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neurons by light and peripheral 
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circadian rhythms and health
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Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden,  
Netherlands

In mammals, the suprachiasmatic nucleus (SCN) functions as a circadian clock that drives 
24-h rhythms in both physiology and behavior. The SCN is a multicellular oscillator in which 
individual neurons function as cell-autonomous oscillators. The production of a coherent 
output rhythm is dependent upon mutual synchronization among single cells and requires 
both synaptic communication and gap junctions. Changes in phase-synchronization 
between individual cells have consequences on the amplitude of the SCN’s electrical 
activity rhythm, and these changes play a major role in the ability to adapt to seasonal 
changes. Both aging and sleep deprivation negatively affect the circadian amplitude of 
the SCN, whereas behavioral activity (i.e., exercise) has a positive effect on amplitude. 
Given that the amplitude of the SCN’s electrical activity rhythm is essential for achieving 
robust rhythmicity in physiology and behavior, the mechanisms that underlie neuronal 
synchronization warrant further study. A growing body of evidence suggests that the 
functional integrity of the SCN contributes to health, well-being, cognitive performance, and 
alertness; in contrast, deterioration of the 24-h rhythm is a risk factor for neurodegenerative 
disease, cancer, depression, and sleep disorders.
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introduction

The rotation of the Earth around its central axis causes a daily rhythm in environmental factors, 
including light intensity, temperature, and food availability. In order to anticipate these 24-h 
changes in the environment, many species have evolved an internal clock. In mammals, this 
internal clock resides in the suprachiasmatic nucleus (SCN) in the ventral hypothalamus (1). 
The SCN is a bilateral structure containing 20,000 neurons that generate circadian rhythms. The 
SCN synchronizes its circadian rhythm to the external day–night cycle using light information 
that is projected via the retinohypothalamic tract (RHT). This information is then conveyed 
to other regions in the central nervous system (2, 3). Based on neuropeptide expression, the 
SCN is sub-divided into the dorsal (i.e., shell) and ventral (i.e., core) SCN (4–7). The ventral 
SCN expresses gastrin-releasing peptide (GRP) and vasoactive intestinal polypeptide (VIP) (1, 
8), whereas the dorsal SCN contains the hormone vasopressin (9). Moreover, the dorsal SCN 
receives strong input from the ventral SCN (9), whereas the ventral SCN receives little input 
from the dorsal SCN (10).
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Individual cells in the SCN generate a circadian rhythm via 
a series of interconnected positive and negative feedback loops; 
these feedback loops regulate the transcription and activity of clock 
genes and proteins, respectively (11, 12). One feedback loop is 
regulated by the transcription factors Circadian Locomotor Output 
Cycles Kaput (CLOCK) and Brain and Muscle ARNT-like protein 
1 (Bmal1). These proteins drive the transcription of specific target 
genes in the Period (Per1, Per2, and Per3) and Cryptochrome (Cry1 
and Cry2) gene families; in turn, Per and Cry proteins inhibit 
CLOCK/Bmal1-mediated transcription. Another feedback loop 
consists of the nuclear receptors ROR (α, β, and γ), PPARα, and 
REV-ERB (α and β). Dissociated SCN cells retain a circadian 
rhythm in their electrical firing rate, with a relatively wide range of 
intrinsic periods (ranging from 22 to 28 h) (13–15). This ability of 
isolated neurons to maintain their intrinsic rhythm indicates that 
individual SCN neurons function as autonomous single-cell oscil-
lators driven by intrinsic molecular feedback loops (14). The key 
implication of this finding is that the SCN’s multicellular structure 
depends upon cooperation among individual neurons in order to 
function effectively as a coherent pacemaker. In this review, we will 
discuss the mechanisms that underlie synchronization, and we will 
discuss the relevance and significance of synchronization for health 
and disease. Next, we will discuss the consequences of disrupted 
SCN synchronization on aging, sleep disorders, neurodegenerative 
diseases, and metabolic disorders. In addition, positive effects of 
physical exercise on SCN rhythm amplitude will be discussed. 
Finally, we will compare the organization of the SCN of nocturnal 
and diurnal species with special focus on potential differences in 
synchronization mechanisms.

Synchronization of SCN Neurons

Phase Shifts in the SCN are Driven by 
Synchronized SCN Neurons
Both in  vitro and in  vivo recordings of SCN firing frequency 
revealed that the SCN’s electrical activity output has a sinusoidal-
like waveform pattern that peaks during the subjective day and 
is low during the subjective night (16, 17). In nocturnal animals, 
the trough of the SCN’s electrical activity corresponds with the 
animal’s behaviorally active phase (18–20). In diurnal animals, 
this relationship between electrical activity and behavioral activ-
ity is reversed; thus, the SCN’s activity peaks in phase with the 
behaviorally active phase (21). Recordings in the SCN of freely 
moving mice revealed close correspondence between the SCN’s 
pattern of electrical activity and the animal’s behavioral activity. 
Specifically, the behavioral transitions from rest to activity – and 
vice versa – occur at the mid-point in the declining and increasing 
slopes in SCN activity, respectively (22). The most intense level of 
behavioral activity occurs during the trough in electrical activity 
rhythm, and silencing activity in the SCN by applying tetrodotoxin 
during the animal’s resting phase induces behavioral activity (23).

A subpopulation of SCN neurons (comprising 32 and 38% of 
SCN neurons in rats and hamsters, respectively) exhibit light-
induced changes in electrical activity (24–29). At low intensities 
(0.1 lux in rats and 1 lux in hamsters), light can suppress electrical 
activity, whereas high light intensity increases the rate of neuronal 
firing in an intensity-dependent manner (25). In response to 

external light, the clock genes Per1 and Per2 are induced in the 
SCN (30–34), and the duration of this induction is dependent 
upon the intensity of the light (35). Glutamate is the primary 
neurotransmitter used by the RHT to project light information 
to the SCN (36). The application of glutamate – or agonists of 
the glutamate receptor – to the SCN causes a phase shift in the 
SCN’s electrical activity that mimics light-induced phase shifts 
in behavior (37–39) and alters the levels of Per1 and Per2 mRNA 
(34). The SCN’s rhythm is synchronized to the daily light–dark 
cycle by the phase-shifting effects of light on the SCN. Early in the 
subjective night, light has a phase-delaying effect; in contrast, light 
in the late subjective night causes a phase advance (40–42). These 
phase-dependent responses are fundamental to the animal’s ability 
to entrain to a new light cycle, and are present in all living organ-
isms that exhibit circadian rhythmicity. Whether a light-induced 
phase delay or phase advance will occur depends upon intercellular 
signaling cascades and is therefore an intrinsic property of the 
SCN (43–46).

Following exposure to a shift in the light–dark cycle (for exam-
ple, by crossing time zones), the SCN generally takes several cycles 
to resynchronize (47–52). Recordings of the SCN’s firing rate in the 
rat revealed that delay-shifting the light–dark cycle by 6 h induces 
a transient bimodal electrical activity rhythm in the SCN (47). One 
component of this bimodal activity pattern reflects the activity 
of a group of neurons that synchronize immediately to the new 
light–dark cycle, whereas the other component reflects the activity 
of neurons that remain synchronized to the previous light–dark 
cycle. Separation of the ventral SCN from the dorsal SCN by 
surgical incision revealed a unimodal electrical activity pattern 
in both regions and revealed that the shifted and non-shifted com-
ponents are generated by the ventral and dorsal SCN, respectively. 
Surprisingly, following a shift in the light–dark cycle, the electrical 
activity profile of the ventral SCN (i.e., the shifted component) is 
considerably more narrow than the electrical activity profile of 
the dorsal SCN (i.e., the non-shifted component). Curve-fitting 
analysis revealed that the narrow, shifted component is composed 
of the electrical output produced by only 20% of the entire SCN’s 
neuronal population (53). Furthermore, simulations revealed that 
the ventral SCN’s narrow electrical activity profile is not due to the 
low number of neurons that contribute to this component, but is 
actually the result of high synchrony among these neurons (54). 
The differences in light-induced phase shifts between the ventral 
and dorsal SCN could be the result of differential innervation by 
the optic nerve (5, 55, 56). In rats, the ventral SCN receives the 
majority of light input projected by the retina (3, 6, 7) and has more 
pronounced light-evoked changes in terms of electrical activity 
(57, 58) and gene expression (59–64). In contrast, the dorsal SCN 
is only sparsely innervated by the retina (1).

Robustness of the SCN’s Output is Correlated 
with Synchrony Among SCN Neurons
In vivo recordings of SCN electrical activity revealed that the SCN’s 
waveform pattern differs between long and short photoperiods 
(65). The changes in the SCN’s electrical activity waveform in 
response to a change in photoperiod correspond with observable 
behavioral adaptations. In both long and short photoperiods, 
the onset and offset of behavioral activity occur at the mid-point 
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threshold in the declining and rising slopes of electrical activity, 
respectively (65). Even in continuous darkness, the SCN retains its 
intrinsic photoperiod-induced waveform for several cycles, sug-
gesting that the SCN has a photoperiodic memory. Furthermore, 
the photoperiod-induced waveform is preserved even after the 
SCN has been isolated in vitro. After entraining to a short photo-
period, the SCN’s ensemble discharge rate has a waveform with a 
short duration of enhanced activity; in contrast, after entraining 
to a long photoperiod, the SCN’s waveform has a long period of 
enhanced activity (65, 66). Computational studies showed that 
changes in phase-synchronization are extremely effective in terms 
of inducing a change in waveform, whereas changes in single-cell 
activity patterns have relative weak effects (67, 68). Experimental 
studies have confirmed that nature indeed functions in this way. 
Both single-cell and subpopulation recordings revealed that after 
entraining to a short photoperiod, the activity of individual SCN 
neurons is more synchronized and clusters around subjective mid-
day. On the other hand, after entraining to a long photoperiod, the 
activity of SCN neurons is less synchronized (Figure 1).

In the dorsal SCN, the electrical activity patterns differ somewhat 
between short and long photoperiods; however, computational 
studies revealed that these differences in single-cell activity patterns 
in the dorsal SCN are not sufficient to explain the waveform changes 
that occur at the network level (67, 69). However, the narrow phase 
distribution of subpopulation activity during short photoperiods 
does explain the narrow peak width in the SCN’s waveform, 
whereas the broad phase distribution during long photoperiods 
explains the broad peak width in the SCN’s waveform (65, 66). 
These findings are supported by molecular studies that show similar 

FiGURe 1 | Plasticity of the SCN. Schematic overview of the SCN’s 
ensemble rhythm (top), single-cell activity in individual SCN neurons 
(middle), and the animal’s behavioral activity pattern (bottom) in a nocturnal 
rodent entrained to a short (LD 8:16; left column), medium (LD 12:12; 
middle column), or long (LD 16:8; right column) photoperiod. In the lower 
panels, days are depicted on successive lines, and light and dark periods 
are represented by white and gray backgrounds, respectively. Following a 
transition to continuous darkness, aftereffects of the photoperiod on 
behavioral activity can be detected. Following a short photoperiod, the 
animal’s active phase is longer; in contrast, following a long photoperiod, 
the active phase is shorter. A light pulse applied late in the subjective night 
in the third cycle of continuous darkness (the yellow square) results in a 

large-magnitude phase advance in animals entrained to a short 
photoperiod, a smaller phase advance in animals entrained to a medium 
photoperiod, and virtually no phase advance in animals entrained to a long 
photoperiod (phase advance is measured as the difference in activity onset 
before and following the light pulse). For each photoperiod, the SCN’s 
ensemble electrical activity rhythm is depicted in the top row. The relative 
amplitude of the SCN ensemble rhythm is large in short photoperiods and 
small in long photoperiods; this difference is due to different levels of 
synchronization among the electrical activity patterns of the individual 
neurons. The single-unit activity traces are highly synchronized in animals 
entrained to a short photoperiod, and less synchronized in animals 
entrained to a long photoperiod (middle row).

single-cell Per1 expression patterns after entrainment to either long 
or short photoperiods (70). The results from electrophysiological, 
computational, and molecular studies indicate that synchrony 
between individual SCN neurons – rather than a change in the 
activity pattern of those individual neurons – is important for 
adapting to a change in photoperiod.

Amplitude of the SCN’s Output Correlates with 
the SCN’s Phase-Shifting Response
In the 1980s, Pittendrigh and colleagues reported that the pho-
toperiod to which hamsters were entrained affected the resulting 
amplitude of the phase-response curve. Thus, hamsters that were 
entrained to a short photoperiod had a larger light-induced 
phase shift compared to hamsters that were entrained to a long 
photoperiod (71). More recent studies support these early findings 
(72–74). The difference in the light-induced behavioral phase shift 
between short and long photoperiods is not the result of a difference 
in retinal response; rather, the difference occurs at the level of the 
SCN. Bath application of the glutamate receptor agonist N-methyl-
d-aspartate (NMDA) to an SCN entrained to a short photoperiod 
causes a significantly larger phase delay compared to an SCN that 
was entrained to a long photoperiod (74). Moreover, the acute 
effect of applying a pulse of NMDA is similar between a short 
photoperiod-entrained SCN and a long photoperiod-entrained 
SCN, suggesting that the difference in the phase delay in the SCN 
is not caused by desensitization to glutamate in long photoperiods 
(74); thus, another mechanism must explain these results.

The amplitude of the SCN’s electrical rhythm is high when the 
neurons in the SCN are more synchronized (i.e., when entrained 
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FiGURe 2 | Schematic illustration of the mammalian SCN, including 
inputs and outputs. Input to the SCN is mediated by the neurotransmitters 
glutamate and PACAP, and output from the SCN is mediated by synaptic and 
humoral factors. The approximate locations of specific neurotransmitter-
expressing neurons are indicated in the left nucleus. GABA (blue) is 
co-expressed in other neuronal cell types, including VIP- (yellow), AVP- (red), 
and GRP- (green) expressing neurons. AVP-expressing cells are located 
primarily in the dorsal SCN, and VIP-expressing cells are located primarily in 
the ventral SCN. The SCN depicted on the right schematically shows the 
ventral and dorsal SCN subdivision (the curved dotted line), and coupling 
between rhythmic SCN neurons is indicated by lines connecting the cells. 
Many neurons in the ventral SCN are directly innervated by afferent fibers 
arising from the optic chiasm, whereas far fewer neurons in the dorsal SCN 
receive direct light information input. The ventral SCN has direct input to the 
dorsal SCN, while the dorsal SCN is only sparsely innervated by the ventral 
aspect. Each neuron is depicted schematically as a cell-autonomous 
single-cell oscillator. 3V, third ventricle; AVP, vasopressin; GABA, γ-
aminobutyric acid; GRP, gastrin-releasing peptide; PACAP, pituitary adenylate 
cyclase-activating polypeptide; SCN, suprachiasmatic nucleus; VIP, 
vasoactive intestinal peptide.
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to a short photoperiod), whereas the amplitude of the rhythm 
is low when the neurons are less synchronized (54, 65, 67, 75). 
Results from both behavioral and in vitro studies revealed that 
an SCN with high amplitude exhibits a larger shift in response to 
a given perturbation compared to an SCN with a low rhythmic 
amplitude (i.e., from a long photoperiod) (74). These results are 
surprising, as they do not intuitively match predictions that arise 
from limit cycle oscillator theory, a theory that is often used to 
model the phase-shifting behavior of oscillators. The limit cycle 
model predicts that following a perturbation of a given magnitude, 
oscillators that oscillate with a high amplitude will shift to a lesser 
degree than oscillators that oscillate with a lower amplitude (71, 
76, 77). This prediction holds true for primitive organisms such as 
Gonyaulax (78) and Neurospora (79, 80). However, the experimen-
tal finding that an SCN with a high-amplitude oscillation shifts to a 
greater extent than an SCN with a low-amplitude oscillation is not 
consistent with the predictions of limit cycle theory. This apparent 
discrepancy between theory and practice may be due to the SCN’s 
functioning at the level of a network. In a population of highly syn-
chronized neurons, each individual neuron will be more in phase, 
and an external perturbation of the system will cause a similar 
phase-shifting response in the individual cells, thereby driving a 
large net shift in the SCN network. In a relatively desynchronized 
SCN, the individual neurons will be out of phase, and an external 
perturbation will induce different phase-shifting responses among 
the individual neurons, thereby causing a relatively small net shift 
in the SCN network (81). Simulations have confirmed this predic-
tion with surprisingly high accuracy (62). In Afh/Afh mice, the 
amplitude of the SCN ensemble is reduced by a reduction of the 
amplitude of single-cell oscillations (82). In accordance to the limit 
cycle theory, the Afh/Afh mice show high-amplitude resetting to 
light. To explain light-resetting by the SCN, both the amplitude 
of single-cell oscillations as well as phase-synchronization among 
single cells should be taken into consideration.

Under certain conditions, the SCN – as a network – can behave 
as a limit cycle oscillator. Simulation studies showed that the phase-
shifting response of the SCN is opposite to the predictions of a 
limit cycle oscillator if just a fraction of the network is directly 
influenced by the perturbation (e.g., if light affects only 20% of 
the population). On the other hand, if all of the neurons in the 
SCN network are affected by the perturbation (for example, a 
change in temperature, which would affect 100% of the neurons 
in the population), the SCN can exhibit the behavior predicted 
by limit cycle oscillator theory (83). Thus, although limit cycle 
theory accurately predicts the behavior of an individual oscillator, 
the phase-shifting behavior of an entire network of oscillators is 
more difficult to predict, as such behavior is dependent upon the 
degree of synchrony among the individual oscillators and the 
percentage of neurons that will respond to the perturbation (i.e., 
a 100% response rate to temperature vs. a 20% response rate to 
external light).

Role of Chemical Coupling in SCN Neuronal 
Synchronization
Several neurotransmitters play a role in the phase-synchronization 
of SCN neurons (Figure  2). For example, γ-aminobutyric acid 

(GABA) is the most prevalent neurotransmitter in the SCN. In 
the adult SCN, activation of GABAA receptors causes an inhibitory 
response (84). This inhibitory effect of GABAergic signaling often 
plays a role in synchronizing neuronal networks within the brain 
(13, 85–87). Examining synchronization in SCN slices in the pres-
ence or absence of a GABAA signaling blocker revealed that GABA 
plays a role in synchronizing SCN neurons. When slices prepared 
from a desynchronized SCN were treated with a GABAA signaling 
blocker, the SCN neurons remained desynchronized; in contrast, in 
the absence of the blocker, the neurons became synchronized again 
(88). Although GABA acts predominantly as an inhibitory trans-
mitter in the adult brain, it can play an excitatory role when coupled 
with the activity of the NKCC1 chloride pump (89, 90). GABAergic 
transmission is also excitatory in the dorsal SCN (47, 90, 91), and 
this excitation may play a role in communication between the 
ventral and dorsal SCN (47). Recently, we reported that GABAergic 
excitatory transmission is more prevalent in a desynchronized 
SCN than in a synchronized SCN (40 vs. 28%, respectively) (92), 
which suggests that the inhibitory/excitatory ratio of GABAergic 
activity plays a role in the phase-synchronization of individual 
SCN neurons.

The primary neurotransmitter in the ventral SCN is VIP. 
Intrinsically photoreceptive retinal ganglion cells (ipRGCs) con-
tain the photopigment melanopsin and convey light information 
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to the SCN via the RHT (93–95). VIP-containing neurons process 
light information received from the RHT and then transfer this 
information to the dorsal SCN (45, 96). The RHT contains both 
glutamate and pituitary adenylate cyclase-activating polypeptide 
(PACAP). The application of glutamate has an excitatory effect 
on SCN neurons, whereas glutamate receptor antagonists inhibit 
light-induced responses both in vivo and in vitro (97). Eliminating 
glutamate from ipRGCs impairs photo-entrainment of behavioral 
rhythm in mice (98); similarly, eliminating PACAP or its receptor 
also impairs photo-entrainment (99, 100). Although eliminating 
VIP reduces the light-induced upregulation of the clock gene 
Per1, photic induction of Per1 is unimpaired in PACAP-deficient 
mice (99). Thus, VIP-expressing cells are critically important for 
relaying externally received light information to the SCN network. 
Eliminating VIP or the VIP receptor (VIP2R, also known as 
VPAC2) reduces SCN electrical activity (101), molecular rhythms 
(102, 103), and behavioral rhythms (104–107). In contrast, appli-
cation of VIP mimics light-induced responses in the SCN (108, 
109), drives long-lasting increased electrical activity in dorsal SCN 
neurons (110), and restores synchrony among SCN neurons in 
VIP-knockout mice (102–104). Finally, the SCN in VIP-knockout 
mice does not exhibit photoperiod adaptation. Taken together, 
these compelling findings indicate that VIP is important both for 
SCN neuronal synchronization and for the ability of the SCN to 
encode photoperiod-related information (111).

A subpopulation of neurons in the ventral SCN express GRP, 
and these neurons are important for conveying information regard-
ing external light throughout the SCN (5, 8, 102, 103). In Syrian 
hamsters, in vivo microinjections of GRP into the third ventricle 
induces the expression of c-fos, Per1, and Per2 in the dorsal SCN 
(8). GRP receptor-knockout mice have reduced light-induced 
phase shifts and reduced induction of Per and c-fos-expression 
in the dorsal SCN (112). The in vitro application of GRP to SCN 
slices induces a light-like phase shift in the SCN (113); moreover, 
applying GRP to SCN slices from VIP receptor-knockout mice 
increases synchrony among SCN neurons (5, 114).

The majority of neurons in the dorsal SCN express the neu-
ropeptide vasopressin (AVP). This expression is rhythmic and is 
driven by the intrinsic molecular feedback loop in the core clock 
machinery. The in vitro application of AVP to SCN neurons isolated 
from VIP-deficient mice restores the rhythmicity and synchrony 
of the neurons (103). Furthermore, the expression pattern of AVP 
is different after entraining to a long photoperiod (i.e., in a desyn-
chronized network) than after entraining to a short photoperiod 
(i.e., in a more synchronized network) (115, 116).

Connectivity within the SCN network is surprisingly plastic. In 
addition to seasonal plasticity, the SCN also exhibits a daily rhythm 
of synaptic connectivity. Measuring the firing rates of individual 
SCN neurons in the presence or absence of GABAA receptor 
antagonists revealed that SCN connectivity is dependent upon 
GABAergic communication, and the strength of this connectiv-
ity can change in a matter of days or even hours (117). Recently, 
confocal microscopy studies revealed that synaptic changes occur 
in VIP-expressing neurons in the SCN’s retinorecipient region, but 
not in AVP-expressing neurons in the non-retinorecipient region 
(118). The authors hypothesized that remodeling of the synaptic 
connectivity in VIP-expressing neurons over a 24-h cycle might 

contribute to the ability of these neurons to adapt to light, thereby 
increasing the efficacy of photic transmission (118). In addition, 
during the subjective night, the neuron–glia network in the SCN 
undergoes morphological rearrangements (119), and during the 
day, axon terminal coverage of VIP-expressing neurons increases 
(119). These findings indicate that the SCN is a remarkably plastic 
structure that can efficiently adapt its network structure in response 
to changes in functional needs.

Role of electrical Coupling in Synchronization of 
SCN Neurons
The SCN network contains a large number of gap junctions 
that mediate electrical synchronization among SCN neurons 
(19, 120–123). Gap junction-mediated coupling improves the 
connectivity of neuronal networks (124, 125) and plays a role 
in the synchronization of several brain areas (121, 126–131). In 
the absence of chemical synaptic transmission, 24–26% of SCN 
neurons in rodents exhibit synchronous electrical activity (28, 121, 
132); moreover, tracer-coupling experiments showed that 30% of 
SCN neurons are coupled via gap junctions (28, 120). In mice, 
gap junctions couple neurons in both the ventral and dorsal SCN, 
and clusters of coupled cells are restricted to each subdivision 
(120). In the mammalian CNS, the protein connexin-36 (Cx36) is 
a key component of gap junctions (131), and Cx36-knockout mice 
have significantly reduced electrical coupling in the SCN (121). 
Moreover, Cx36-knockout mice that were housed in continuous 
darkness had significantly reduced wheel-running activity com-
pared to wild-type mice housed under the same conditions, sug-
gesting that gap junctions play a role in the circadian organization of 
locomotor activity rhythms (121). Although immunofluorescence 
microscopy and immunogold labeling experiments confirmed that 
Cx36 is expressed abundantly in the postnatal SCN, tracer coupling 
and electrical coupling (i.e., coupled spiking) is relatively weak 
between SCN neurons in adult animals (122) compared to young 
animals (28, 120, 121). Interestingly, recent findings suggest that 
VIP increases gap junction-mediated coupling, as the application of 
VIP increased coupling efficiency between SCN neurons in which 
chemical coupling was blocked (123). This recent result supports 
the notion that the balance between chemical and electrical com-
munication in the SCN is important for modulating synchronous 
rhythms, and disruption of only one form of communication can 
disrupt the circadian rhythmicity of the SCN and the periphery.

SCN Neuronal Synchrony is Disrupted in 
Aging and Disease

Aging and the SCN
With aging, many species – including humans – experience changes 
in circadian timing. These changes are manifested as a reduction in 
the behavioral activity rhythm and in disruptions of the sleep–wake 
cycle (133–136). Given that the output of the SCN drives rhythms in 
behavior and physiology, these age-related disturbances in circadian 
rhythmicity could be caused by age-related deficits in the SCN. 
In support of this notion, transplanting fetal SCN tissue into the 
anterior hypothalamus of aged animals improves circadian rhyth-
micity in both hamsters (137, 138) and rats (139). In vivo recordings 
of electrical activity revealed reduced circadian amplitude in the 
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FiGURe 3 | influence of environmental conditions on SCN amplitude. 
Effects of (A) continuous darkness (212), (B) continuous light (212), (C) sleep 
deprivation (170), and (D) behavioral activity/physical exercise (254) on SCN 
neuronal activity measured using long-term in vivo recording of the SCN in 
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SCN of middle-aged mice compared to young mice. Moreover, the 
amplitude of electrical activity rhythm in the subparaventricular 
zone – which receives input from the SCN – is substantially reduced 
in aged animals (140). Specifically, the amplitude of the SCN’s 
electrical activity rhythm in aged animals is approximately half 
of the amplitude in young animals (136) (Figure 3). This reduced 
amplitude cannot be explained simply by a loss of SCN neurons in 
aged mice (141) or rats (142), and experimental data suggest that 
age-related deficits in coupling between SCN neurons underlies 
the decrease in amplitude (136, 143).

Experiments have also revealed that SCN neurons in aged 
animals have an altered pattern of electrophysiological activity 
(136, 143–147). For example, the activity patterns of individual 
cells are less synchronized in the SCN of aged mice compared 
to young mice, and SCN neurons in aged mice even have anti-
phasic activity (136). Computational studies found that decreased 
coupling in the aged SCN can lead to reduced synchrony among 
SCN neurons, thereby reducing the amplitude of the SCN’s net-
work output (148). Physiologically, aging causes a clear change 

in the expression of neurotransmitters in the SCN. For example, 
the number of VIP- and AVP-expressing neurons is decreased in 
the SCN of aged rats (142, 149). In addition, the amplitudes of 
the circadian expression levels of VIP mRNA (150) and VPAC2 
mRNA (151) decline with aging. Functionally, in  vitro patch-
clamp recordings of SCN neurons from aged mice revealed that 
postsynaptic GABAergic currents are lower in both frequency 
(143) and amplitude (136) compared to recordings from young 
SCN neurons. Furthermore, the number of GABAergic synaptic 
terminals in the SCN of aged mice is reduced by 26% compared 
to young animals (152). These findings are relevant to humans 
as well, as neurotransmission decreases with aging. In elderly 
people, the number of VIP-expressing SCN neurons is reduced 
(153), and vasopressin levels are reduced in the SCN of elderly 
people from the age of 80 years (154). This age-associated decline 
in neurotransmission in the SCN could affect both the quality and 
degree of synchronization among SCN neurons.

Theoretically, a decline in the amplitude in the SCN’s rhythm 
can result from a decrease in synchronization and/or from a 
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decrease in the amplitude of individual neurons (148). In mice, 
an age-related decrease in the SCN ensemble rhythms of Per2 
(155), Clock, and Bmal1 expression (156–158) have been reported. 
SIRT1 is an NAD-dependent protein deacetylase that activates 
transcription of the Clock and Bmal1 genes, thereby regulating 
circadian rhythms in tissues. In mice, an age-related decrease 
in SIRT1 levels in the brain corresponds with decreased levels 
of BMAL1 and PER2 and is associated with a longer intrinsic 
period, disrupted behavioral activity patterns, and impaired light 
entrainment (158). Several studies reported robust rhythms in 
Per1 and Per2 expression in the SCN of aged animals (159), and 
an increased amplitude of Per2 expression has been reported in 
the SCN of aged mice (160).

Sleep Deprivation and the SCN
The sleep–wake cycle is regulated by both the circadian clock 
and a homeostatic mechanism that regulates sleep homeostasis 
(161). Homeostatic sleep pressure is reflected on an electroen-
cephalogram (EEG) as slow-wave activity (SWA) during non-rapid 
eye movement (NREM) sleep. This homeostatic process can be 
manipulated by sleep deprivation; for example, sleep deprivation 
causes an increase in SWA in rats, hamsters, birds, and humans 
(162–168). During NREM sleep, SWA is negatively correlated 
with electrical activity in the SCN (169). Moreover, spontaneous 
transitions between NREM and REM sleep occur simultaneously 
with changes in SCN electrical activity (169), suggesting that sleep 
deprivation can directly affect the amplitude of the SCN’s electri-
cal activity rhythm. This hypothesis was tested by performing 
simultaneous in vivo measurements of EEG and SCN firing rate 
in sleep-deprived rats. After 6 h of sleep deprivation, both SWA 
NREM sleep and REM sleep were significantly increased, and the 
SCN’s electrical activity was significantly decreased (170). These 
effects of sleep deprivation on SCN activity were long-lasting 
and could be measured at least 6 h after sleep deprivation (170) 
(Figure 3). In humans, disruptions in the quality and/or timing 
of sleep are common among the elderly and among individuals 
with neurodegenerative disorders (see below).

Neurodegenerative Disorders and the SCN
Patients with neurodegenerative disorders such as Alzheimer’s 
disease (AD), Huntington’s disease (HD), and Parkinson’s disease 
(PD) often exhibit perturbations in their 24-h activity patterns 
and in their sleep–wake cycles. Moreover, the expression pat-
terns of clock genes are altered in the brains of patients with 
these neurodegenerative disorders compared to healthy subjects 
(171). In patients with AD, the loss of AVP is generally correlated 
with the severity of symptoms, suggesting a causal relationship 
(172). The 3xTg-AD mouse model of AD has disrupted circadian 
behavior and a decrease in VIP- and AVP-expressing neurons in 
the SCN (173, 174). Another model of AD, the APPxPS1 mouse, 
has disrupted sleep–wake rhythms compared to wild-type mice, 
but only a modest change in Per2 expression in the SCN (175). R6/2 
mice, a model of HD, develop progressively severe disruptions in 
behavior rhythms as the disease progresses (176), despite normal 
electrical output from the SCN (177). Two mouse models of HD 
and PD (the BACHD and ASO mouse lines, respectively) have 
disrupted circadian rhythms in locomotor activity, heart rate, and 

body temperature (178, 179). These two mouse lines also have 
reduced single-cell electrical activity in the SCN, although Per2 
expression is unaffected (178, 179).

Fragile X syndrome is the most common form of inherited men-
tal retardation. Fragile X syndrome is caused by silencing of the 
FMR1 gene and the subsequent loss of fragile X mental retardation 
protein (FMRP, also known as FXR1P) (180). Patients with fragile 
X syndrome suffer from sleep disorders (181, 182), and mice that 
lack either FMRP or FXR2P show a complete lack of behavioral 
rhythmicity (183). Interestingly, the SCN in Fmr1/Fxr2 double-
knockout mice have normal expression rhythms of the Per1, Per2, 
Bmal1, and Cry1 genes, and the SCN has high-amplitude electrical 
activity output (183). Molecular and electrophysiological data 
show that the SCN in the various mouse models of AD, HD, PD, 
and fragile X syndrome is functional, suggesting that the cause of 
the disease-associated perturbations in behavioral rhythmicity lie 
downstream of the SCN.

Metabolic Disorders and the SCN
Exposure to light during the subjective night alters the circadian 
rhythm of melatonin and cortisol levels (184, 185) and can alter 
sleep patterns (186, 187). Shift workers often develop severe 
circadian disruptions due to irregular timing of light exposure, 
which can increase the risk of developing type 2 diabetes or other 
conditions (188–191). Animal studies revealed that disrupting 
the circadian system by exposing animals to a shifted light–dark 
cycle or continuous light causes a range of symptoms that are 
similar to the effects of aging, including sleep disorders (192, 193), 
cardiovascular disorders (194–196), cognitive difficulties (197), 
and metabolic deficits (198–200). CLOCK-knockout mice have 
a dampened feeding rhythm and develop obesity and a host of 
other symptoms that are associated with metabolic disorder (199). 
The SCN plays a role in the regulation of energy homeostasis in 
both mice (201) and rats (202), and controls rhythms in energy 
metabolism by modulating rhythms in plasma glucose levels (203, 
204), lipogenesis and lipolysis (205–207), and plasma leptin levels 
(208). Thermal ablation of the SCN in wild-type mice disrupts 
the circadian rhythmicity of energy intake, activity, and energy 
expenditure (209), as well as a loss of rhythm in plasma leptin 
levels (208). Lesioning the SCN induces mild obesity compared to 
sham-operated mice; however, hepatic insulin sensitivity decreases 
considerably, and basal glucose levels increase (209).

Repeated exposure to light during the subjective night causes 
increased body weight in mice (210, 211), and continuous exposure 
to light results in the complete loss of circadian rhythmicity in 
both energy metabolism and insulin sensitivity (212). Continuous 
exposure to light also reduces the amplitude of the SCN’s rhythm 
via desynchronization among the SCN neurons (213, 214). In vivo 
recordings of electrical activity in the SCN of freely moving mice 
that were continuously exposed to light revealed a 50% reduc-
tion in amplitude (212) (Figure  3). Remarkably, mice that are 
exposed continuously to light and fed a regular diet gain more 
weight than mice that are exposed to a standard light–dark cycle 
(12 h light:12 h dark) and fed a high-fat diet (212). A mixed-model 
analysis revealed that the reduction in the amplitude of the SCN’s 
output has a more severe effect on body weight than consuming 
a high-fat diet, thus underscoring the importance of robust SCN 
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output for maintaining health. Disruptions in circadian rhythm 
and obesity are interrelated, and each disorder exacerbates the 
other, as a high-fat diet has a severely negative effect on the SCN’s 
ability to synchronize in response to light (215). Mice that geneti-
cally lack leptin (ob/ob mice) develop obesity and have altered 
phase-delaying capacity compared to heterozygous (ob/+) mice 
(216). Injecting ob/ob mice with leptin normalizes the photic 
response of the SCN, suggesting that leptin modifies light-induced 
responses in the SCN via an indirect pathway (216).

Behavioral Activity and the SCN
In addition to external light, several other stimuli provide input 
to the clock, and these inputs are known as non-photic stimuli. 
Examples include wheel-running activity (217), social interactions 
(218), dark pulses (219), and sleep deprivation (220). In general, 
non-photic stimuli induce behavioral activity, suggesting either that 
behavioral activity actually induces phase-shifting responses in the 
SCN (221) or that behavioral activity activates the same pathways. 
Interestingly, substances that are known to induce behavioral activ-
ity and/or influence neurotransmitter pathways involved in non-
photic resetting – such as neuropeptide Y (NPY) (222), serotonin 
agonists (223), opioids (224), and short-acting benzodiazepines 
(225, 226) – induce a phase shift in the SCN’s rhythm.

The SCN receives its major inputs from two afferent pathways; 
the serotonergic tract provides input from the raphe nuclei, and 
the geniculohypothalamic tract provides input from the inter-
geniculate leaflet (IGL). Ablation of the serotonergic afferent SCN 
pathways attenuates the phase-shifting effects of several non-photic 
cues (227–230); moreover, increased levels of behavioral activity 
increase the levels of serotonin in both the SCN and the IGL (231, 
232). In addition to behavioral activity, a phase shift can also be 
induced by arousal, and serotonin appears to play an important role 
in arousal-induced phase-shifting (230, 233). The geniculohypo-
thalamic tract provides input to the SCN via the neurotransmitters 
NPY, GABA, enkephalin, and neurotensin (234–237). In rodents, 
wheel-running activity can induce the release of NPY in the SCN 
(238). The delivery of anti-NPY antibodies to the SCN attenuates 
the phase shift induced by novel wheel-running activity (239) and 
increases light-induced phase shifts (240). This finding suggests 
that NPY plays a role in both photic and non-photic resetting in 
the SCN (240).

Some non-photic stimuli suppress expression of Per1 and/or 
Per2 during the subjective day (241–245), and this suppression may 
underlie the SCN’s phase-shifting response to non-photic stimuli 
at the molecular level. Applying NPY (246–249) or the serotonin 
receptor agonist 8-OH-DPAT (250, 251) to SCN neurons in vitro 
decreases the neurons’ firing rate. At the in vivo level, recordings 
in the SCN of freely moving hamsters (252), rats (253), and mice 
(254) revealed that behavioral activity induces an immediate 
suppression of the SCN’s firing rate.

In mice, behaviorally induced suppression of SCN electrical 
activity is superimposed on the SCN’s circadian rhythm and occurs 
at all phases of the circadian cycle (254). The magnitude and dura-
tion of the suppression depend upon the intensity and duration 
of the behavioral activity, respectively. Even an ultra-short (i.e., 
briefer than 1 min) bout of behavioral activity can suppress the 
SCN’s firing rate to a rate similar to the rate achieved with longer 

bouts of activity. Less intense behaviors such as grooming, eating, 
drinking, and rearing can suppress electrical activity in the SCN 
by ~30%, and more intense activity such as locomotor activity can 
decrease electrical activity by up to 60% (254). The suppression in 
firing rate remains stable throughout the entire bout of behavioral 
activity, and switching between types of behavior (for example, 
from less intense activity to more intense activity) causes a change 
in the level of suppression. Because mice are nocturnal animals, 
their behavioral activity increases during the night; consequently, 
behaviorally induced suppressed firing decreases the trough of 
the SCN rhythm even further. On the other hand, during the day, 
mice are relatively inactive; consequently, the firing rate of the 
SCN is only barely suppressed during the peak of the rhythm. 
When a nocturnal animal is active during its resting phase, the 
peak in the SCN’s rhythm is lower, thereby resulting in a lower 
amplitude SCN rhythm. These studies suggest that scheduled 
behavioral activity can increase the SCN’s rhythmic amplitude, 
thereby improving peripheral rhythmicity. In support of this 
notion, voluntary exercise in aged mice increases the amplitude 
of the SCN’s firing rate in vitro and improves resynchronization 
of the SCN and peripheral systems to the light–dark cycle (255). 
Furthermore, mice lacking VIP or the VIP receptor show improved 
behavioral activity in response to scheduled locomotor activity 
(256, 257), and voluntary exercise improves circadian behavioral 
rhythmicity in a mouse model of HD (258). In humans, physical 
exercise accelerates the synchronization of sleep–wake rhythms 
to the external light–dark cycle (259) and improves health, mood, 
and performance (260–266).

Comparison of the SCN Between 
Nocturnal and Diurnal Animals

A long-standing – and inadequately addressed – question is 
whether the circadian clock is organized similarly or differently 
between nocturnal and diurnal animals. A comparison of the 
neuronal networks in the SCN of diurnal (Acomys russatus) and 
nocturnal (Acomys cahirinus) spiny mice revealed no differences 
with respect to neurotransmitter localization, SCN subdivisions, 
input fibers, or output fibers (267). Similar to nocturnal species, 
diurnal species have circadian rhythmicity in clock gene expression 
and electrical activity profiles in the SCN (268–278). On the other 
hand, diurnal and nocturnal species differ with respect to photic 
responses and photoperiod encoding. In the SCN of nocturnal 
species, ~25% of neurons are excited by light, whereas a smaller 
percentage of neurons are inhibited or silenced completely (29, 
57, 279). In the SCN of diurnal species such as ground squirrels 
(280) and degus (281), the percentage of light-responsive cells is 
lower (~10%), and within the group of light-responsive cells, the 
proportion of light-suppressed cells is higher. Under LD 12:12, the 
overall rhythm in Fos-expression is similar between the nocturnal 
rat and the diurnal grass rat, however the spatial distribution of 
the Fos-expressing neurons differs. Whereas Fos-expression occurs 
in 40% of GRP containing SCN neurons in nocturnal rats (282), 
less than 1% of the GRP neurons in diurnal grass rats show Fos-
expression (283). On the other hand, in grass rats, ~30% of AVP 
containing SCN neurons express Fos, while Fos-expression in AVP 
neurons in nocturnal rats is uncommon (284–286). Photoperiod 
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studies suggest that light has a synchronizing effect on clock gene 
profiles and neuronal electrical activity in the SCN of mice, rats, 
and hamsters (65, 66, 287–291). However, the expression profiles 
of Per1 and Per2 in the SCN of diurnal grass rats do not adapt 
to short photoperiods (292). The SCN of diurnal and nocturnal 
species show a differential phase window for serotonin-mediated 
phase resetting (293). In nocturnal species, injections of serotonin 
receptor agonists 8-OH-DPAT or (+)8-OH-DPAT cause large 
phase advances of behavioral activity only during subjective mid-
day (241, 294, 295) while in the diurnal Arvicanthis, injections of 
(+)8-OH-DPAT induce small phase advances during the subjective 
night (293). Importantly, in diurnal Arvicanthis, serotonin agonists 
strengthen, instead of oppose, the effects of light on the circadian 
system, which could be clinically relevant (293).

The SCN of nocturnal mice and diurnal grass rats respond 
differently to GABA. Activating GABAA receptors during the 
subjective day causes a phase advance in the SCN of mice, whereas 
the SCN of grass rats exhibits a phase delay (296). In the SCN of 
mice, the rhythms in GRP and VIP are strengthened following 
continuous exposure to darkness. In contrast, in the SCN of diurnal 
grass rats, these rhythms do not become stronger; rather, they 
show a shift in their peak time of expression (297). Moreover, 
in the SCN of three-striped South Indian squirrels (Funambulus 
palmarum, a diurnal species), the phase relation of daily VIP and 
AVP rhythms differ from those found in nocturnal species (298). 
Recently, a study of the SCN in capuchin monkeys confirmed the 
presence of circadian oscillations in PER2 in the SCN of primates 
(299). Moreover, VIP-containing cells are present in the ventral 
SCN of capuchin monkeys (299), similar to VIP expression in 
nocturnal rodents (1, 3, 300, 301). In addition, AVP is present in 
both the ventral and dorsal SCN in capuchin monkeys (299), which 
is strikingly different than the expression patterns in the SCN of 
most nocturnal species studied to date (1, 3, 301–303).

Thus, the molecular clock is an evolutionarily preserved struc-
ture, and the SCN has both structural and functional similarities 
between nocturnal and diurnal species. On the other hand, the 
SCN of nocturnal and diurnal species differ with respect to their 
responsiveness to light, photoperiod, and neurotransmitters. These 
differences suggest fundamental differences between nocturnal 
and diurnal animals with respect to neuronal coupling in the SCN 
and synchronization mechanisms. These key differences should be 
considered carefully when making recommendations to improve 
the well-being of humans based largely on results obtained from 
studying nocturnal species.

Summary

The functioning of the SCN depends on its intrinsic molecular 
machinery, as well as on its organization at the network level. 

Communication and synchronization among SCN neurons is 
essential for generating a robust rhythm at the SCN’s tissue level 
which is transmitted to other brain structures, thereby impact-
ing many of our bodily functions. The SCN is influenced by 
environmental factors, the most important of which is light. In a 
short photoperiod, the SCN’s electrical activity rhythm is robust 
due to highly synchronized single-cell activity patterns, while in 
a long photoperiod, the SCN’s electrical output is dampened by 
reduced synchrony among individual cells. Photoperiod-induced 
changes in the expression of clock genes generally coincide with 
photoperiod-induced changes in the SCN’s electrical rhythm. 
Despite this similarity, spatial differences exist with respect to 
SCN clock gene expression, while the electrical activity rhythm 
has only small spatial differences among various regions within 
the SCN. With aging, the amplitudes of both single-cell rhythms 
and ensemble rhythms decline; however, reports of the amplitude 
of clock gene expression patterns in the aged SCN have been 
inconclusive. These points lead to the fundamental question of 
how the molecular feedback loop is correlated with the SCN’s 
electrical output.

The SCN clock is part of a larger brain network that includes 
areas involved in the sleep–wake cycle, energy metabolism, and 
behavioral activity. A dampened SCN rhythm is associated with 
reduced amplitude of the behavioral activity rhythm and can lead 
to metabolic disorders; vice versa, a disrupted behavioral rhythm 
(for example, induced by shift work or by food intake during the 
resting phase) can adversely affect the amplitude of the SCN’s 
rhythm. Increased levels of behavioral activity and voluntary 
exercise have been identified as potential strategies to boost the 
amplitude of the SCN’s rhythm, presumably by increasing cel-
lular synchronization at the ensemble level. To be therapeutically 
effective for humans, it is important to investigate the effects of 
exercise on the SCN in diurnal species, particularly given that 
some differences have been found between nocturnal and diurnal 
animals. Whether – and how – the peripheral systems involved in 
behavioral activity and food intake influence the SCN in diurnal 
mammals remains largely unknown. Increasing our knowledge 
of the interplay between the SCN and the periphery in diurnal 
animals will increase our understanding of circadian-related 
disorders in humans and might lead to novel, effective recom-
mendations for improving lifestyle patterns.
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