tinnitus 
exist, each with a different pathophysiology, which could explain 
the interindividual differences seen in recent electrophysiological 
studies (53, 54).

Gamma-Band Activity and Consciousness

Gamma-band activity (>30 Hz) is important for motor control 
(55) and processing of sensory stimuli, whether in the olfactory 
bulb (56), visual (57), auditory (58), or somatosensory cortex 
(59). Synchronization of separate gamma-band activities (>30), 

present in different thalamocortical columns (60), is proposed to 
bind (57, 61) distributed neural gamma activity into one coherent 
auditory percept (58, 62–66). Sound intensity is also reflected by 
the amount of gamma-band activity (67). This could suggest that 
gamma reflects a difference, a prediction error (68), a detection of 
change to the reference (69), or status quo, the latter, which would 
be reflected by beta activity (70). In general, gamma-band activity 
is present only in locally restricted areas of the cortex for short 
periods of time (34, 35, 71, 72). Whereas normally gamma activ-
ity waxes and wanes, related to the presence of a novel external 
stimulus, persisting gamma activity localized in one brain area 
has been considered pathological (39) (see Figure 2). However, 
in contrast to the waxing and waning of gamma-band activity, 
recent studies related to language processing do demonstrate there 
are also spontaneous endogenous longer lasting gamma rhythms 
present at rest in monkeys (73) and humans (74). These are likely 
generated by inhibitory interneurons (75) or interactions between 
pyramidal cells and interneurons (76, 77) and might reflect 
attentional processes (76, 77). These complement the exogenous 
stimulus driven gamma-band activity, which usually increases 
gamma-band activity in sensory areas, presumably clustering 
spiking activity that is propagated to higher hierarchic processing 
stages (74). Thus, it has been envisaged that these spontaneous 
gamma oscillations mechanistically might optimize the extraction 
of relevant sensory input in time (74). This intriguiging finding 
could potentially be applied to tinnitus. It has been proposed that 
oscillations correspond to the alternation of phases of high- and 
low-neuronal excitability, which temporally constrain sensory 
processing (78). This means that gamma oscillations, which have 
a period of approximately 25 ms, provide a 10- to 15-ms window 
for integrating spectrotemporal information followed by a 10- to 
15-ms window for propagating the output (74). However, because 
the average length of a phoneme is about 50 ms, a 10- to 15-ms 
window might be too short for integrating this information, but 
a phoneme can correctly be represented by three gamma cycles, 
which act as a three-bit code (74). Further studies should evaluate 
whether tinnitus could be represented by such a 3-bit gamma 
code. In the visual system, stimuli that reach consciousness 
and those which do not reach consciousness are characterized 
by a similar increase of local gamma oscillations in the visual 
cortex (79, 80). Thus, gamma-band activity, per se, is not related 
to conscious perception, but could be a condition sine qua non, 
an essential prerequisite, for conscious perception (30). This is 
further confirmed by animal studies. Animals lacking gamma-
band thalamocortical activation, due to the absence of P/Q-type 
Ca++ channels [CaV2.1-null (i.e., _-1A KO)], lacks a cognitive 
response to sensory stimulation (81). Only when focal gamma 
activity is embedded in a larger network of long-range functional 
connectivity, this will lead to the emergence of a conscious percept 
(41) (see Figure 2).

Thalamocortical Dysrhythmia and Tinnitus

Based on the principle that gamma-band activity is associated 
with the conscious percept of auditory stimuli (58, 66, 82), Llinas 
proposed that tinnitus, as a conscious percept, should be associ-
ated with persistent gamma-band activity in the auditory cortex 
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(39) confirmed in latter Ca V2.1-null experiments (81). Indeed, 
it has been shown both by EEG (83), MEG (39, 84, 85), and 
intracranial recordings (46) that tinnitus is related to gamma-
band activity in the auditory cortex and nested on theta activity 
(39, 46, 84). Whereas, initially, it was thought that the gamma-
band activity was contralateral (83, 84), it has been shown that 
gamma-band activity is increased in both auditory cortices, even 
in unilateral tinnitus (86). The amount of gamma-band activity 
has been shown to be related to the subjectively perceived tinnitus 
loudness (83). A decrease in tinnitus loudness has been found to 
be associated with a decrease in gamma-band activity in the audi-
tory cortex (87–89) and a worsening in tinnitus loudness with 
an increase in auditory cortex gamma-band activity (90), even 
if such a relationship has been called into question by a recent 
study (54). In this paper (54), gamma-band activity increases 
and decreases were noted associated with an increase in tinnitus 
loudness after residual inhibition or a decrease in loudness after 
residual excitation, respectively. This could reflect that gamma 
represents a homeostatic change in loudness per  se, on the 
condition that the tinnitus state has become the reference, or it 
could potentially be attributed to other factors, such as associated 
hearing loss in these patients.

An explanation for the occurrence of this theta–gamma cou-
pled activity in sensory deafferentation is provided by the concept 
of TCD (39, 85). This model states that, in the deafferented state, 
the dominant resting state alpha rhythm (8–12  Hz) decreases 
to theta (4–7 Hz) (39) band activity. Conceptually, this can be 
explained that the firing rate decreases when less information 
needs to be processed (91) due to the deafferentation, and that 
firing and oscillation rate are coupled at the thalamocortical level 
(85). As a result, GABAA-mediated lateral inhibition is reduced 
(85), inducing gamma (>30 Hz) band activity (39) surrounding 
the deafferented theta area, also known as the edge effect (85). 
Indeed, in tinnitus, a decrease in alpha power is associated with 

an increase in gamma power (92), and gamma goes together 
with theta activity (84), confirming the initial studies by Llinas 
et al. (39, 85). Other studies have since demonstrated the pres-
ence of both low- (delta or theta) and high-frequency activity in 
the auditory cortex of tinnitus patients (88, 89, 93, 94), and the 
coupled activity has also been confirmed on electrode recordings 
of implanted patients (46).

It was proposed that theta reflects the negative symptoms 
(hearing loss, hypoesthesia, …) and gamma the positive symptoms 
(tinnitus, pain,  …) in diseases characterized by TCD (85, 95). 
Thus, the negative symptoms (e.g., hearing loss, somatosensory 
deprivation in amputation, …) are proposed to be linked to less 
information processing and therefore slowed alpha activity, as if 
the deafferented thalamocortical columns are “as asleep” (85). It 
has been proposed that this theta could then act as a long-range 
carrier wave (96–98) on which the tinnitus information can be 
nested by means of high-frequency oscillatory activity (41). This 
notion has been confirmed by a MEG study, which demonstrated 
increased coupled gamma–theta wave activity in tinnitus patients 
(39, 84, 85) and recently demonstrated in EEG as well (99).

How is this TCD generated at a cellular level and what mecha-
nism can link TCD to a more widespread phenomenon in the 
brain?

T-Type Ca Channels, Theta Activity, 
Synchrony, and Network Recruitment in 
Thalamocortical Dysrhythmia

It has been proposed that the tectal system, with its rapid multisen-
sory input, organizes the instantaneous orienting responses crucial 
to the maintenance of life (95). By contrast, the thalamocortical 
system, with its extensive corticothalamic recurrence and temporal 
binding properties, creates the complex combinatorial sensorimo-
tor activities required for intentional behavior, characteristic of 
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vertebrate behavior (95). Thalamic neurons, on being depolarized 
from resting potential levels positive to −55  mV, fire tonically. 
Close to the threshold level, gamma dendritic subthreshold 
oscillations occur supported by P/Q-type Ca channels (81). At 
hyperpolarized levels negative to −60  mV, de-inactivation of a 
Ca2+ conductance give rise to an inward current through T-type 
Ca channels, resulting in low-threshold burst firing. This remains 
for as long as the cells remain hyperpolarized, i.e., deafferented. 
Thus, in short, thalamic neurons have the unique property to fire 
both at depolarization and at hyperpolarization.

T-type calcium channels are known as low-voltage-activated 
(LVA) channels as they first open at more hyperpolarized membrane 
potentials compared to high-voltage-activated calcium channels, 
such as the L-, P/Q-, N-, and R-type channels (100). Thus, T-type 
calcium channels can be considered first-responders to small 
depolarization (100), generating a low-threshold Ca2+ potential 
upon the crest of which sodium and potassium channel-mediated 
action potentials fire, creating low-threshold bursts (101). Overall, 
the entire burst process mediated via T-type Ca channels takes 
approximately 100–200 ms limiting the frequency at which burst-
ing can occur to around 5–10 Hz (102), i.e., theta frequencies. 
When a burst is generated in a thalamocortical neuron anywhere 
on the dendrite or cell body, the low-threshold Ca2+ potential 
is conducted not only to the soma but also back-propagates 
throughout the entire dendritic tree (100), generating bursts in 
multiple postsynaptic neurons in the projected nucleus through 
axonal arborization to multiple synapses. These bursting neurons 
will in turn recruit additional neurons in the reciprocally con-
nected initiating nucleus and this burst amplification will progress 
on each cycle of the oscillation, generating synchronization in a 
network of reciprocally connected CNS nuclei (103, 104). This is in 
agreement with clinical data demonstrating that the dysrhythmia 
can be recorded with MEG over widespread areas (39). But the 
burst-firing process may also act as a neuronal frequency filter, 
preventing the conduction of recent incoming postsynaptic activity 
to the soma, and thereby preventing other activities contributing 
to the neuronal output (99).

In summary, in the non-bursting regions subthreshold 
oscillations are capable of performing a filtering task without 
increasing neuronal output. Contrastingly, bursting regions 
may spread network oscillations and recruit interconnected 
cortical areas, while simultaneously acting as a theta frequency 

filter (100). As such theta burst-firing increases network 
synchrony and recruitment (100), a mechanism, which might 
enable long-range synchrony, which in turn could represent a 
means for finding the missing thalamocortical information (due 
to deafferentation) (105). Hypothetically, the missing informa-
tion may be replaced from (para)hippocampal memory. The 
synchrony would permit the (para)hippocampal information to 
be boosted to conscious perception by recruiting consciousness 
enabling network areas (41).

Thalamocortical Dysrhythmia versus 
Physiological Cross-Frequency Coupling

Gamma-band activity in the auditory cortex is a prerequisite for 
auditory conscious perception and, therefore, likely also contributes 
to the perception of a phantom sound (Table 1). As theta–gamma 
coupling also exists in physiological auditory processing (34, 35, 
106), the TCD state can be considered as a pathological persistence 
of normally waxing and waning theta–gamma-band coupled activ-
ity in specific topographic thalamocortical columns, resulting from 
auditory deafferentation (39). It can be conceived that the theta 
activity is the carrier wave connecting widespread areas (72), and 
that focal gamma-band activity in geographically separated brain 
areas is synchronized by nesting on the theta phase, as exemplified 
in auditory attention (106).

It has been suggested that in physiological circumstances 
alpha–gamma coupling may be related to thalamocortical circuits 
(107, 108), whereas theta–gamma coupling has been associated 
with fronto–hippocampal networks (34, 108). This suggests that 
the theta activity in TCD is actually slowed alpha, as originally 
proposed (39), since it is found in thalamocortical loops. We 
could further speculate that alpha (lagged) phase synchroniza-
tion between parahippocampal- and subgenual cortex in tinnitus 
distress (47, 109) may in turn represent accelerated theta activity. 
Indeed, heart rate variability is controlled by theta activity in the 
subgenual anterior cingulate cortex (110), but in distress, alpha 
activity is noted in this same area (44, 47, 111, 112). As distress 
is linked to autonomic system changes (110, 113), this suggests 
that the alpha in distress could actually be high theta. Thus, the 
difference between physiological and pathological theta–gamma 
coupling might not only be the transient versus persistent activity 
but also the generator, i.e., thalamus versus (para)hippocampus.

TABle 1 | Summary of physiological and pathological oscillatory activity and cross-frequency coupling.

Physiological Pathological

Activity Theta Carrier wave for memory-based information Theta can be slowed alpha
Alpha Carrier wave for attentional processing Alpha can be accelerated theta
Beta Information processing: reflects status quo,  

top-down prediction
Unknown

Gamma Information processing: reflects change, 
bottom-up prediction error, focal, waxes, and 
wanes

Persistent

Cross-frequency coupling
Thalamocortical Alpha–gamma Theta–gamma: slowing down alpha to theta permits 

access to parahippocampal auditory memory
(Para)hippocampocortical Theta–gamma Alpha–gamma: accelerating theta to alpha permits 

attentional processing of tinnitus-related gamma activity
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From its inception, it was also proposed that TCD is not 
restricted to the auditory system, but involves both the medial 
and lateral thalamic system (39). The additional involvement of 
the context-processing, non-specific medial thalamic nuclei, which 
connect to the cingulate, medial prefrontal, and orbitofrontal 
cortices, would provide an explanation for the affective component 
changes (39) present in about 20% of all people with tinnitus (114). 
The insula is involved in tinnitus. The anterior insula and dorsal 
anterior cingulate are part of a salience network, which is activated 
in chronic tinnitus (86, 115–117). This could reflect a paradoxical 
salience attributed to the tinnitus sound (3, 46–48), a reason why 
it remains present at a conscious level. Indeed, the right insula 
has been linked not only to conscious processing of cognition 
and emotion (118, 119) but also to the perception of tinnitus 
distress, reflected by sympathetic hyperactivity (113). The insula 
is hypothesized to integrate interoceptive and exteroceptive salient 
information (120), generating a feeling (118) of risk (121) and 
meaning (122) to the sound. The tinnitus seems to be processed 
by the brain as exteroceptive information as remembering a 
sound deactivates the insula and anterior cingulate cortex (123). 
Even though this concept is plausible, experimental support has 
only been found in the insula in distressing tinnitus (113). Most 
oscillatory changes in this non-specific distress network are found 
to occur in the alpha-frequency domain (44, 47, 111), and not 
in theta- or gamma-band activity. But as speculated before, this 
could actually reflect another form of dysrhythmia, in which theta 
is increased to alpha, and linked to the septal nuclei, as generator 
of hippocampal theta, rather than the thalamus. Indeed, septal 
nuclei burst at theta frequencies and fire tonically at 10–15 Hz 
when depolarized (124).

Thalamocortical Dysrhythmia and error 
Prediction in Tinnitus

It has been proposed that tinnitus is an emergent property of 
network activity that fills in the deafferented thalamocortical 
activity in order to reduce auditory uncertainty (105). This goes 
back to the concept of the brain as a “prediction machine” as 
a fundamental characteristic of engagement with the world 
(125). The predictive brain requires an internal representation 
of the world (125), against which sensory stimuli are compared, 
and in which they are integrated. It incorporates the idea that 
a crucial function of the brain is to use stored information to 
imagine, simulate, and predict possible future events (126). 
The brain aims to minimize its prediction errors about its 
environment according to the free-energy principle (127). The 
Bayesian brain model adds to the predictive brain model that the 
predictions the brain makes are updated via active exploration 
of the environment through the senses (128). From a Bayesian 
statistical point of view, the brain is conceived as an inference 
machine that actively predicts and explains its sensations (127). 
Its central postulate is that percepts represent predictions or 
hypotheses about the external world whose degree of belief (the 
posterior probability) is determined by a combination of sensory 
evidence obtained by actively sampling the environment and 
background assumptions, based on a model of the world stored in 
contextual memory, about a priori plausible world structures (the 

prior) (14, 128). Subsequently, the posterior belief (=percept) 
becomes the next prior belief (=prediction) for a new sequence 
of prediction, resulting in a Markov chain Monte Carlo inference, 
i.e., a constantly updated hypothesis of the world. This requires 
some form of intentionality (129) related to self-preservation. 
Auditory deafferentation in a given frequency range induces 
a tonotopically specific prediction error. The actual auditory 
input is inconsistent with auditory input before the hearing loss 
occurred (3). In other words, the actual input is inconsistent with 
what is stored in memory. This inconsistency in turn signals that 
an information update is required (41). The oscillatory activity 
related to auditory predictions has been recently identified (130): 
delta–beta coupled oscillations underpin prediction accuracy 
(130), and (Bayesian) updating of the predictions is processed by 
the alpha-band (10–14 Hz) (130). Predicting “when” an auditory 
stimulus arrives predominantly involves low-frequency delta 
and theta oscillations, predicting “what” is processed by gamma 
and beta oscillations (131). Beta oscillations likely underlie a 
top-down flow of information, whereas gamma oscillations 
could be generated bottom-up (131). Whereas predictions are 
transmitted in a top-down “backward” manner, using mainly the 
beta band, prediction errors could be propagated in the gamma 
band in a bottom-up feed-forward manner (131). Updating of 
the predictions, via attention-based scanning of the environment 
(132), on the other hand, is linked to alpha oscillations (130, 132). 
Thus, transferring these findings to tinnitus, on could speculate 
that increased gamma activity in tinnitus would be related to a 
deafferentation-related (thalamocortical column specific spatial 
mismatch) prediction error, and the nesting on theta or delta 
related to its temporal prediction. In other words, gamma activity 
could reflect any change in the auditory environment, as this 
induces a prediction error. In TCD gamma activity would reflect a 
persistent deafferentation-based thalamocortical column specific 
prediction error.

One could interpret the decrease of alpha in TCD as a decrease 
in environmental scanning, resulting in a persistent prediction 
error, i.e., a persistent tinnitus percept. The slowed down alpha, 
resulting in theta bursting can then recruit other areas that also 
burst in theta such as the septal nuclei driven hippocampal–para-
hippocampal memory network. Thus, by decreasing its firing and 
oscillation rate to theta the TCD permits to access memory to fill 
in the missing auditory information.

In summary, the Bayesian model for tinnitus gives an alternative 
but complementary explanation for the oscillatory changes seen in 
tinnitus by adding that also other cross-frequency couplings need 
to be considered in the pathophysiology of tinnitus.

Thalamocortical Dysrhythmia and 
Deficient inhibitory Top-Down 
Mechanisms

Tinnitus was proposed to be a bottom-up generated TCD, linked 
to thalamocortical deafferentation (39). However, from the begin-
ning of this model, it was conceived that top-down mechanisms 
may also contribute to the development of TCD. This would be 
more related to neuropsychiatric or affective behavioral changes 
(133). In a normally functioning noise-cancelling mechanism 
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alpha activity, which is the normal resting state activity in the 
ventral medial prefrontal cortex–pregenual anterior cingulate 
cortex should predominate. In a dysfunctional noise-cancelling 
mechanism, it is expected that delta/theta and beta would pre-
dominate. Indeed, in a study looking at selective enriched acous-
tic stimulation, in which overcompensation of the deafferented 
stimuli was used, clinical worsening of patients was related to 
increased beta activity in the pregenual anterior cingulate cortex, 
linked to increased gamma in the auditory cortex (90). This is in 
agreement with a study that shows that tinnitus distress is related 
to high beta (25 Hz) in frontal areas (44, 134). By contrast, in a 
study using bifrontal tDCS, improvement of tinnitus loudness 
and distress was associated with a decrease in gamma-band activ-
ity in the auditory cortex, mediated via increased alpha activity 
in the pregenual anterior cingulate cortex (87). A recent EEG 
study demonstrated a correlation between delta, theta, and beta1 
activity in the pregenual to rostral ACC and the percentage of 
the time that tinnitus is perceived (135). The percentage of the 
time tinnitus is perceived seems, furthermore, to be inversely 
related to the functional connectivity between this area and the 
left primary auditory cortex (135). Even though these studies 
provide certain support for the involvement of the pregenual 
anterior cingulate cortex in changing auditory cortex gamma-
band activity linked to tinnitus, these findings have still to be 
considered as preliminary and the exact mechanism how the 
pregenual anterior cingulated interacts with the auditory system 
is not yet revealed.

Thalamocortical Dysrhythmia in Tinnitus 
can be Modulated

In a study evaluating electrophysiological changes associated with 
an improvement in tinnitus perception by means of auditory coor-
dinated reset stimulation (136), pretreatment pathological delta 
and gamma-band activity was normalized only in those patients 
who had a benefit from the treatment (89), demonstrating that 
TCD is possibly causally related to the tinnitus.

MEG measurements before and after repetitive transcranial 
magnetic stimulation (rTMS) revealed that subjective reduction of 
tinnitus loudness after rTMS was related to a reduction of gamma 
and an increase in alpha activity (137).

Neurofeedback is a promising neuromodulation technique, 
based on operant conditioning, which can modulate TCD. It 
has been shown that tinnitus is related to a loss of alpha power, 
which is associated with an increase in gamma power (92), and 
that gamma is coupled to theta (84), the signature of TCD. Using 
neurofeedback in tinnitus, the alpha power can be increased in 
the auditory cortex (138), returning to a normal rhythmic alpha 
resting state.

Surgical neuromodulation treatments such as thalamic 
lesioning (52, 139) and auditory cortex stimulation via 
implanted electrodes (46, 93) have shown to reduce tinnitus in 
selected patients and to alter electrophysiological signatures of 
tinnitus-related TCD (46, 93, 139). In a tinnitus patient who 
was implanted with electrodes overlying the auditory cortex 
for tinnitus treatment, recordings from the implanted electrode 
revealed increased gamma and theta activity only at one single 

pole, whereas at the other electrode poles normal alpha activity 
was recorded, demonstrating a highly spatially specific TCD. 
Furthermore, autocorrelations demonstrated that the theta and 
gamma activity was coupled, giving further support to the concept 
of TCD. The pole with increased gamma and theta activity exactly 
co-localized with the hotspot of maximal blood oxygen level-
dependent activation during presentation of the tinnitus tone in 
the fMRI scanner. Moreover, maximal tinnitus suppression was 
obtained when current was delivery exactly at that cortical area. 
Tinnitus suppression in turn was accompanied by normalization 
of theta and gamma spectral changes, as well as the disappear-
ance of the coupled theta–gamma activity both on electrode and 
source-localized electroencephalography recordings (46). These 
TCD-related changes were not seen in the areas at a distance of 
the BOLD activation, and stimulation at the normal sites did not 
clinically benefit the patient.

These findings, which are still limited to a small number of 
cases, provide further support for a causal relationship between 
TCD and tinnitus.

The question arises why tinnitus is so stable, so rigid, and 
difficult to reverse. Even though no proven answer can be given 
a heuristic concept can be forwarded. For pain, it has been 
suggested that it should be conceived of as a homeostatic emo-
tion (118), and tinnitus could be considered as a homeostatic 
emotion as well, a balance between mechanisms that increase 
sound processing and mechanisms that decrease sound process-
ing (41). From a Bayesian predictive point of view, an allostatic 
mechanism may induce a reference resetting in chronic tinnitus, 
such that the tinnitus state becomes the norm instead of the silent 
state (48), analogous to what is described in addiction (140). 
There are currently no studies performed looking at oscillatory 
signatures for allostasis, but it can be theoretically expected that 
allostasis is mediated by altered high-frequency oscilliations in 
the pregenual anterior cingulate and dorsal ACC, resetting the 
balance between noise-cancelling mechanisms and areas that 
process loudness (99). Once the auditory homeostasis is fluctuat-
ing around a tinnitus state as reference or norm, it becomes more 
difficult to treat. This is confirmed in clinical data, where tinnitus 
becomes more difficult to treat by brain stimulation techniques 
such as TMS (141–143) or operative techniques (144–146).

is Thalamocortical Dysrhythmia Present in 
all Tinnitus Patients?

Based on its theoretical underpinnings TCD could be absent 
in tinnitus patients without deafferentation. However, it has to 
be considered that deafferentation does not equal behaviorally 
measurable hearing loss (147). Indeed, one can cut part of the 
auditory nerve without auditory threshold changes (148). Based 
on the Bayesian brain model, it has been theoretically proposed 
that depending on the bandwidth of deafferentation different 
compensatory mechanisms are utilized to obtain the missing 
auditory information, as to reduce auditory uncertainty related 
to the deprivation of auditory input (105).

Limited damage to auditory receptors results in loss of func-
tional surround inhibition in the cortex, causing unmasking of 
latent inputs and significantly altering neural coding. However, 

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
www.frontiersin.org


FiGuRe 3 | On limited deafferentation thalamocortical resting state 
alpha activity slows down to theta activity resulting in a decreased 
surround inhibition, so that the missing auditory information can be 

retrieved from the cortical neighborhood (purple line). The tinnitus sound 
representation is encoded by gamma. The theta–gamma coupled activity is 
called thalamocortical dysrhythmia.

June 2015 | Volume 6 | Article 1248

De Ridder et al. Thalamocortical dysrhythmia

Frontiers in Neurology | www.frontiersin.org

these changes do not lead to plasticity of the cortical map 
(149), as the missing information can be obtained via access 
of overlapping tuning curves of the neighboring cortical cells. 
This is in accordance with clinical data demonstrating that in 
patients without hearing loss, no map plasticity is noted on 
fMRI (150). This decreased surround inhibition is also seen in 
TCD, in which GABAa mediated decrease in surround inhibi-
tion is noted, surrounding the thalamocortical columns that 
oscillate in theta (85) (Figure 3). If the deafferentation covers 
a broader frequency range, the brain reacts with widening of 
auditory receptive fields (151), which permits to pull the missing 
information from the auditory cortical neighborhood. If this is 
not possible, due to a more extended deafferentation, dendritic 
and axonal rewiring can occur (152), still retrieving the missing 
input from the auditory cortex. If the deafferentation is too 
extensive for compensatory auditory cortical plasticity to fill 
in the missing information, it is proposed that the missing data 
are retrieved from auditory memory via a parahippocampal 
mechanism (13, 105) (Figure 4). From a clinical point of view, 
this suggests that tinnitus associated with mild deafferentation 
(<20 dB HL) should theoretically be treated by targeting the 
auditory cortex, whereas tinnitus with hearing loss (>20 dB) 
might benefit more from targeting the parahippocampal area. 
It needs to be mentioned that the exact cut-offs for the different 
compensation mechanisms (decrease in surround inhibition, 
widening of receptive fields, sprouting, memory retrieval) 
have not been investigated yet. This could also explain that 
when oscillatory brain activity is compared between respond-
ers and non-responders to implanted electrodes overlying 
the auditory cortex, the difference is in the parahippocampal 
area (beta3 and gamma), not in the auditory cortex, and that 
only those patients respond who have good functional con-
nectivity between the auditory cortex (where the stimulating 

electrode is) and the parahippocampus (153). Clinically, the 
responders are also characterized by an exact match between 
the tinnitus frequency spectrum and the frequency of hear-
ing loss, suggesting that their tinnitus is primarily caused 
by deafferentation (153). This suggests that in tinnitus with 
severe hearing loss the dysrhythmia could be centered on the 
parahippocampus rather than auditory cortex and thalamus. 
The parahippocampus’ involvement in tinnitus has been shown, 
both in rsfMRI (154, 155), EEG (44, 45, 47, 86, 87, 110, 111, 
115, 116, 153, 156–160), SPECT (161), and PET (162, 163) 
studies. Parahippocampal functional interactions with auditory 
cortex, i.e., functional connectivity has been demonstrated both 
with resting state EEG (117, 153), MEG (164), and resting state 
fMRI (154, 155). In the parahippocampal area, 35% of cells 
respond to complex auditory stimuli (165) and 2% specifically 
and selectively to auditory stimuli (165). This area has been 
called the gatekeeper to the hippocampus (166), functioning 
as a sensory gate for incoming irrelevant or redundant auditory 
input (167). In other words, the posterior parahippocampal 
area can be considered as the main node of entry for auditory 
information to the medial temporal lobe memory system, where 
salient information is encoded into long-term memory (168). 
As the parahippocampal area has been hypothesized to play a 
central role in memory recollection, sending information from 
the hippocampus to the association areas, a dysfunction in this 
mechanism is posited as an explanation for complex auditory 
phantom percepts such as auditory hallucinations (169). It 
might therefore also be involved in the generation of simple 
auditory phantom percepts such as tinnitus (3). This could also 
explain why not in all patients with tinnitus increased auditory 
gamma-band activity can be detected (54) and why some studies 
do not find a correlation between the presence of tinnitus and 
gamma-band activity (94).
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Conclusion

Thalamocortical dysrhythmia is the consequence of hyperpolari-
zation of the thalamus, i.e., by a disconnected thalamus, due to 
deafferentation. The deafferentation results in alpha activity to 
slow down to theta activity, i.e., in decreased information input 
from externally, but permits to obtain the missing information 
from the auditory cortex neighborhood due to decrease in 
surround inhibition. Mechanistically, this is mediated by de-
inactivation of T-type Ca2+ channels, and the generation of low-
threshold bursting, normally only present during sleep. However, 
in case of severe deafferentation, when the missing information 
cannot be found in the auditory cortex neighborhood, the burst-
ing theta activity acts as a carrier wave to access (=synchronize) 
(para)hippocampal theta activity-related memory processes. 
Persisting deafferentation could result in attentional hyperactiv-
ity and increased salience (looking for missing input), possibly 
resulting in accelerating theta to alpha activity, associated with 
tinnitus distress. Thus, TCD can be considered as an adaptive 
mechanism to retrieve missing auditory input and gaining 

access to consciousness enabling networks in tinnitus. This is 
in accordance with the Bayesian brain concept that states that 
tinnitus is an attempt to decrease auditory deprivation related 
uncertainty. TCD might not be present in patients without deaf-
ferentation, as in this subgroup a noise-cancelling mechanism 
might underly the generation of tinnitus. The exact mechanism of 
how the noise-cancelling mechanism modulates thalamocortical 
activity is unknown.

Thalamocortical dysrhythmic cross-frequency coupled activity 
per se is not sufficient for conscious awareness of tinnitus, and nei-
ther is parahippocampocortical cross-frequency coupled activity. 
For it to reach consciousness, the cross-frequency coupled activity 
needs to be functionally coupled with a consciousness enabling 
network, which is mediated via the theta oscillation as a carrier 
wave for the percept and alpha for attentional processing. As such, 
tinnitus is an emergent property of auditory (mild deafferentation) 
or parahippocampal (severe deafferentation) gamma-band activity 
connected to a consciousness enabling network via low-frequency 
carrier waves. From a Bayesian point of view, the gamma activity 
of the TCD represents a bottom-up transmitted prediction error.
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