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Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. 
Recent technological advances have illuminated the role of GABAergic neurons in control 
of cortical arousal and sleep. Sleep-promoting GABAergic neurons in the preoptic hypo-
thalamus are well-known. Less well-appreciated are GABAergic projection neurons in the 
brainstem, midbrain, hypothalamus, and basal forebrain, which paradoxically promote 
arousal and fast electroencephalographic (EEG) rhythms. Thus, GABA is not purely a 
sleep-promoting neurotransmitter. GABAergic projection neurons in the brainstem nucleus 
incertus and ventral tegmental nucleus of Gudden promote theta (4–8 Hz) rhythms. 
Ventral tegmental area GABAergic neurons, neighboring midbrain dopamine neurons, 
project to the frontal cortex and nucleus accumbens. They discharge faster during cortical 
arousal and regulate reward. Thalamic reticular nucleus GABAergic neurons initiate sleep 
spindles in non-REM sleep. In addition, however, during wakefulness, they tonically 
regulate the activity of thalamocortical neurons. Other GABAergic inputs to the thalamus 
arising in the globus pallidus pars interna, substantia nigra pars reticulata, zona incerta, 
and basal forebrain regulate motor activity, arousal, attention, and sensory transmission. 
Several subpopulations of cortically projecting GABAergic neurons in the basal forebrain 
project to the thalamus and neocortex and preferentially promote cortical gamma-band 
(30–80 Hz) activity and wakefulness. Unlike sleep-active GABAergic neurons, these 
ascending GABAergic neurons are fast-firing neurons which disinhibit and synchronize 
the activity of their forebrain targets, promoting the fast EEG rhythms typical of conscious 
states. They are prominent targets of GABAergic hypnotic agents. Understanding the 
properties of ascending GABAergic neurons may lead to novel treatments for diseases 
involving disorders of cortical activation and wakefulness.

Keywords: wakefulness, gamma rhythm, theta rhythm, eeG, arousal, hypnotics

introduction

Our current understanding of the brain and the mechanisms involved in switching between 
different behavioral states is based on the investigational tools available to researchers. Thus, the 
development of histochemical and immunohistochemical methods to identify monoaminergic 
and cholinergic neurons, together with biochemical methods to study their metabolism, led to 
the concentration of neuropsychiatric research on these neurotransmitter systems in the latter 
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part of the 20th century (1). Similarly, in the sleep-wake field, 
much research focused on the role of the monoaminergic 
and cholinergic neurotransmitter systems (2), leading to an 
influential theory on the mechanisms which control switching 
between non-REM and REM sleep (3, 4). By contrast, much less 
attention was paid to the control of the sleep-wake cycle by the 
more prevalent gamma-aminobutyric acid (GABA)ergic and 
glutamatergic systems due to their later discovery and the lack 
of tools to manipulate and record their activity.

The sleep-promoting effects of allosteric agonists of the GABAA 
receptor are well-established (5). However, we have only recently 
discovered the location and properties of GABAergic neurons 
controlling the sleep-wake cycle. The sleep-promoting action of 
GABAergic neurons located in the preoptic hypothalamus (6–8) is 
now well-known and accepted (9). More recently, other groups of 
sleep-promoting GABAergic neurons in the lateral hypothalamus 
(melanin-concentrating hormone neurons) and brainstem [para-
facial zone; (10)] have been identified. It is less well-appreciated 
that there are several groups of fast-firing, subcortical GABAergic 
neurons with ascending projections, which promote wakefulness 
and cortical activation. Given that GABA is normally an inhibitory 
neurotransmitter in the adult brain, this promotion of cortical 
activation may seem paradoxical. However, the important concept 
to be grasped is that these ascending GABAergic neurons do not 
exert a tonic inhibition of their cortical and thalamic targets, but 
rather, they sculpt the pattern of activity of their targets in favor of 
the fast oscillations of firing typical of brain-activated states. Here, 
we summarize our current knowledge of these neurons, which 
recent evidence suggests may be critical in promoting cortical 
activation during wakefulness and REM sleep.

We first describe the technological advances that have allowed 
investigation of these GABAergic cell populations, followed by 
a review of the properties and likely functions of each group of 
GABAergic neurons.

Novel Technological Tools Have Allowed 
Us to identify, Record from, and 
Selectively Manipulate the Activity of 
GABAergic Neurons Controlling the  
Sleep-wake Cycle

In the last two decades, rapid advances in technology have allowed 
us for the first time to selectively identify and manipulate the activ-
ity of GABAergic neurons involved in control of the sleep-wake 
cycle. These techniques are essential since the GABAergic neurons 
involved in these processes are often interspersed among other neu-
rons utilizing different neurotransmitters. Immunohistochemical 
staining for the enzyme which synthesizes GABA, glutamic acid 
decarboxylase (GAD), or staining for GABA itself, allowed the 
precise study of the distribution of GABAergic neurons in sleep-
wake controlling regions of the brainstem, hypothalamus, and 
basal forebrain (BF) (6, 11–16). When combined with Fos immu-
nohistochemistry to stain the nuclei of neurons which were recently 
active (i.e., expressed this immediate-early gene product), these 
immunohistochemical techniques proved invaluable in revealing 
the location of sleep- or wake-active GABAergic neurons (13–15).

While useful in determining the location of wake-active 
GABAergic neurons, Fos immunohistochemistry cannot reveal 
their firing rate or pattern, due to its limited temporal resolu-
tion. For this, electrical recordings in intact animals are essential. 
Heroic juxtacellular unit recordings in anesthetized and awake rats 
allowed characterization of the discharge of identified GABAergic 
neurons across the sleep-wake cycle for the first time (17–20). In 
this technique, recordings of extracellular action potentials from 
individual neurons are performed with glass micropipettes con-
taining neurobiotin, which enters the recorded neuron, allowing 
subsequent immunohistochemical identification using co-staining 
for GAD or other markers such as parvalbumin (PV), a calcium 
binding protein expressed in subsets of fast-firing GABAergic 
neurons in many brain areas (21–24).

Extracellular unit recordings in vivo are essential for establishing 
the normal firing patterns of GABAergic neurons and correlating 
them with the electroencephalographic (EEG) activity and behav-
ior. However, they have a limited ability to reveal the underlying 
cellular mechanisms, i.e., the ion channels and neurotransmitter 
receptors which are the targets of most pharmacological agents 
used clinically to modulate brain activity. To determine these cel-
lular mechanisms, intracellular recordings of identified GABAergic 
neurons are required. The technically demanding GAD stain 
proved difficult to perform post  hoc after in  vitro electrophysi-
ological recordings. Thus, to determine the intrinsic membrane 
properties of GABAergic neurons controlling the sleep-wake 
cycle, our laboratory took advantage of genetically modified mice 
expressing green fluorescent protein (GFP) under the control of the 
Gad1 (GAD67) promoter. Several different types of mice expressing 
GFP or other fluorescent markers under the control of part or all 
of the GAD promoter are now available, but the best validated are 
the GAD67-GFP knock-in mice generated by Yuchio Yanagawa 
and colleagues (25). In our laboratory, we confirmed that the 
sleep-wake cycle and cortical rhythms are normal in these mice 
(26, 27) and that GFP selectively labels essentially all GABAergic 
neurons in the BF and brainstem (24, 28). GFP also delineates other 
known GABAergic neuronal groups controlling the sleep-wake 
cycle, e.g., the circadian pacemaker in the suprachiasmatic nucleus 
and histaminergic neurons in the tuberomammillary nucleus of 
the hypothalamus (Figure 1) (29). A great advantage of these mice 
is that in vitro recordings can target GABAergic neurons online, 
prior to recording. Furthermore, retrograde tracing studies of 
the projections of these neurons do not require the use of GAD 
staining (29). Other genetically modified mice expressing a red 
fluorescent marker (tdTomato) in PV neurons also proved use-
ful in characterizing the properties of PV-containing, cortically 
projecting, BF GABAergic neurons (24, 30, 31).

While recording the activity of GABAergic neurons in vivo and 
determining their properties in vitro provided important clues to 
their function and potential ways to pharmacologically manipu-
late their activity, tests of their functional role require selective 
stimulation and inhibition experiments. The development of mice 
expressing the bacterial enzyme Cre recombinase under the control 
of the GAD, vesicular GABA transporter (vGAT), or PV promoters 
further advanced our knowledge concerning the role of GABAergic 
neurons. Use of these mice allowed selective optogenetic (33) and 
designer receptor exclusively targeted by designer drugs (DREADD) 
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FiGURe 1 | GAD67-GFP knock-in mice delineate the location of 
GABAergic neurons involved in cortical arousal and sleep-wake control 
(24, 25, 28, 34). The location of select nuclei described in this review is 
illustrated, moving in a caudal to rostral direction through the mouse brain 
(A–H). Numbers in the bottom right corner indicate the location of these 
coronal sections with respect to Bregma (in mm). Green (GFP) fluorescence is 
present in cell bodies and fibers of GABAergic neurons. (A) Nucleus incertus 
(NI) GABAergic neurons involved in theta-rhythm generation are located near 
the midline of the central gray, above the medial longitudinal fasciculus (mlf), 
and ventromedial to the densely packed GABAergic neurons in the dorsal 
tegmental nucleus of Gudden (DTg). DTg neurons are involved in signaling 
head direction and project to the lateral mammillary body. (B) Ventral tegmental 
nucleus of Gudden (VTg) GABAergic neurons are clustered ventral to the mlf 
and the dorsal raphe (DR) nucleus. They innervate glutamatergic neurons in the 
medial mammillary body (see Figure 2). (C) GABAergic cell bodies and fibers 
delineate the substantia nigra pars reticulata (SNr), located lateral to the medial 
lemniscus (ml) and medial reticular nucleus (mRt). SNr GABAergic neurons 
represent the main output of the basal ganglia in rodents and tonically inhibit 

the motor thalamus and the centromedian-parafascicular nucleus (CM-Pf). (D) 
Tuberomammillary (TMN) histamine neurons located lateral to the lateral 
mammillary nucleus (LM) also express GABAergic markers and may release 
GABA. (e) Thalamic reticular nucleus (TRN) GABAergic neurons surround and 
inhibit almost all thalamic relay nuclei. More ventrally and medially are the zona 
incerta (ZI) GABAergic neurons, which project to higher-order thalamic nuclei 
and the neocortex. The internal capsule (ic) separates these nuclei from 
GABAergic neurons in the globus pallidus (GP). (F) The master circadian 
pacemakers in the suprachiasmatic nucleus (SCN) of the hypothalamus are 
GABAergic. 3V = 3rd ventricle. (G) Caudal/intermediate nuclei of the basal 
forebrain contain many large-sized GABAergic neurons which project to the 
neocortex and regulate gamma oscillations and wakefulness. acp, anterior 
commissure, posterior part; HDB, horizontal limb of the diagonal band; MCPO, 
magnocellular preoptic nucleus; SI, substantia innominata; VP, ventral pallidum. 
(H) Rostral nuclei of the basal forebrain, the medial septum (MS), and vertical 
limb of the diagonal band (VDB) contain GABAergic septohippocampal 
neurons regulating hippocampal theta and gamma rhythms. Scale bars: 
(A,B,D,F) 0.25 mm; (C,G,H) 0.5 mm; (e) 0.75 mm.
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FiGURe 2 | Brainstem GABAergic projection neurons in the nucleus 
incertus (Ni) and ventral tegmental nucleus of Gudden (vTg) regulate 
theta (4–8 Hz) rhythms important for spatial navigation and memory 
formation. (A) NI GABAergic/relaxin-3 positive neurons receive input from 
neighboring pontine nucleus oralis (PnO) reticular neurons which increase 
their activity during active wakefulness and REM sleep. They project to and 
synchronize the activity of theta-rhythm related neurons in the 
supramammillary nucleus (SUM), medial septum (MS), and hippocampus. 
They receive return projections from a different population of septal 
GABAergic neurons. (B) VTg GABAergic projection neurons generate theta 
rhythmic activity through interactions with medial mammillary body 
glutamatergic neurons (MMB). MMB neurons transmit rhythmic theta-
frequency activity to the anterior thalamus (AT) and through the rest of the 
Papez circuit. These two theta-generating circuits participate in synchronizing 
the activity of neurons involved in spatial navigation and memory by linking 
neurons representing information about the environment with those 
representing information about the position of the animal (51).
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approaches (34). In these techniques, Cre recombinase-dependent 
(double-floxed), viral vector mediated transduction allows the 
introduction of excitatory and inhibitory channel/pumps, which 
can be activated by light (optogenetics) or modified G-protein 
coupled cholinergic receptors which are activated by a normally 
inert drug, clozapine-N-oxide (DREADD technique) into selected 
groups of neurons, i.e., GABAergic or PV neurons containing Cre 
Recombinase. Work currently underway using these approaches 
(35–37) has provided important evidence supporting a role of 
BF GABAergic/PV neurons in the promotion of wakefulness and 
cortical gamma rhythms.

In the following, we describe what is currently known about 
subcortical, ascending GABAergic projection neurons which are 
active during wakefulness (and rapid-eye-movement sleep) and 
regulate wakefulness, as well as the higher frequency rhythms 
typical of brain-activated states. We do not cover GABAergic 
neurons which are primarily sleep-active (10, 20, 38–40) or those 
involved in the descending control of muscle tone (41, 42). We 
also do not cover GABAergic interneurons in the hippocampus 
and neocortex in detail, although they are extremely important in 
generating fast EEG rhythms (43–45) and are a target of ascending 
GABAergic projections (46–48). We begin in the brainstem and 
continue rostrally along the dorsal and ventral pathways of the 
ascending reticular activating system (ARAS), which include the 
thalamus and BF as their final nodes.

Brainstem GABAergic Neurons Controlling 
Theta Rhythms

The brainstem has a relatively small number of ascending, wake/
REM-active GABAergic neurons (49). However, a large number of 
locally projecting, GABAergic interneurons surround and control 
the activity of ascending brainstem cholinergic, monoaminergic, 
and glutamatergic systems involved in sleep-wake control (13, 14, 
18, 28, 49). In this section, we focus on two brainstem nuclei with 
GABAergic projection neurons, the nucleus incertus (NI) and the 
ventral tegmental nucleus of Gudden (VTg) (Figures 1A,B), both 
of which are involved in control of theta (4–8 Hz) rhythms which 
dominate the cortical EEG in rodents during active wakefulness 
and REM sleep (50), and are important in synchronizing the 
activity of brain areas involved in spatial navigation and memory 
formation (Figure 2).

Nucleus incertus
Several lines of evidence suggest that NI GABAergic neurons 
containing the neuropeptide relaxin-3 are involved in control 
of theta rhythms. Anatomical studies revealed that GABAergic, 
relaxin-3 positive neurons in the NI project to regions involved 
in theta rhythm generation such as the supramammillary nucleus, 
medial septum/diagonal band (MS/DB), and the hippocampus 
(52–55) (Figure 2A). Other projections target intralaminar thala-
mus, hypothalamus, and amygdala. Relaxin-3 positive fibers in 
the MS/DB contact the cholinergic and GABAergic/PV neurons 
projecting to the hippocampus, which are known to act as pace-
makers for theta rhythm (56). Ultrastructural analysis indicates 
that relaxin-3 positive terminals form symmetrical contacts typi-
cal of GABAergic synapses (56). Conversely, NI receives return 

GABAergic projections from the septum and horizontal limb of 
the diagonal band (57) (Figure 2A).

The anatomical projections of NI neurons led to direct physi-
ological tests of a role for NI in control of theta rhythm. Electrical 
stimulation of the NI in urethane-anesthetized rats induced theta 
rhythm in the hippocampus (58). Conversely, electrolytic lesions 
or pharmacological inhibition of the NI abolished theta rhythm 
evoked by stimulation of the neighboring pontine reticular forma-
tion (PnO) in urethane anesthetized animals (58).

How might NI neurons facilitate hippocampal theta rhythms? 
Initial single-unit recordings revealed that the majority of NI neu-
rons did not fire rhythmically or fired rhythmically at frequencies 
(13–25 Hz) higher than theta rhythm frequencies (58), indicating 
that they are unlikely to be involved in converting tonic reticular 
input into phasic theta frequency firing. However, more recent 
findings suggest that there are two populations of NI neurons, a 
relaxin-3 positive subpopulation which is excited by corticotropin-
releasing factor (CRF) and exhibits strong phase-locked firing 
with the ascending phase of hippocampal theta oscillations, and 
a relaxin 3-negative subpopulation which is unaffected by CRF 
and whose firing is not phase-locked with hippocampal theta (59). 
Taking together the anatomical and physiological findings, it seems 
plausible that the GABA/relaxin-3 NI neurons promote theta 
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rhythm by synchronizing the firing of septohippocampal GABA/
PV neurons. However, the precise roles of GABA and relaxin-3 
in this process remain to be determined. Consistent with a role in 
the control of hippocampal theta rhythm, inactivation of NI with 
lidocaine impairs the acquisition and retrieval of spatial reference 
memory (60).

vTg
Another ascending brainstem projection involved in theta genera-
tion involves the VTg region originally described by the German 
psychiatrist, Bernhard von Gudden (61). VTg consists of two 
small aggregations of GABAergic neurons located on either side 
of the midline between the dorsal and median raphe (28, 62–64) 
(Figure  1B). In  vivo recordings in both urethane-anesthetized 
(65) and freely moving (66, 67) rats revealed that VTg neurons 
fire long-lasting bursts of action potentials at high-frequencies 
which are phase-locked with hippocampal theta rhythms. Our 
in vitro recordings from identified GABAergic VTg neurons in 
GAD67-GFP knock-in mice suggest that these long-lasting bursts 
are due to a low-threshold calcium spike and subsequent activa-
tion of a long-lasting calcium-activated sodium conductance (68, 
69). Like other ascending GABAergic neurons, VTg neurons are 
very fast-firing in vitro (maximal firing rate >200 Hz) and have 
narrow action potentials with brief afterhyperpolarizations (68, 
69). They also exhibit strong hyperpolarization-activated cation 
currents (H-currents), which are often present in rhythmically 
active neurons.

Unlike NI neurons, VTg neurons do not have projections to 
the structures most commonly linked to theta-rhythm generation, 
the medial septum, supramammillary nucleus, or hippocampus. 
Instead, the VTg shares strong reciprocal connections with 
glutamatergic neurons of the medial mammillary body (MMB, 
Figure 2B) (63, 70–72). A parallel GABAergic ascending projec-
tion system involved in transmitting head-direction information 
arises in the dorsal tegmental nucleus and projects to the lateral 
mammillary nucleus (73). As with the VTg, single-unit record-
ing studies from the MMB have reported neurons which fire 
rhythmic bursts in synchrony with hippocampal theta rhythm 
(74, 75), although these bursts are shorter in duration and occur 
at a different phase with respect to hippocampal theta rhythms. 
Like VTg neurons, MMB neurons have low-threshold calcium 
spikes, which underlie the theta bursts recorded in vivo (68, 76).

The intrinsic membrane properties, neurotransmitter phe-
notype, and reciprocal connections of VTg and MMB neurons 
suggest a mechanism which may generate their theta activity (68): 
bursts of action potentials in glutamatergic MMB neurons lead to 
depolarization of VTg neurons and activation of low-threshold 
calcium channels; calcium influx into VTg neurons activates a 
calcium-activated cation conductance which prolongs the burst 
and increases the number of action potentials; long-lasting bursts 
in VTg neurons lead to a strong GABAergic inhibition of MMB 
neurons, de-inactivating the low-threshold calcium channels 
in MMB neurons, which are then activated once the VTg-
mediated hyperpolarization subsides, restarting the cycle. Strong 
hyperpolarization-activated cation channels in VTg neurons help 
maintain the rhythmic firing by providing a depolarizing influence 
during the intraburst interval (68). Descending inputs to the MMB 

from the subiculum may act to synchronize theta rhythms in the 
hippocampus with those in the MMB-VTg circuit (74, 77, 78).

The major ascending output of the MMB innervates the medial 
and ventral parts of the anterior thalamus via axons which ascend 
within the mammillothalamic tract. Theta burst neurons have been 
recorded in the anterior thalamus, in particular in the ventral part 
targeted by the MMB (79, 80). The anterior thalamus in turn pro-
jects to the cingulate cortex and presubiculum, which is connected 
with the entorhinal cortex, one of the two main afferent inputs to 
the hippocampus. Thus, the VTg-MMB system may act as a theta 
rhythm generating system for the neural circuit described by Papez 
(51, 65, 79, 81, 82) (Figure 2B). Damage to the MMB→thalamus 
pathway in Korsakoff ’s syndrome or via stroke results in dience-
phalic amnesia (73, 83). Similarly, neurotoxic lesions of the VTg 
in animals impair memory formation and learning (84).

Summary
Two ascending GABAergic brainstem nuclei, the NI and VTg, 
play key roles in the generation of theta rhythms during waking 
and REM sleep (Figure 2). The NI promotes theta generation in 
the suprammillary-medial septal-hippocampal system involved in 
formation of spatial maps of the environment, whereas the VTg-
MMB system promotes theta rhythms in the anterior thalamus 
head-direction system (85). Integration of information from these 
two systems allows an animal to represent its position within the 
environment, a key requirement for spatial and episodic memory 
formation/retrieval during waking and REM sleep (86).

ventral Tegmental Area GABAergic 
Neurons involved in Arousal and Reward

In addition to the well-known dopaminergic neurons involved 
in reward and addiction, the midbrain ventral tegmental area 
(VTA) nucleus contains a substantial percentage (~20–35%) of 
GABAergic neurons (87–89). Important recent studies suggest that 
VTA GABAergic projection neurons, VTA GABAergic interneu-
rons, and GABAergic inputs from the rostromedial tegmental 
nucleus (RMTg) are all involved in reward and reward-related 
arousal processes. VTA GABAergic projection neurons target 
widespread forebrain targets including the BF/preoptic area, 
amygdala, mediodorsal thalamus, and lateral hypothalamus, as 
well as arousal nuclei of the brainstem such as the dorsal raphe 
and deep mesencephalic nuclei (90). Sparser but functionally 
important projections target the prefrontal cortex (PFC) (87, 90, 
91) and nucleus accumbens (NAcc) (90, 92, 93). A portion of the 
VTA GABAergic projection to PFC synapses onto neocortical 
GABAergic interneurons of unknown subtype (87), whereas 
the GABAergic VTA projection to NAcc preferentially targets 
cholinergic interneurons (94), suggesting that VTA GABAergic 
projection neurons indirectly modulate the activity of principal 
neurons in these structures.

vTA GABAergic Neurons are Fast-Firing  
and electrically Coupled
In  vivo extracellular recordings in halothane-anesthetized rats 
revealed that GABAergic VTA neurons exhibit a rapid (~19 Hz), 
cluster-type discharge pattern, short-duration action potentials, 
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and lack of accommodation of firing during prolonged depolariza-
tions (93). They were activated antidromically and orthodromically 
by stimulation of the internal capsule, confirming that they are 
projection neurons and were inhibited by electrical stimulation of 
the NAcc. Intracellular, sharp-electrode recordings in vivo revealed 
they had relatively depolarized resting membrane potentials 
(~−62 mV) and small action potentials (68 mV). Post hoc staining 
for neurobiotin and GABA confirmed that they were GABAergic 
and not dopaminergic (93). The expression of connexin-36 mRNA 
and protein, inhibition of prolonged discharges induced by high-
frequency stimulation of the internal capsule by gap junction 
blockers, and the presence of neurobiotin dye coupling all suggest 
that VTA GABAergic neurons are electrically coupled, facilitat-
ing synchronization of their activity (95–97). In vitro recordings 
in GAD67-GFP knock-in mice indicated that VTA GABAergic 
neurons can be distinguished from dopamine neurons by their 
narrow action potentials and lack of an A-type potassium current 
(89).

The Discharge of vTA GABAergic Neurons  
is Associated with Arousal
In unrestrained, unanesthetized rats, VTA GABAergic neurons 
discharged even move rapidly than in anesthetized animals 
(29 ± 6 Hz during active waking), and their discharge was mark-
edly elevated during the onset of movement and prior to brain 
stimulation reward, suggesting a role in arousal/attention (98, 99). 
Firing rates during movement could reach as high as 100–200 Hz 
for 10–20 s (98). Consistent with the initial report (93), the dis-
charge of VTA GABAergic neurons was strongly suppressed by 
deep chloral hydrate, ketamine, or halothane anesthesia, and was 
reduced during non-REM sleep (98). During REM-sleep, VTA 
GABAergic neurons increased their mean firing rate beyond that 
observed during active waking to ~52 Hz. Furthermore, during 
REM sleep enhanced firing was correlated with EEG gamma band 
activity. However, to date, a role for VTA GABAergic neurons in 
controlling particular EEG frequency bands has not been tested 
using selective excitation and inhibition experiments.

vTA GABAergic Neurons are excited by  
wake/Arousal Promoting Neurotransmitters
Whole-cell recordings from two groups of non-dopaminergic, 
putative GABAergic VTA neurons demonstrated that they are 
strongly excited by the wake-promoting orexin/hypocretin 
peptides (100, 101). Putative VTA GABAergic neurons are also 
excited by other arousal/stress-related neuromodulators such as 
histamine, CCK, and substance P (101, 102). These studies did 
not distinguish effects on projection neurons from those on local 
GABAergic interneurons, an important future direction.

Role of vTA GABAergic Neurons in Reward 
Processes
Recent work has elaborated on the role of VTA GABAergic 
neurons in reward-related processes (Figure  3A). This work 
suggests that motivationally important information from the 
PFC is conveyed to VTA GABAergic neurons which target 
NAcc. Anatomical studies showed that PFC projections to VTA 
selectively target GABAergic neurons which project to the NAcc, 

but not those projecting back to the PFC (103). In vivo recordings 
demonstrated a task-dependent increase in coherence at gamma 
band frequencies between PFC and VTA during a working 
memory task, likely reflecting transmission of information from 
PFC to fast-firing VTA GABAergic neurons (104). The projection 
of VTA GABAergic neurons to the NAcc selectively targets and 
inhibits cholinergic NAcc interneurons (94). Activation of the 
VTA GABA→NAcc pathway caused a pause in the discharge of 
cholinergic interneurons, resembling that previously observed in 
animals learning stimulus-outcome associations. Furthermore, 
optogenetic activation of this pathway enhanced discrimination 
of a motivationally important stimulus paired with an aversive 
outcome (94).

vTA GABAergic interneurons Control 
Dopaminergic activity
Many drugs of abuse, such as opiates (105) and benzodiazepines 
(106), inhibit VTA GABAergic interneurons, leading to increased 
dopamine release via disinhibition. Conversely, optogenetic 
activation of VTA GABAergic neurons in vivo disrupts reward 
consummatory behavior (107). VTA GABAergic neurons, likely 
interneurons, identified using optogenetic activation, inhibited 
neighboring dopaminergic neurons, and encoded the presence 
of expected rewards (108). Disruption of this coding by drugs of 
abuse likely contributes to mechanisms of addiction.

The GABAergic Neurons of the RMTg  
Convey Aversive information to vTA 
Dopaminergic Neurons
The posterior part of the VTA and its extension into the teg-
mental region of the reticular formation (collectively known as 
the posterior VTA or RMTg nucleus) contains a population of 
ascending GABAergic neurons which project to and regulate the 
activity of more rostrally located VTA dopaminergic neurons 
(109, 110). Unlike VTA GABAergic neurons, however, RMTg 
neurons do not have substantial projections to the forebrain (109). 
Recent studies implicate these GABAergic neurons in aversive 
behavior and reward prediction through a basal ganglia→lateral 
habenula→RMTg circuit (111, 112) (Figure 3B). Lateral habenula 
neurons are excited by stimuli that indicate the absence of a reward 
(113), through an excitatory pathway arising in the basal ganglia 
(112), leading to excitation of RMTg GABAergic neurons and 
subsequent inhibition of reward-related midbrain dopaminergic 
neurons and pedunculopontine neurons (111, 114). Like VTA 
GABAergic interneurons, RMTg neurons are inhibited by 
μ-opioids and cannabinoids (115). Further experiments suggested 
that the RMTg may be the most important site for disinhibitory 
effects of these compounds on dopaminergic activity (116).

Summary
Ventral tegmental area GABAergic projection neurons promote 
reward and reward-related arousal through their mesoaccumbens 
and mesocortical projections, which notably target interneurons 
in both structures. Conversely, VTA GABAergic interneurons 
and RMTg GABAergic inputs, encoding expected reward or the 
absence of rewarding stimuli, exert a tonic inhibitory effect on 
VTA dopaminergic neurons (Figure 3).
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FiGURe 3 | GABAergic neurons and inputs to the ventral tegmental area 
(vTA) are involved in the control of reward and reward-related arousal. 
(A) VTA GABAergic projection neurons innervate the prefrontal cortex (PFC) and 
nucleus accumbens (NAcc). They increase their discharge in association with 
arousal and in anticipation of reward. VTA neurons projecting to PFC target 
both principal neurons and cortical GABAergic interneurons. VTA GABAergic 
neurons projecting to the NAcc receive input from PFC and specifically target 

NAcc cholinergic interneurons, which regulate plasticity of medium spiny 
neurons (MSN). (B) The activity of dopaminergic VTA neurons which encode 
unexpected rewards and project to NAcc and PFC is under the control of local 
GABAergic interneurons and GABAergic inputs from the rostromedial tegmental 
nucleus (RMTg). RMTg and local VTA GABAergic neurons are excited by lateral 
habenula (LHb) glutamatergic neurons which encode expected rewards or the 
absence of rewards, based on inputs from the basal ganglia.
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Ascending Hypothalamic GABAergic 
Systems Controlling the Thalamus and 
Neocortex

Retrograde tracing studies identified four major hypothalamus 
systems projecting to the cerebral cortex (117). Of these four 
systems, three subsets of neurons in the tuberal part of the 
lateral hypothalamic contain GABA: GABAergic neurons in 
the ventral part of the zona incerta (ZI), melanin concen-
trating hormone (MCH) neurons, and tuberomammillary 
histaminergic neurons. MCH neurons are sleep-active and 
sleep-promoting and are therefore not considered further 
in this section. Although histaminergic neurons promote 
arousal (118) and they contain the biosynthetic machinery for 
GABAergic transmission (119), the functional role is poorly 
understood (120). Therefore, we concentrate in this section 
on ZI GABAergic projection neurons.

Glutamic acid decarboxylase immunostaining coupled with ret-
rograde tracing confirmed the presence of a group of GABAergic 
projection neurons in the ZI (121). Many of these neurons may 
also contain the neuropeptide α-melanocyte stimulating hormone 
(122, 123), or a closely related peptide (124). GABAergic ZI 
neurons project heavily to the thalamus (125) as well as to the 
neocortex (121). Immunostaining also revealed a population of 
PV-containing neurons in this same area, suggesting that as in 
other areas, these GABAergic neurons are likely to be fast-firing. 
In vitro recordings from the ventral ZI region revealed that most 
neurons discharged spontaneously at high rates (9.3 Hz median 
firing rate) and also exhibited rhythmic firing (126). In the same 
study, in vivo recordings in urethane-anesthetized animals revealed 
firing at 3–4 Hz. However, in a different study under light ketamine 
or urethane anesthesia, ventral ZI neurons discharged much more 
rapidly, with mean rate of 26 Hz (127). The role of ZI projections 
to the cortex has still not been explored in any detail, but recent 
studies suggest an important regulation of higher order sensory 
nuclei of the thalamus (see next section).

GABAergic Neurons Controlling 
Thalamocortical Activity during 
wakefulness

The midline and intralaminar thalamic nuclei represent the final 
node of the dorsal portion of the reticular activating system (9). 
These nuclei, and the primary thalamic sensory relay nuclei, 
are under strong inhibitory control from GABAergic neurons 
in several different regions. The most prominent, widespread, 
and well-known GABAergic input arises from the thalamic 
reticular nucleus (TRN). A more restricted input to the midline 
centromedian-parafascicular nucleus (CM-Pf) and motor thala-
mus (ventrolateral and ventromedial nuclei) originates from the 
output of the basal ganglia, the globus pallidus, pars interna (GPi) 
and the substantia nigra, pars reticulata (SNr) (128–130). Other 
GABAergic inputs to the midline thalamus arise in the ZI (125) and 
BF (131). In general, all of these GABAergic inputs maintain a high 
rate of tonic inhibition in the thalamic relay nuclei, which is likely 
important in suppressing unimportant information and unneces-
sary motor activity. However, in situations requiring high attention 
and responses to important situations, this tonic input is transiently 
suppressed allowing enhanced arousal/attention (disinhibition of 
higher-order nuclei) and sensorimotor transmission (disinhibition 
of first-order sensory and motor nuclei).

Thalamic Reticular Nucleus
In addition to being crucially involved in generating sleep spindles 
during non-REM sleep (132, 133), TRN neurons maintain a high 
rate of tonic firing during wakefulness (134–136), which serves 
to prevent unimportant sensory information being transmitted 
through the thalamic relay nuclei to the cortex. TRN neurons 
receive excitatory inputs from noradrenergic and serotonergic 
neurons which maintain this high firing rate during wakefulness 
(137). Reduced activity of sensory-related TRN neurons occurs 
prior to correct performance in attention tasks (138), leading to 
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disinhibition of relay neurons (139). The origin of this reduced 
activity of TRN neurons is unclear. TRN receives inhibitory 
GABAergic/PV projections from globus pallidus (140), substan-
tia nigra pars reticulata (141), and BF GABAergic/PV neurons 
(142, 143). Input from BF GABAergic/PV neurons is particularly 
interesting, considering the strong inputs to these BF neurons from 
PFC regions involved in processing novelty (144–146) and their 
strongly state-dependent firing (see next section). Other experi-
ments have suggested that TRN may be involved in gamma-band 
oscillations through entrainment of the activity of thalamocortical 
neurons (147–149).

Basal Ganglia GABAergic input to the Thalamus
The two main GABAergic output nuclei of the basal ganglia are 
the GPi and SNr. GPi and SNr project to thalamic motor output 
nuclei and to the centromedian-parafascicular nucleus (CM-Pf), 
which is one of the “non-specific” thalamic nuclei regulating 
the level of arousal through widespread, diffuse projections 
to the cortex (150). CM-Pf also has a prominent projection 
to the striatum, enhancing activity in cortico-basal ganglia-
thalamocortical circuits. Electrical or pharmacological activation 
of CM-Pf in rodents enhances behavioral arousal and recovery 
from anesthesia, supporting a role in control of consciousness 
(151–154). Furthermore, changes in CM-Pf activity precede loss 
of consciousness caused by anesthetics or transitions into sleep 
(155). Thus, GABAergic control of CM-Pf by the basal ganglia 
output nuclei is likely to be extremely important in control of 
arousal and consciousness.

Neurons in GPi and SNr express very high levels of the α1 subu-
nit of the GABAA receptor, the target of the hypnotic, zolpidem 
(156–159) in rodents and in humans (160). Interestingly, in brain 
damaged patients, it has been hypothesized that the activity of 
these neurons is pathologically enhanced, resulting in an inhibition 
of thalamic and pedunculopontine neurons and loss of conscious-
ness (161). Thus, suppression of their activity by zolpidem may 
result in a paradoxical arousing effect in some patients (162–166).

Zi GABAergic input to the Thalamus
In addition to direct projections to the cortex, ZI GABAergic 
projection neurons innervate the thalamus, superior colliculus, 
and brainstem (125, 167). Thalamic projections of ZI GABAergic 
neurons are particularly strong to higher-order nuclei, where they 
effect a tonic inhibition of sensory transmission (125, 167). In the 
rodent, ZI neurons receive a strong input from trigeminal axons 
transmitting sensory information from the whiskers, leading to 
excitation of ZI GABAergic neurons and preventing excitation of 
the posterior thalamic group neurons (127). This feed-forward 
inhibition can be overcome by excitation of the motor cortex and 
activation of an intra-incertal GABAergic circuit (168). Many 
other cortical areas also converge on ZI GABAergic neurons, 
which through their widespread cortical, thalamic, and brainstem 
projections are in a position to globally modulate brain arousal 
(169). Cholinergic stimulation in vitro or in vivo in anesthetized 
rats inhibited the firing of ventral ZI neurons, suggesting that 
high arousal states involving increased acetylcholine release lead 
to suppression of ZI neuronal firing and promotion of sensory 
transmission (126).

Summary
GABAergic projection neurons in the TRN, GPi, SNr, and ZI act 
to tonically inhibit various thalamic relay neurons during wakeful-
ness. Suppression of their firing by cortical or subcortical inputs is 
a powerful mechanism to increase thalamic activity and thereby 
increase attention, arousal, sensory processing, and motor activity 
in a context-dependent manner.

Cortically Projecting BF GABAergic 
Neurons Promote Cortical Activation and 
wakefulness

The BF represents the final node of the ventral portion of the 
brainstem ARAS. Rostral BF neurons in the medial septum and 
vertical limb of the diagonal band project to the hippocampal 
formation, whereas intermediate and caudally located BF neurons 
in the horizontal limb of the diagonal band, magnocellular preoptic 
area, ventral pallidum, substantia innominata, and nucleus basalis 
project to the neocortex, as well as to the thalamus, lateral hypo-
thalamus, and brainstem (11, 12, 16, 46, 47, 170). Many studies have 
focused on the arousing effects of cortically projecting cholinergic 
neurons in this region (171), which are among the first to degener-
ate in Alzheimer’s disease (172). However, recent studies suggest 
that neighboring GABAergic projection neurons and interneurons 
may be equally important in cortical activation. Juxtacellular 
labeling experiments in vivo identified a significant minority of 
BF GABAergic neurons, which are fast-firing (20–60  Hz) and 
increase their firing rate during wakefulness and REM sleep (19). 
Recent preliminary experiments showed that pharmacogenetic 
(DREADD) stimulation of BF GABAergic neurons strongly 
enhances wakefulness (37). Similarly, initial experiments suggest 
that optogenetic stimulation of BF PV neurons is wake-promoting 
(35), in addition to playing a role in control of cortical gamma 
oscillations (36).

Anatomy and Projections of BF GABAergic 
Neurons
Anterograde tracing studies coupled with staining for GAD 
showed that cortically projecting GABAergic neurons make 
up approximately one-third of the BF projection to the cortex. 
Importantly, BF GABAergic projections to the neocortex and 
hippocampus prominently target interneurons containing 
PV and somatostatin, which are thought to be involved in 
gamma and theta oscillations (46–48). Caudal/intermediate 
BF GABAergic neurons projecting to the neocortex, as well as 
more rostrally located BF GABAergic neurons projecting to the 
hippocampus, preferentially target GABAergic interneurons (46, 
47, 173), in particular PV-containing fast-spiking interneurons 
(174) involved in theta (175) and gamma oscillations (44, 45). 
Somatostatin-containing cortical interneurons which target the 
dendrites of pyramidal neurons and appear tuned for theta-
frequency firing are also a target of BF cortically projecting 
GABAergic neurons, as are cortical interneurons containing cal-
bindin (173). BF PV and GABAergic neurons also project to the 
TRN (142, 143) and less prominently to the mediodorsal nucleus 
(131, 170). At present, it is unclear if only BF PV/GABAergic 
neurons or also other types of BF non-PV/GABAergic neurons 
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FiGURe 4 | Basal forebrain (BF) GABAergic neurons are excited by 
wake promoting neuromodulators and promote gamma rhythms in 
the cortex via projections to cortical GABAergic interneurons. At least 
three, largely separate, populations of BF GABAergic neurons express the 
calcium-binding protein, parvalbumin (PV), the neurokinin-3 receptor (NK3R), 
and the potassium channel Kv2.2. BF GABAergic neurons can also be 
subdivided according to the amplitude and kinetics of their hyperpolarization-
activated cation currents (H-currents). GABA/PV neurons in caudal/
intermediate parts of the BF appear to be important in regulating cortical 
gamma oscillations through their synchronization of cortical PV interneurons. 
Rostral BF GABA/PV neurons (not shown) regulate hippocampal theta and 
gamma oscillations. The functions of the NK3R and Kv2.2. subpopulations 
are less well-understood but they also appear to be wake-promoting. Cortical 
and hippocampal projections of identified BF GABAergic or PV fibers 
preferentially appose GABAergic interneurons, including fast-spiking, somatic 
targeting PV interneurons, and dendrite-targeting somatostatin (SOM) 
interneurons. Return projections from the cortex target cortically projecting 
BF PV neurons and possibly other GABAergic subpopulations but avoid 
cholinergic neurons.
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project to TRN. The function of the BF projection to TRN is 
currently unresolved but this projection may be involved in 
attentional suppression of TRN discharge (see previous section) 
and/or suppression of spindle-related bursting in TRN during 
wakefulness and REM sleep.

Subtypes of Cortically Projecting BF GABAergic 
Neurons
Several subtypes of cortically projecting GABAergic neurons 
have been identified in the BF based on the expression of dif-
ferent neurochemical markers (Figure 4). The most well-known 
are neurons containing the calcium-binding protein PV. Other, 
largely separate subsets express the neurokinin-3 receptor (176) 
and the potassium channel Kv2.2 (177, 178). In vitro recordings 
suggest that large-sized, cortically projecting GABAergic and PV 
neurons can be subdivided into two groups based on the amplitude 
and kinetics of their H-current (24).

Pv Neurons: Anatomy and in vivo Recordings
The vast majority of PV-containing neurons in the BF are 
GABAergic (16, 24). PV is a marker for cortically projecting BF 
GABAergic neurons (16). In the rat, immunohistochemical stain-
ing for PV labeled approximately 90% of GAD-stained neurons, 
retrogradely labeled from the orbitofrontal and somatosensory 
cortex (16). In the GAD67-GFP knock-in mouse, PV was observed 
in ~25% of large (>20 μm) diameter, putative cortically projecting 
GABAergic neurons, whereas, overall PV was present in 6.7% of all 
BF GABAergic neurons (24). PV-containing GABAergic neurons 
in the rostral part of the BF (medial septum and vertical limb of 
the diagonal band) project to the hippocampus, and are critically 
involved in control of hippocampal theta rhythm (179, 180), and 
associated hippocampal gamma rhythms, whereas PV-containing 
neurons in intermediate and caudal BF regions project to the 
neocortex and regulate neocortical gamma oscillations (35). Two 
populations of medial septal PV neurons discharge at opposing 
phases of the hippocampal theta rhythm. Post hoc identified PV 
neurons recorded in anesthetized rats discharged rapidly in bursts 
or clusters in association with cortical activation induced by tail 
pinch (17). In unanesthetized mice, two optogenetically identified 
PV neurons discharged irregularly in the gamma range (20–60 Hz) 
during wakefulness and REM sleep (36). Transduction of BF PV 
fibers with channelrhodopsin2-enhanced yellow fluorescent pro-
tein fusion proteins revealed BF PV neurons appose cortical PV 
interneurons, consistent with a role in control of cortical gamma 
oscillations (36). Direct tests of this hypothesis using optogenetic 
techniques demonstrated that both rhythmic and non-rhythmic 
stimulation of BF PV neurons preferentially enhanced cortical 
EEG power at gamma frequencies, whereas optogenetic inhibition 
of BF PV neurons reduced the ability of the cortex to respond at 
40 Hz in response to a train of auditory stimuli delivered at 40 Hz 
(36). Together, these data strongly implicate BF PV neurons in the 
behavioral state-related increases in cortical gamma oscillations, 
which are observed during wakefulness and REM sleep (181, 182).

Pv Neurons: in vitro Recordings and intrinsic 
Properties
In vitro recordings from identified PV neurons using genetically 
modified mice expressing fluorescent markers, post hoc staining 
(183), or based on intrinsic membrane properties have revealed 
many similarities between MS/DB GABAergic/PV neurons pro-
jecting to the hippocampus and those projecting to the neocortex. 
Both groups are very fast-firing (24, 183), likely due to their expres-
sion of the delayed rectifier Kv3.1 (Kcnc1) potassium channel (184), 
and whose extremely fast kinetics enables fast repolarization of the 
action potential (185). Both groups of BF GABAergic/PV neurons 
exhibit a “depolarizing sag” during hyperpolarizing current pulses 
due to a hyperpolarization-activated cation current (H-current) 
(24, 183), a property which distinguishes them from cortical PV 
interneurons and TRN GABAergic/PV neurons. This current 
counteracts prolonged hyperpolarization and is also often present 
in neurons which show rhythmic firing, providing a depolarizing 
influence in the interburst interval following afterhyperpolariza-
tions. Thus, this current may be important for the cluster and 
burst-like firing of these neurons recorded in vivo (17). In fact, 
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infusion of an H-current blocker into the MS/DB impairs theta 
rhythm generation (186, 187). Like PV cortical interneurons, 
BF GABAergic and PV neurons showed evidence of electrical 
coupling (24).

Neurokinin3 Receptor immunoreactive Neurons
The Neurokinin3 Receptor (NK3R) is the most selective receptor 
for neurokinin B, produced from the precursor preprotachykinin 
(PPTB). PPTB is present in a small subset (5%) of projection 
neurons in the neostriatum which projects to the substantia 
innominata (188). Neurokinin B and NK3R are essential for 
normal reproduction (189). Thus, one plausible functional role 
for this population of BF GABAergic neurons is control of sexual 
arousal. Immunohistochemical staining in rats and in GAD67-
GFP knock-in mice revealed that NK3R is present on a distinct 
subset of cortically projecting BF GABAergic neurons (176). About 
92% of NK3 receptor positive neurons showed signals for GAD67 
mRNA (176). Only 10–15% of NK3R expressing neurons were 
PV-positive and only 1.7% of PV-positive neurons were NK3R 
positive (176). About 1.7% of NK3R neurons were positive for 
calretinin and none contained calbindin, NPY, or somatostatin.

Kv2.2 Channel immunoreactive Neurons
The potassium channel Kv2.2 is abundantly expressed in one group 
of BF GABAergic neurons (177). Less than 4% of Kv2.2 immu-
noreactive neurons stained positively for PV, establishing this as 
a separate group of GABAergic neurons (178). Sleep deprivation 
experiments showed that this group of neurons expressed more 
Fos, suggesting that this is a wake-active group of GABAergic 
neurons. Furthermore, knockout of the Kv2.2 channel led to more 
activity and promotion of wakefulness over sleep (178).

Neurotransmitter Regulation of wake-Promoting 
BF GABAergic Neurons
Our recent in vitro recordings in GAD67-GFP knock-in mice and 
PV-Tomato mice revealed that putative cortically projecting BF 
GABAergic and PV neurons are strongly excited by cholinergic 
inputs (31). Similarly, MS/DB GABAergic/PV neurons projecting 
to the hippocampus are excited by cholinergic agonists (190). Bath 
application of cholinergic agonists revealed that septohippocampal 
neurons are excited via M3 receptors (191) and indirectly by activa-
tion of nicotinic receptors on glutamatergic neurons (192). Two 
subpopulations of putative neocortically projecting BF GABAergic 
neurons (large Ih, small Ih) are excited via M1 muscarinic recep-
tors and M3 muscarinic receptors, respectively (31). Optogenetic 
stimulation of cholinergic fiber terminals revealed an additional 
excitatory effect mediated by nicotinic receptors (31). Interestingly, 
blockade of cholinergic receptors in the BF blocked the ability 
of optogenetic stimulation of cholinergic neurons to increase 
wakefulness, indicating that cholinergic modulation of behavioral 
state may depend on local interactions with BF GABAergic and/or 
glutamatergic neurons (193). Septohippocampal GABAergic/PV 
neurons are also excited by noradrenaline (194), histamine (195), 
serotonin (196), and orexin/hypocretins (197, 198). Preliminary 
experiments suggest that this is also true for putative neocortically 
projecting GABAergic neurons (32). Anatomical tracing studies 
revealed that PV containing BF neurons receive direct input 

from cortex (144) and dopaminergic inputs from the substantia 
nigra-VTA (199).

Summary
Several subsets of wake/REM active GABAergic neurons are present 
in the BF (Figure 4). They are strongly excited by wake-promoting 
neuromodulatory systems. Their projections target interneurons 
in the hippocampus and neocortex, as well as TRN GABAergic/
PV neurons allowing control of cortical rhythms, attention, and 
wakefulness. The precise functional role of these different subtypes 
awaits further study but BF PV projection neurons appear to have 
a particular role in control of cortical gamma oscillations.

wake-Active GABAergic Neurons are 
Fast-Firing, whereas Sleep-Active 
GABAergic Neurons are Slow Firing

In vitro, most putative ascending subcortical GABAergic neurons 
are fast-firing neurons, both in terms of their spontaneous firing 
rate and their maximum firing frequency. Those which contain PV 
are even faster-firing and have extremely brief action potentials and 
afterhyperpolarizations (24). Similarly, in vivo, these subpopula-
tions of GABAergic neurons show high rates of firing during 
waking and REM sleep. This fast-firing is at least partly due to 
the presence of Kv3.1 and Kv3.3 potassium channels. These chan-
nels are present in cortical interneurons, TRN neurons, and BF 
GABAergic neurons projecting to the hippocampus and neocortex. 
Knockout of Kv3.1 channels alone leads to a relatively mild arousal 
phenotype involving fourfold increased gamma (20–60 Hz) activ-
ity during wakefulness and reduced delta oscillations during all 
states (200). Given that GABAergic/PV neurons are thought to be 
involved in promoting gamma activity, these results suggest that 
developmental compensation occurs. Knockout of the Kv3.3 chan-
nel led to no discernible phenotype. However, double knockout 
mice lacking the genes encoding both of these proteins have severe 
deficits in sleep-wake behavior (201–203).

In contrast to the fast-firing of wake/REM sleep active 
GABAergic neurons, the majority of sleep-active, presumptive 
GABAergic neurons in the ventrolateral preoptic area, median 
preoptic area, and lateral hypothalamic area (MCH neurons) 
tend to be silent at rest and fire slowly (<15  Hz), even during 
sleep, the state when they discharge fastest (20, 38, 40, 204–206). 
These differences in firing rates suggest alternative complements of 
voltage-gated ion channels and neurotransmitter receptors in wake 
and sleep-active GABA neurons. Thus, differential pharmacologi-
cal modulation may be possible.

wake-Active GABAergic Neurons May Be 
a Prominent Target of Hypnotic Agents

As described in the previous section, most wake-promoting 
GABAergic neurons are neurons which exhibit a high spontane-
ous and maximal firing rate, consistent with a role in controlling 
the fast theta, beta, and gamma-band EEG oscillations typical 
of wakefulness. GABAergic hypnotic agents such as diazepam, 
zolpidem (AmbienTM, α1 subunit selective agent), and eszopiclone 
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(LunestaTM, acts at both α3 and α1-containing GABAA receptors), 
and anesthetic agents such as propofol are often considered to act by 
enhancing the inhibitory action of sleep-active preoptic GABAergic 
neurons on aminergic and cholinergic neuromodulatory systems. 
However, lesions or inactivation of these neuromodulatory systems 
have little effect on total amounts of sleep and waking [reviewed 
in Ref. (9)], suggesting that this explanation may not be correct. 
Furthermore, genetic removal of GABAA receptors from histamine 
neurons did not alter sleep-wake behavior and did not alter the 
loss of righting reflex usually produced by propofol administration 
(207). Perhaps, more likely is that these agents act by inhibiting 
the discharge of ascending GABAergic neurons and slowing the 
inhibitory postsynaptic potentials in their target neurons, disrupt-
ing their entrainment of cortical and thalamocortical neurons in 
the fast frequency bands normally observed during wakefulness. 
α1 subunits, considered the main mediator of sedative actions 
of benzodiazepines and the target of zolpidem (Ambien), are 
expressed at very high levels by GABAergic projection neurons 
in GPi and SNr (157), VTA (106, 208), and by BF PV neurons (209). 
Examination of the Allen mouse brain atlas also suggests very high 
levels of GABAergic α1 subunits in the VTg and NI. α3-subunits are 
expressed at high levels in TRN GABAergic neurons and in BF PV 
neurons. Thus, a major mechanism of action of hypnotics/sedatives 
acting at these receptors may be inhibition of ascending subcortical 
GABAergic neurons which promote high-frequency EEG rhythms, 
facilitating the slower EEG rhythms typical of non-REM sleep.

Summary and Conclusion

Recent technological advances have led to the identification and 
characterization of the properties of several groups of ascending 
subcortical GABAergic neurons, which are active during wake-
fulness and REM sleep, and may play a role in the generation/
maintenance of these states and/or the high-frequency EEG oscil-
lations with which they are associated. In particular, optogenetic 
and pharmacogenetic techniques exhibit great promise in discern-
ing the functional role of these neurons since they allow selective 
neuronal excitation and inhibition experiments to be performed. 
Optogenetic tools are particularly useful for dissecting out their 
role in EEG rhythms due to their fast temporal resolution (34, 35). 
Conversely, pharmocogenetic tools may be particularly useful for 
elucidating their role in behavioral state control due to their long 
duration of action (10, 210).

Two groups of GABAergic neurons in the brainstem NI and 
VTg nuclei play important roles in the control of theta rhythms 
involved in spatial navigation and memory processes through 

their projections to the medial septum, supramammillary 
and medial mammillary nuclei. Another group of brainstem/
midbrain GABAergic neurons in the RMTg region regulates 
the activity of VTA dopamine neurons involved in reward 
processes. GABAergic neurons in the VTA itself project to 
the cortex and NAcc and act to modulate attentive processes 
associated with reward. Several groups of GABAergic neurons 
in the thalamic reticular nucleus, ZI, and basal ganglia output 
nuclei control the activity of thalamic relay nuclei, suppress-
ing unimportant sensory information and unnecessary motor 
activity. GABAergic neurons in the caudal/intermediate BF 
and medial septum/diagonal band project to neocortical and 
hippocampal GABAergic interneurons, and control theta and 
gamma oscillations. BF GABAergic/PV neurons in particu-
lar play an important role in control of neocortical gamma 
oscillations.

How do ascending subcortical GABAergic systems turn 
a negative (inhibitory postsynaptic effects) into a positive 
(cortical activation/arousal)? Ascending cortically project-
ing GABAergic neurons in the BF, VTA, and possibly also 
the ZI, target inhibitory neocortical interneurons, allowing 
disinhibitory effects and entrainment of fast cortical oscil-
lations. Thalamic-targeting GABAergic neurons exert tonic 
inhibitory control, which can be suppressed in behaviorally 
important situations, potentiating thalamocortical transmis-
sion. Ascending GABAergic neurons exhibit narrow action 
potentials, brief hyperpolarizations, and are fast-firing. They 
often exhibit burst or cluster firing, and like cortical interneu-
rons many are electrically coupled, properties which will 
enhance their action on their post-synaptic targets and enable 
them to synchronize their activity into fast oscillations. Most 
ascending, wake-active GABAergic neurons also express potas-
sium channels and GABAA receptor subunits, which are the 
targets of anticonvulsant and hypnotic/anesthetic agents. Thus, 
further study of these neurons to determine their functional 
role and neuropharmacology is likely to be very important in 
order to develop novel therapeutic compounds to modulate 
cortical activation, memory, reward, and sleep. Furthermore, 
understanding the properties of ascending GABAergic neurons 
may allow novel treatments for diseases involving disorders of 
cortical activation and wakefulness.

Acknowledgments

This work was supported by VA, by NIMH R01 MH039683, 
NHLBI HL095491, and NIMH R21 MH094803.

References
 1. Valenstein ES. The War of the Soups and the Sparks. New York, NY: Columbia 

University Press (2005).
 2. Jouvet M. Biogenic amines and the states of sleep. Science (1969) 163:32–41. 

doi:10.1126/science.163.3862.32 
 3. Hobson JA, McCarley RW, Wyzinski PW. Sleep cycle oscillation: reciprocal dis-

charge by two brainstem neuronal groups. Science (1975) 189:55–8. doi:10.1126/
science.1094539 

 4. McCarley RW, Hobson JA. Neuronal excitability modulation over the sleep cycle: 
a structural and mathematical model. Science (1975) 189:58–60. doi:10.1126/
science.1135627 

 5. Winsky-Sommerer R. Role of GABAA receptors in the physiol-
ogy and pharmacology of sleep. Eur J Neurosci (2009) 29:1779–94. 
doi:10.1111/j.1460-9568.2009.06716.x 

 6. Sherin JE, Shiromani PJ, McCarley RW, Saper CB. Activation of ventrolateral 
preoptic neurons during sleep. Science (1996) 271:216–9. doi:10.1126/
science.271.5246.216 

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://dx.doi.org/10.1126/science.163.3862.32
http://dx.doi.org/10.1126/science.1094539
http://dx.doi.org/10.1126/science.1094539
http://dx.doi.org/10.1126/science.1135627
http://dx.doi.org/10.1126/science.1135627
http://dx.doi.org/10.1111/j.1460-9568.2009.06716.x
http://dx.doi.org/10.1126/science.271.5246.216
http://dx.doi.org/10.1126/science.271.5246.216
http://www.frontiersin.org


June 2015 | Volume 6 | Article 13512

Brown and McKenna GABAergic control of arousal

Frontiers in Neurology | www.frontiersin.org

 7. Lu J, Greco MA, Shiromani P, Saper CB. Effect of lesions of the ventrolateral 
preoptic nucleus on NREM and REM sleep. J Neurosci (2000) 20(10):3830–42. 

 8. Szymusiak R, Gvilia I, McGinty D. Hypothalamic control of sleep. Sleep Med 
(2007) 8:291–301. doi:10.1016/j.sleep.2007.03.013 

 9. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control 
of sleep and wakefulness. Physiol Rev (2012) 92:1087–187. doi:10.1152/
physrev.00032.2011 

 10. Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB, Lu J, et al.  The GABAergic 
parafacial zone is a medullary slow wave sleep-promoting center. Nat Neurosci 
(2014) 17(12):1217–24. doi:10.1038/nn.3789 

 11. Gritti I, Mainville L, Jones BE. Codistribution of GABA- with acetylcho-
line-synthesizing neurons in the basal forebrain of the rat. J Comp Neurol (1993) 
329:438–57. doi:10.1002/cne.903290403 

 12. Gritti I, Mainville L, Mancia M, Jones BE. GABAergic and other noncholinergic 
basal forebrain neurons, together with cholinergic neurons, project to the meso-
cortex and isocortex in the rat. J Comp Neurol (1997) 383:163–77. doi:10.1002/
(SICI)1096-9861(19970630)383:2<163::AID-CNE4>3.3.CO;2-T 

 13. Maloney KJ, Mainville L, Jones BE. Differential c-Fos expression in choliner-
gic, monoaminergic, and GABAergic cell groups of the pontomesencephalic 
tegmentum after paradoxical sleep deprivation and recovery. J Neurosci (1999) 
19:3057–72. 

 14. Maloney KJ, Mainville L, Jones BE. c-Fos expression in GABAergic, serotonergic, 
and other neurons of the pontomedullary reticular formation and raphe after 
paradoxical sleep deprivation and recovery. J Neurosci (2000) 20(12):4669–79. 

 15. Maloney KJ, Mainville L, Jones BE. c-Fos expression in dopaminergic 
and GABAergic neurons of the ventral mesencephalic tegmentum after 
paradoxical sleep deprivation and recovery. Eur J Neurosci (2002) 15:774–8. 
doi:10.1046/j.1460-9568.2002.01907.x 

 16. Gritti I, Manns ID, Mainville L, Jones BE. Parvalbumin, calbindin, or calretinin 
in cortically projecting and GABAergic, cholinergic, or glutamatergic basal 
forebrain neurons of the rat. J Comp Neurol (2003) 458:11–31. doi:10.1002/
cne.10505 

 17. Duque A, Balatoni B, Detari L, Zaborszky L. EEG correlation of the discharge 
properties of identified neurons in the basal forebrain. J Neurophysiol (2000) 
84(3):1627–35. 

 18. Boucetta S, Jones BE. Activity profiles of cholinergic and intermingled GABAergic 
and putative glutamatergic neurons in the pontomesencephalic tegmentum 
of urethane-anesthetized rats. J Neurosci (2009) 29:4664–74. doi:10.1523/
JNEUROSCI.5502-08.2009 

 19. Hassani OK, Lee MG, Henny P, Jones BE. Discharge profiles of identified 
GABAergic in comparison to cholinergic and putative glutamatergic basal 
forebrain neurons across the sleep-wake cycle. J Neurosci (2009) 29:11828–40. 
doi:10.1523/JNEUROSCI.1259-09.2009 

 20. Hassani OK, Henny P, Lee MG, Jones BE. GABAergic neurons intermingled with 
orexin and MCH neurons in the lateral hypothalamus discharge maximally during 
sleep. Eur J Neurosci (2010) 32:448–57. doi:10.1111/j.1460-9568.2010.07295.x 

 21. Celio MR, Heizmann CW. Calcium-binding protein parvalbumin as a neuronal 
marker. Nature (1981) 293:300–2. doi:10.1038/293300a0 

 22. Celio MR. Parvalbumin in most gamma-aminobutyric acid-containing neurons 
of the rat cerebral cortex. Science (1986) 231:995–7. doi:10.1126/science.3945815 

 23. Kawaguchi Y, Kondo S. Parvalbumin, somatostatin and cholecystokinin as 
chemical markers for specific GABAergic interneuron types in the rat frontal 
cortex. J Neurocytol (2002) 31:277–87. doi:10.1023/A:1024126110356 

 24. McKenna JT, Yang C, Franciosi S, Winston S, Abarr KK, Rigby MS, et al.  
Distribution and intrinsic membrane properties of basal forebrain GABAergic 
and parvalbumin neurons in the mouse. J Comp Neurol (2013) 521:1225–50. 
doi:10.1002/cne.23290 

 25. Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T. Green 
fluorescent protein expression and colocalization with calretinin, parvalbumin, 
and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol (2003) 
467(1):60–79. doi:10.1002/cne.10905 

 26. Chen L, McKenna JT, Leonard MZ, Yanagawa Y, McCarley RW, Brown RE. 
GAD67-GFP knock-in mice have normal sleep-wake patterns and sleep homeo-
stasis. Neuroreport (2010) 21:216–20. doi:10.1097/WNR.0b013e32833655c4 

 27. McNally JM, McCarley RW, McKenna JT, Yanagawa Y, Brown RE. Complex 
receptor mediation of acute ketamine application on in  vitro gamma 
oscillations in mouse prefrontal cortex: modeling gamma band oscillation 

abnormalities in schizophrenia. Neuroscience (2011) 199:51–63. doi:10.1016/j.
neuroscience.2011.10.015 

 28. Brown RE, McKenna JT, Winston S, Basheer R, Yanagawa Y, Thakkar MM, 
et al.  Characterization of GABAergic neurons in rapid-eye-movement 
sleep controlling regions of the brainstem reticular formation in GAD67-
green fluorescent protein knock-in mice. Eur J Neurosci (2008) 27:352–63. 
doi:10.1111/j.1460-9568.2008.06024.x 

 29. McKenna JT, Rigby MS, Chen L, Winston S, Yanagawa Y, McCarley RW, et al.  
GAD67-GFP knock-in mice as a tool to investigate GABAergic neurons involved 
in behavioral state control. Sleep (2010) 33:A136. 

 30. Yang C, Franciosi S, Brown RE. Adenosine inhibits the excitatory synaptic inputs 
to basal forebrain cholinergic, GABAergic, and parvalbumin neurons in mice. 
Front Neurol (2013) 4:77. doi:10.3389/fneur.2013.00077 

 31. Yang C, McKenna JT, Zant JC, Winston S, Basheer R, Brown RE. Cholinergic 
neurons excite cortically projecting basal forebrain GABAergic neurons. J 
Neurosci (2014) 34:2832–44. doi:10.1523/JNEUROSCI.3235-13.2014 

 32. Brown RE, Franciosi S, McKenna JT, Winston S, Yanagawa Y, McCarley 
RW. Electrophysiological and pharmacological characterization of cortically 
projecting basal forebrain neurons in the mouse. Soc Neurosci Abs (2008). abstr. 
384.16. 

 33. Deisseroth K. Optogenetics. Nat Methods (2011) 8:26–9. doi:10.1038/nmeth.f.324 
 34. Lee HM, Giguere PM, Roth BL. DREADDs: novel tools for drug discovery 

and development. Drug Discov Today (2014) 19:469–73. doi:10.1016/j.
drudis.2013.10.018 

 35. Kim T, McKenna JT, McNally JM, Winston S, Yang C, Chen L, et al.  Optogenetic 
stimulation of parvalbumin-positive basal forebrain neurons entrains cortical 
gamma oscillations and promotes wakefulness. Soc Neurosci Abs (2011). abstr. 
286.215. 

 36. Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, et al.  Cortically 
projecting basal forebrain parvalbumin neurons regulate cortical gamma band 
oscillations. Proc Natl Acad Sci U S A (2015) 112(11):3535–40. doi:10.1073/
pnas.1413625112 

 37. Anaclet C, Fuller PM. In vivo interrogation of basal forebrain circuitry regulating 
arousal. Sleep (2013) 36:A24. 

 38. Szymusiak R, Alam N, Steininger TL, McGinty D. Sleep-waking discharge 
patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain 
Res (1998) 803:178–88. doi:10.1016/S0006-8993(98)00631-3 

 39. Szymusiak R, Steininger T, Alam N, McGinty D. Preoptic area sleep-regulating 
mechanisms. Arch Ital Biol (2001) 139:77–92. 

 40. Hassani OK, Lee MG, Jones BE. Melanin-concentrating hormone neurons 
discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. 
Proc Natl Acad Sci U S A (2009) 106:2418–22. doi:10.1073/pnas.0811400106 

 41. Xi MC, Morales FR, Chase MH. A GABAergic pontine reticular system is 
involved in the control of wakefulness and sleep. Sleep Res Online (1999) 
2:43–8. 

 42. Krenzer M, Anaclet C, Vetrivelan R, Wang N, Vong L, Lowell BB, et al.  Brainstem 
and spinal cord circuitry regulating REM sleep and muscle atonia. PLoS One 
(2011) 6:e24998. doi:10.1371/journal.pone.0024998 

 43. Freund TF, Buzsaki G. Interneurons of the hippocampus. Hippocampus (1996) 6:347–
470. doi:10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I 

 44. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, et al.  Driving 
fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 
(2009) 459:663–7. doi:10.1038/nature08002 

 45. Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma 
rhythms enhance cortical circuit performance. Nature (2009) 459:698–702. 
doi:10.1038/nature07991 

 46. Freund TF, Antal M. GABA-containing neurons in the septum control 
inhibitory interneurons in the hippocampus. Nature (1988) 336:170–3. 
doi:10.1038/336170a0 

 47. Freund TF, Meskenaite V. Gamma-Aminobutyric acid-containing basal forebrain 
neurons innervate inhibitory interneurons in the neocortex. Proc Natl Acad Sci 
U S A (1992) 89:738–42. doi:10.1073/pnas.89.2.738 

 48. Henny P, Jones BE. Projections from basal forebrain to prefrontal cortex comprise 
cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneu-
rons. Eur J Neurosci (2008) 27:654–70. doi:10.1111/j.1460-9568.2008.06029.x 

 49. Ford B, Holmes CJ, Mainville L, Jones BE. GABAergic neurons in the rat 
pontomesencephalic tegmentum: codistribution with cholinergic and other 

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://dx.doi.org/10.1016/j.sleep.2007.03.013
http://dx.doi.org/10.1152/physrev.00032.2011
http://dx.doi.org/10.1152/physrev.00032.2011
http://dx.doi.org/10.1038/nn.3789
http://dx.doi.org/10.1002/cne.903290403
http://dx.doi.org/10.1002/(SICI)1096-9861(19970630)383:2 < 163::AID-CNE4 > 3.3.CO;2-T
http://dx.doi.org/10.1002/(SICI)1096-9861(19970630)383:2 < 163::AID-CNE4 > 3.3.CO;2-T
http://dx.doi.org/10.1046/j.1460-9568.2002.01907.x
http://dx.doi.org/10.1002/cne.10505
http://dx.doi.org/10.1002/cne.10505
http://dx.doi.org/10.1523/JNEUROSCI.5502-08.2009
http://dx.doi.org/10.1523/JNEUROSCI.5502-08.2009
http://dx.doi.org/10.1523/JNEUROSCI.1259-09.2009
http://dx.doi.org/10.1111/j.1460-9568.2010.07295.x
http://dx.doi.org/10.1038/293300a0
http://dx.doi.org/10.1126/science.3945815
http://dx.doi.org/10.1023/A:1024126110356
http://dx.doi.org/10.1002/cne.23290
http://dx.doi.org/10.1002/cne.10905
http://dx.doi.org/10.1097/WNR.0b013e32833655c4
http://dx.doi.org/10.1016/j.neuroscience.2011.10.015
http://dx.doi.org/10.1016/j.neuroscience.2011.10.015
http://dx.doi.org/10.1111/j.1460-9568.2008.06024.x
http://dx.doi.org/10.3389/fneur.2013.00077
http://dx.doi.org/10.1523/JNEUROSCI.3235-13.2014
http://dx.doi.org/10.1038/nmeth.f.324
http://dx.doi.org/10.1016/j.drudis.2013.10.018
http://dx.doi.org/10.1016/j.drudis.2013.10.018
http://dx.doi.org/10.1073/pnas.1413625112
http://dx.doi.org/10.1073/pnas.1413625112
http://dx.doi.org/10.1016/S0006-8993(98)00631-3
http://dx.doi.org/10.1073/pnas.0811400106
http://dx.doi.org/10.1371/journal.pone.0024998
http://dx.doi.org/10.1002/(SICI)1098-1063(1996)6:4 < 347::AID-HIPO1 > 3.0.CO;2-I
http://dx.doi.org/10.1038/nature08002
http://dx.doi.org/10.1038/nature07991
http://dx.doi.org/10.1038/336170a0
http://dx.doi.org/10.1073/pnas.89.2.738
http://dx.doi.org/10.1111/j.1460-9568.2008.06029.x
http://www.frontiersin.org


June 2015 | Volume 6 | Article 13513

Brown and McKenna GABAergic control of arousal

Frontiers in Neurology | www.frontiersin.org

tegmental neurons projecting to the posterior lateral hypothalamus. J Comp 
Neurol (1995) 363:177–96. 

 50. Petsche H, Stumpf C, Gogolak G. [The significance of the rabbit’s septum as 
a relay station between the midbrain and the hippocampus. I. The control of 
hippocampus arousal activity by the septum cells.]. Electroencephalogr Clin 
Neurophysiol (1962) 14:202–11. doi:10.1016/0013-4694(62)90030-5 

 51. Vertes RP, Kocsis B. Brainstem-diencephalo-septohippocampal systems 
controlling the theta rhythm of the hippocampus. Neuroscience (1997) 
81:893–926. 

 52. Goto M, Swanson LW, Canteras NS. Connections of the nucleus incertus. J Comp 
Neurol (2001) 438:86–122. doi:10.1002/cne.1303 

 53. Olucha-Bordonau FE, Teruel V, Barcia-Gonzalez J, Ruiz-Torner A, Valverde-
Navarro AA, Martinez-Soriano F. Cytoarchitecture and efferent projections of 
the nucleus incertus of the rat. J Comp Neurol (2003) 464:62–97. doi:10.1002/
cne.10774 

 54. Ma S, Bonaventure P, Ferraro T, Shen PJ, Burazin TC, Bathgate RA, et al.  Relaxin-3 
in GABA projection neurons of nucleus incertus suggests widespread influence 
on forebrain circuits via G-protein-coupled receptor-135 in the rat. Neuroscience 
(2007) 144:165–90. doi:10.1016/j.neuroscience.2006.08.072 

 55. Teruel-Marti V, Cervera-Ferri A, Nunez A, Valverde-Navarro AA, Olucha-
Bordonau FE, Ruiz-Torner A. Anatomical evidence for a ponto-septal pathway 
via the nucleus incertus in the rat. Brain Res (2008) 1218:87–96. doi:10.1016/j.
brainres.2008.04.022 

 56. Olucha-Bordonau FE, Otero-Garcia M, Sanchez-Perez AM, Nunez A, Ma 
S, Gundlach AL. Distribution and targets of the relaxin-3 innervation of 
the septal area in the rat. J Comp Neurol (2012) 520:1903–39. doi:10.1002/
cne.23018 

 57. Sanchez-Perez AM, Arnal-Vicente I, Santos FN, Pereira CW, Elmlili N, Sanjuan 
J, et al.  Septal projections to nucleus incertus in the rat: bidirectional pathways 
for modulation of hippocampal function. J Comp Neurol (2015) 523(4):565–88. 
doi:10.1002/cne.23687 

 58. Nunez A, Cervera-Ferri A, Olucha-Bordonau F, Ruiz-Torner A, Teruel V. Nucleus 
incertus contribution to hippocampal theta rhythm generation. Eur J Neurosci 
(2006) 23:2731–8. doi:10.1111/j.1460-9568.2006.04797.x 

 59. Ma S, Blasiak A, Olucha-Bordonau FE, Verberne AJ, Gundlach AL. Heterogeneous 
responses of nucleus incertus neurons to corticotrophin-releasing factor and 
coherent activity with hippocampal theta rhythm in the rat. J Physiol (2013) 
591:3981–4001. doi:10.1113/jphysiol.2013.254300 

 60. Nategh M, Nikseresht S, Khodagholi F, Motamedi F. Nucleus incertus inactivation 
impairs spatial learning and memory in rats. Physiol Behav (2015) 139:112–20. 
doi:10.1016/j.physbeh.2014.11.014 

 61. Von Gudden B. Uber das corpus mammillare und die sogenannten schenkel 
des fornix. Vers Deutsch Natforsch (1884) 57:126. 

 62. Hayakawa T, Zyo K. Comparative cytoarchitectonic study of Gudden’s tegmental 
nuclei in some mammals. J Comp Neurol (1983) 216:233–44. doi:10.1002/
cne.902160302 

 63. Wirtshafter D, Stratford TR. Evidence for GABAergic projections from the 
tegmental nuclei of Gudden to the mammillary body in the rat. Brain Res (1993) 
630:188–94. doi:10.1016/0006-8993(93)90656-8 

 64. Saunders RC, Vann SD, Aggleton JP. Projections from Gudden’s tegmental nuclei 
to the mammillary body region in the cynomolgus monkey (Macaca fascicularis). 
J Comp Neurol (2012) 520:1128–45. doi:10.1002/cne.22740 

 65. Kocsis B, Di Prisco GV, Vertes RP. Theta synchronization in the limbic system: 
the role of Gudden’s tegmental nuclei. Eur J Neurosci (2001) 13(2):381–8. 
doi:10.1111/j.1460-9568.2001.tb01708.x

 66. Bassant MH, Poindessous-Jazat F. Ventral tegmental nucleus of Gudden: a pon-
tine hippocampal theta generator? Hippocampus (2001) 11:809–13. doi:10.1002/
hipo.1096 

 67. Bassant MH, Poindessous-Jazat F. Sleep-related increase in activity of meso-
pontine neurons in old rats. Neurobiol Aging (2002) 23(4):615–24. doi:10.1016/
S0197-4580(01)00339-6 

 68. Brown RE, Franciosi S, Yanagawa Y, McCarley RW. Cellular mechanisms 
underlying theta rhythm in a mammillary body-tegmentum circuit. Soc Neurosci 
Abs (2007). abstr. 734.715.

 69. Brown RE, McKenna JT, Winston S, Yanagawa Y, McCarley RW. Long-lasting 
plateau potentials and carbachol suppression of orexin excitation in GABAergic 
ventral tegmental nucleus of Gudden neurons: implications for theta burst firing. 
Sleep (2009) 32:A32. 

 70. Hayakawa T, Zyo K. Retrograde double-labeling study of the mammillothalamic 
and the mammillotegmental projections in the rat. J Comp Neurol (1989) 
284:1–11. doi:10.1002/cne.902840102 

 71. Allen GV, Hopkins DA. Topography and synaptology of mamillary body 
projections to the mesencephalon and pons in the rat. J Comp Neurol (1990) 
301:214–31. doi:10.1002/cne.903010206 

 72. McKenna JT, Franciosi S, Winston S, Yanagawa Y, McCarley RW, Brown RE. 
Neuroanatomical investigation of brainstem projections to the medial mam-
millary body:possible implications for the modulation of theta rhythm. Sleep 
(2009) 32:A30. 

 73. Vann SD, Aggleton JP. The mammillary bodies: two memory systems in one? 
Nat Rev Neurosci (2004) 5:35–44. doi:10.1038/nrn1299 

 74. Kirk IJ, Oddie SD, Konopacki J, Bland BH. Evidence for differential control of 
posterior hypothalamic, supramammillary, and medial mammillary theta-related 
cellular discharge by ascending and descending pathways. J Neurosci (1996) 
16:5547–54. 

 75. Kocsis B, Vertes RP. Phase relations of rhythmic neuronal firing in the supra-
mammillary nucleus and mammillary body to the hippocampal theta activity 
in urethane anesthetized rats. Hippocampus (1997) 7:204–14. doi:10.1002/
(SICI)1098-1063(1997)7:2<204::AID-HIPO7>3.0.CO;2-M 

 76. Alonso A, Llinas RR. Electrophysiology of the mammillary complex in vitro. II. 
Medial mammillary neurons. J Neurophysiol (1992) 68:1321–31. 

 77. Swanson LW, Cowan WM. Hippocampo-hypothalamic connections: origin in 
subicular cortex, not ammon’s horn. Science (1975) 189:303–4. doi:10.1126/
science.49928 

 78. Kirk IJ, Mackay JC. The role of theta-range oscillations in synchronising and inte-
grating activity in distributed mnemonic networks. Cortex (2003) 39:993–1008. 
doi:10.1016/S0010-9452(08)70874-8 

 79. Vertes RP, Albo Z, Viana DP. Theta-rhythmically firing neurons in the anterior 
thalamus: implications for mnemonic functions of Papez’s circuit. Neuroscience 
(2001) 104:619–25. doi:10.1016/S0306-4522(01)00131-2 

 80. Tsanov M, Chah E, Wright N, Vann SD, Reilly R, Erichsen JT, et al.  Oscillatory 
entrainment of thalamic neurons by theta rhythm in freely moving rats. J 
Neurophysiol (2011) 105:4–17. doi:10.1152/jn.00771.2010 

 81. Papez JW. A proposed mechanism of emotion. 1937. J Neuropsychiatry Clin 
Neurosci (1995) 7:103–12. doi:10.1176/jnp.7.1.103 

 82. Vann SD. Dismantling the Papez circuit for memory in rats. Elife (2013) 2:e00736. 
doi:10.7554/eLife.00736 

 83. Vann SD. Re-evaluating the role of the mammillary bodies in memory. 
Neuropsychologia (2010) 48:2316–27. doi:10.1016/j.neuropsychologia.2009.10.019 

 84. Vann SD. Gudden’s ventral tegmental nucleus is vital for memory: re-evaluating 
diencephalic inputs for amnesia. Brain (2009) 132:2372–84. doi:10.1093/brain/
awp175 

 85. Tsanov M, Chah E, Vann SD, Reilly RB, Erichsen JT, Aggleton JP, et al.  Theta-
modulated head direction cells in the rat anterior thalamus. J Neurosci (2011) 
31:9489–502. doi:10.1523/JNEUROSCI.0353-11.2011 

 86. Tsanov M, O’Mara SM. Decoding signal processing in thalamo-hippocampal 
circuitry: implications for theories of memory and spatial processing. Brain Res 
(2014). doi:10.1016/j.brainres.2014.12.003 

 87. Carr DB, Sesack SR. GABA-containing neurons in the rat ventral teg-
mental area project to the prefrontal cortex. Synapse (2000) 38:114–23. 
doi:10.1002/1098-2396(200011)38:2<114::AID-SYN2>3.0.CO;2-R 

 88. Nair-Roberts RG, Chatelain-Badie SD, Benson E, White-Cooper H, Bolam 
JP, Ungless MA. Stereological estimates of dopaminergic, GABAergic and 
glutamatergic neurons in the ventral tegmental area, substantia nigra and 
retrorubral field in the rat. Neuroscience (2008) 152:1024–31. doi:10.1016/j.
neuroscience.2008.01.046 

 89. Chieng B, Azriel Y, Mohammadi S, Christie MJ. Distinct cellular properties of 
identified dopaminergic and GABAergic neurons in the mouse ventral tegmental 
area. J Physiol (2011) 589:3775–87. doi:10.1113/jphysiol.2011.210807 

 90. Taylor SR, Badurek S, Dileone RJ, Nashmi R, Minichiello L, Picciotto MR. 
GABAergic and glutamatergic efferents of the mouse ventral tegmental area. 
J Comp Neurol (2014) 522:3308–34. doi:10.1002/cne.23603 

 91. Pirot S, Godbout R, Mantz J, Tassin JP, Glowinski J, Thierry AM. 
Inhibitory effects of ventral tegmental area stimulation on the activity of 
prefrontal cortical neurons: evidence for the involvement of both dopa-
minergic and GABAergic components. Neuroscience (1992) 49:857–65. 
doi:10.1016/0306-4522(92)90362-6 

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://dx.doi.org/10.1016/0013-4694(62)90030-5
http://dx.doi.org/10.1002/cne.1303
http://dx.doi.org/10.1002/cne.10774
http://dx.doi.org/10.1002/cne.10774
http://dx.doi.org/10.1016/j.neuroscience.2006.08.072
http://dx.doi.org/10.1016/j.brainres.2008.04.022
http://dx.doi.org/10.1016/j.brainres.2008.04.022
http://dx.doi.org/10.1002/cne.23018
http://dx.doi.org/10.1002/cne.23018
http://dx.doi.org/10.1002/cne.23687
http://dx.doi.org/10.1111/j.1460-9568.2006.04797.x
http://dx.doi.org/10.1113/jphysiol.2013.254300
http://dx.doi.org/10.1016/j.physbeh.2014.11.014
http://dx.doi.org/10.1002/cne.902160302
http://dx.doi.org/10.1002/cne.902160302
http://dx.doi.org/10.1016/0006-8993(93)90656-8
http://dx.doi.org/10.1002/cne.22740
http://dx.doi.org/10.1111/j.1460-9568.2001.tb01708.x
http://dx.doi.org/10.1002/hipo.1096
http://dx.doi.org/10.1002/hipo.1096
http://dx.doi.org/10.1016/S0197-4580(01)00339-6
http://dx.doi.org/10.1016/S0197-4580(01)00339-6
http://dx.doi.org/10.1002/cne.902840102
http://dx.doi.org/10.1002/cne.903010206
http://dx.doi.org/10.1038/nrn1299
http://dx.doi.org/10.1002/(SICI)1098-1063(1997)7:2 < 204::AID-HIPO7 > 3.0.CO;2-M
http://dx.doi.org/10.1002/(SICI)1098-1063(1997)7:2 < 204::AID-HIPO7 > 3.0.CO;2-M
http://dx.doi.org/10.1126/science.49928
http://dx.doi.org/10.1126/science.49928
http://dx.doi.org/10.1016/S0010-9452(08)70874-8
http://dx.doi.org/10.1016/S0306-4522(01)00131-2
http://dx.doi.org/10.1152/jn.00771.2010
http://dx.doi.org/10.1176/jnp.7.1.103
http://dx.doi.org/10.7554/eLife.00736
http://dx.doi.org/10.1016/j.neuropsychologia.2009.10.019
http://dx.doi.org/10.1093/brain/awp175
http://dx.doi.org/10.1093/brain/awp175
http://dx.doi.org/10.1523/JNEUROSCI.0353-11.2011
http://dx.doi.org/10.1016/j.brainres.2014.12.003
http://dx.doi.org/10.1002/1098-2396(200011)38:2 < 114::AID-SYN2 > 3.0.CO;2-R
http://dx.doi.org/10.1016/j.neuroscience.2008.01.046
http://dx.doi.org/10.1016/j.neuroscience.2008.01.046
http://dx.doi.org/10.1113/jphysiol.2011.210807
http://dx.doi.org/10.1002/cne.23603
http://dx.doi.org/10.1016/0306-4522(92)90362-6
http://www.frontiersin.org


June 2015 | Volume 6 | Article 13514

Brown and McKenna GABAergic control of arousal

Frontiers in Neurology | www.frontiersin.org

 92. Van Bockstaele EJ, Pickel VM. GABA-containing neurons in the ventral tegmental 
area project to the nucleus accumbens in rat brain. Brain Res (1995) 682:215–21. 
doi:10.1016/0006-8993(95)00334-M 

 93. Steffensen SC, Svingos AL, Pickel VM, Henriksen SJ. Electrophysiological 
characterization of GABAergic neurons in the ventral tegmental area. J Neurosci 
(1998) 18:8003–15. 

 94. Brown MT, Tan KR, O’connor EC, Nikonenko I, Muller D, Luscher C. Ventral 
tegmental area GABA projections pause accumbal cholinergic interneurons to 
enhance associative learning. Nature (2012) 492:452–6. doi:10.1038/nature11657 

 95. Stobbs SH, Ohran AJ, Lassen MB, Allison DW, Brown JE, Steffensen SC. 
Ethanol suppression of ventral tegmental area GABA neuron electrical trans-
mission involves N-methyl-D-aspartate receptors. J Pharmacol Exp Ther (2004) 
311:282–9. doi:10.1124/jpet.104.071860 

 96. Allison DW, Ohran AJ, Stobbs SH, Mameli M, Valenzuela CF, Sudweeks SN, 
et al.  Connexin-36 gap junctions mediate electrical coupling between ventral 
tegmental area GABA neurons. Synapse (2006) 60:20–31. doi:10.1002/syn.20272 

 97. Lassen MB, Brown JE, Stobbs SH, Gunderson SH, Maes L, Valenzuela CF, et al.  
Brain stimulation reward is integrated by a network of electrically coupled GABA 
neurons. Brain Res (2007) 1156:46–58. doi:10.1016/j.brainres.2007.04.053 

 98. Lee RS, Steffensen SC, Henriksen SJ. Discharge profiles of ventral tegmental 
area GABA neurons during movement, anesthesia, and the sleep-wake cycle. J 
Neurosci (2001) 21(5):1757–66. 

 99. Steffensen SC, Lee RS, Stobbs SH, Henriksen SJ. Responses of ventral tegmental 
area GABA neurons to brain stimulation reward. Brain Res (2001) 906:190–7. 
doi:10.1016/S0006-8993(01)02581-1 

 100. Korotkova TM, Sergeeva OA, Eriksson KS, Haas HL, Brown RE. Excitation of 
ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/
hypocretins. J Neurosci (2003) 23(1):7–11. 

 101. Korotkova TM, Brown RE, Sergeeva OA, Ponomarenko AA, Haas HL. Effects 
of arousal- and feeding-related neuropeptides on dopaminergic and GABAergic 
neurons in the ventral tegmental area of the rat. Eur J Neurosci (2006) 23:2677–85. 
doi:10.1111/j.1460-9568.2006.04977.x 

 102. Korotkova TM, Haas HL, Brown RE. Histamine excites GABAergic cells in the 
rat substantia nigra and ventral tegmental area in vitro. Neurosci Lett (2002) 
320:133–6. doi:10.1016/S0304-3940(02)00050-2 

 103. Carr DB, Sesack SR. Projections from the rat prefrontal cortex to the ventral teg-
mental area: target specificity in the synaptic associations with mesoaccumbens 
and mesocortical neurons. J Neurosci (2000) 20(10):3864–73. 

 104. Fujisawa S, Buzsaki G. A 4 Hz oscillation adaptively synchronizes prefrontal, 
VTA, and hippocampal activities. Neuron (2011) 72:153–65. doi:10.1016/j.
neuron.2011.08.018 

 105. Johnson SW, North RA. Opioids excite dopamine neurons by hyperpolarization 
of local interneurons. J Neurosci (1992) 12:483–8. 

 106. Tan KR, Brown M, Labouebe G, Yvon C, Creton C, Fritschy JM, et al.  Neural 
bases for addictive properties of benzodiazepines. Nature (2010) 463:769–74. 
doi:10.1038/nature08758 

 107. Van Zessen R, Phillips JL, Budygin EA, Stuber GD. Activation of VTA GABA 
neurons disrupts reward consumption. Neuron (2012) 73:1184–94. doi:10.1016/j.
neuron.2012.02.016 

 108. Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N. Neuron-type-specific signals 
for reward and punishment in the ventral tegmental area. Nature (2012) 482:85–8. 
doi:10.1038/nature10754 

 109. Jhou TC, Geisler S, Marinelli M, Degarmo BA, Zahm DS. The mesopontine 
rostromedial tegmental nucleus: a structure targeted by the lateral habenula that 
projects to the ventral tegmental area of Tsai and substantia nigra compacta. J 
Comp Neurol (2009) 513:566–96. doi:10.1002/cne.21891 

 110. Kaufling J, Veinante P, Pawlowski SA, Freund-Mercier MJ, Barrot M. Afferents 
to the GABAergic tail of the ventral tegmental area in the rat. J Comp Neurol 
(2009) 513:597–621. doi:10.1002/cne.21983 

 111. Hong S, Jhou TC, Smith M, Saleem KS, Hikosaka O. Negative reward signals 
from the lateral habenula to dopamine neurons are mediated by rostromedial 
tegmental nucleus in primates. J Neurosci (2011) 31:11457–71. doi:10.1523/
JNEUROSCI.1384-11.2011 

 112. Barrot M, Sesack SR, Georges F, Pistis M, Hong S, Jhou TC. Braking dopamine 
systems: a new GABA master structure for mesolimbic and nigrostriatal func-
tions. J Neurosci (2012) 32:14094–101. doi:10.1523/JNEUROSCI.3370-12.2012 

 113. Matsumoto M, Hikosaka O. Lateral habenula as a source of negative reward sig-
nals in dopamine neurons. Nature (2007) 447:1111–5. doi:10.1038/nature05860 

 114. Jhou TC, Fields HL, Baxter MG, Saper CB, Holland PC. The rostromedial 
tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine 
neurons, encodes aversive stimuli and inhibits motor responses. Neuron (2009) 
61:786–800. doi:10.1016/j.neuron.2009.02.001 

 115. Lecca S, Melis M, Luchicchi A, Muntoni AL, Pistis M. Inhibitory inputs from 
rostromedial tegmental neurons regulate spontaneous activity of midbrain 
dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology 
(2012) 37:1164–76. doi:10.1038/npp.2011.302 

 116. Jalabert M, Bourdy R, Courtin J, Veinante P, Manzoni OJ, Barrot M, et al.  
Neuronal circuits underlying acute morphine action on dopamine neurons. 
Proc Natl Acad Sci U S A (2011) 108:16446–50. doi:10.1073/pnas.1105418108 

 117. Saper CB. Organization of cerebral cortical afferent systems in the rat. II. 
Hypothalamocortical projections. J Comp Neurol (1985) 237:21–46. doi:10.1002/
cne.902370103 

 118. Brown RE, Stevens DR, Haas HL. The physiology of brain histamine. Prog 
Neurobiol (2001) 63(6):637–72. doi:10.1016/S0301-0082(00)00039-3 

 119. Esclapez M, Tillakaratne NJ, Tobin AJ, Houser CR. Comparative localization of 
mRNAs encoding two forms of glutamic acid decarboxylase with nonradioactive 
in situ hybridization methods. J Comp Neurol (1993) 331:339–62. doi:10.1002/
cne.903310305 

 120. Williams RH, Chee MJ, Kroeger D, Ferrari LL, Maratos-Flier E, Scammell TE, et 
al.  Optogenetic-mediated release of histamine reveals distal and autoregulatory 
mechanisms for controlling arousal. J Neurosci (2014) 34:6023–9. doi:10.1523/
JNEUROSCI.4838-13.2014 

 121. Lin CS, Nicolelis MA, Schneider JS, Chapin JK. A major direct GABAergic 
pathway from zona incerta to neocortex. Science (1990) 248:1553–6. doi:10.1126/
science.2360049 

 122. Kohler C, Haglund L, Swanson LW. A diffuse alpha MSH-immunoreactive 
projection to the hippocampus and spinal cord from individual neurons in the 
lateral hypothalamic area and zona incerta. J Comp Neurol (1984) 223:501–14. 
doi:10.1002/cne.902230404 

 123. Shiosaka S, Shibasaki T, Tohyama M. Bilateral alpha-melanocyte stimulating 
hormonergic fiber system from zona incerta to cerebral cortex: combined 
retrograde axonal transport and immunohistochemical study. Brain Res (1984) 
309:350–3. 

 124. Saper CB, Akil H, Watson SJ. Lateral hypothalamic innervation of the cerebral 
cortex: immunoreactive staining for a peptide resembling but immunochemically 
distinct from pituitary/arcuate alpha-melanocyte stimulating hormone. Brain 
Res Bull (1986) 16:107–20. 

 125. Bartho P, Freund TF, Acsady L. Selective GABAergic innervation of 
thalamic nuclei from zona incerta. Eur J Neurosci (2002) 16:999–1014. 
doi:10.1046/j.1460-9568.2002.02157.x 

 126. Trageser JC, Burke KA, Masri R, Li Y, Sellers L, Keller A. State-dependent gating 
of sensory inputs by zona incerta. J Neurophysiol (2006) 96:1456–63. doi:10.1152/
jn.00423.2006 

 127. Lavallee P, Urbain N, Dufresne C, Bokor H, Acsady L, Deschenes M. Feedforward 
inhibitory control of sensory information in higher-order thalamic nuclei. J 
Neurosci (2005) 25:7489–98. doi:10.1523/JNEUROSCI.2301-05.2005 

 128. Sidibe M, Bevan MD, Bolam JP, Smith Y. Efferent connections of the internal 
globus pallidus in the squirrel monkey: I. Topography and synaptic organization 
of the pallidothalamic projection. J Comp Neurol (1997) 382:323–47. doi:10.1002/
(SICI)1096-9861(19970609)382:3<323::AID-CNE3>3.0.CO;2-5 

 129. Kha HT, Finkelstein DI, Tomas D, Drago J, Pow DV, Horne MK. Projections 
from the substantia nigra pars reticulata to the motor thalamus of the rat: single 
axon reconstructions and immunohistochemical study. J Comp Neurol (2001) 
440:20–30. doi:10.1002/cne.1367 

 130. Sidibe M, Pare JF, Smith Y. Nigral and pallidal inputs to functionally segregated 
thalamostriatal neurons in the centromedian/parafascicular intralaminar nuclear 
complex in monkey. J Comp Neurol (2002) 447(3):286–99. doi:10.1002/cne.10247

 131. Churchill L, Zahm DS, Kalivas PW. The mediodorsal nucleus of the thalamus 
in rats – I. forebrain gabaergic innervation. Neuroscience (1996) 70:93–102. 
doi:10.1016/0306-4522(95)00351-I 

 132. Steriade M, Deschenes M, Domich L, Mulle C. Abolition of spindle oscillations in 
thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol 
(1985) 54:1473–97. 

 133. Halassa MM, Siegle JH, Ritt JT, Ting JT, Feng G, Moore CI. Selective optical drive 
of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nat 
Neurosci (2011) 14:1118–20. doi:10.1038/nn.2880 

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://dx.doi.org/10.1016/0006-8993(95)00334-M
http://dx.doi.org/10.1038/nature11657
http://dx.doi.org/10.1124/jpet.104.071860
http://dx.doi.org/10.1002/syn.20272
http://dx.doi.org/10.1016/j.brainres.2007.04.053
http://dx.doi.org/10.1016/S0006-8993(01)02581-1
http://dx.doi.org/10.1111/j.1460-9568.2006.04977.x
http://dx.doi.org/10.1016/S0304-3940(02)00050-2
http://dx.doi.org/10.1016/j.neuron.2011.08.018
http://dx.doi.org/10.1016/j.neuron.2011.08.018
http://dx.doi.org/10.1038/nature08758
http://dx.doi.org/10.1016/j.neuron.2012.02.016
http://dx.doi.org/10.1016/j.neuron.2012.02.016
http://dx.doi.org/10.1038/nature10754
http://dx.doi.org/10.1002/cne.21891
http://dx.doi.org/10.1002/cne.21983
http://dx.doi.org/10.1523/JNEUROSCI.1384-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.1384-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.3370-12.2012
http://dx.doi.org/10.1038/nature05860
http://dx.doi.org/10.1016/j.neuron.2009.02.001
http://dx.doi.org/10.1038/npp.2011.302
http://dx.doi.org/10.1073/pnas.1105418108
http://dx.doi.org/10.1002/cne.902370103
http://dx.doi.org/10.1002/cne.902370103
http://dx.doi.org/10.1016/S0301-0082(00)00039-3
http://dx.doi.org/10.1002/cne.903310305
http://dx.doi.org/10.1002/cne.903310305
http://dx.doi.org/10.1523/JNEUROSCI.4838-13.2014
http://dx.doi.org/10.1523/JNEUROSCI.4838-13.2014
http://dx.doi.org/10.1126/science.2360049
http://dx.doi.org/10.1126/science.2360049
http://dx.doi.org/10.1002/cne.902230404
http://dx.doi.org/10.1046/j.1460-9568.2002.02157.x
http://dx.doi.org/10.1152/jn.00423.2006
http://dx.doi.org/10.1152/jn.00423.2006
http://dx.doi.org/10.1523/JNEUROSCI.2301-05.2005
http://dx.doi.org/10.1002/(SICI)1096-9861(19970609)382:3 < 323::AID-CNE3 > 3.0.CO;2-5
http://dx.doi.org/10.1002/(SICI)1096-9861(19970609)382:3 < 323::AID-CNE3 > 3.0.CO;2-5
http://dx.doi.org/10.1002/cne.1367
http://dx.doi.org/10.1002/cne.10247
http://dx.doi.org/10.1016/0306-4522(95)00351-I
http://dx.doi.org/10.1038/nn.2880
http://www.frontiersin.org


June 2015 | Volume 6 | Article 13515

Brown and McKenna GABAergic control of arousal

Frontiers in Neurology | www.frontiersin.org

 134. Mukhametov LM, Rizzolatti G, Tradardi V. Spontaneous activity of neurones of 
nucleus reticularis thalami in freely moving cats. J Physiol (1970) 210:651–67. 
doi:10.1113/jphysiol.1970.sp009233 

 135. Barrionuevo G, Benoit O, Tempier P. Evidence for two types of firing pattern 
during the sleep-waking cycle in the reticular thalamic nucleus of the cat. Exp 
Neurol (1981) 72:486–501. doi:10.1016/0014-4886(81)90238-7 

 136. Steriade M, Domich L, Oakson G. Reticularis thalami neurons revisited: activity 
changes during shifts in states of vigilance. J Neurosci (1986) 6:68–81. 

 137. McCormick DA, Wang Z. Serotonin and noradrenaline excite GABAergic 
neurones of the guinea-pig and cat nucleus reticularis thalami. J Physiol (1991) 
442:235–55. doi:10.1113/jphysiol.1991.sp018791 

 138. Halassa MM, Chen Z, Wimmer RD, Brunetti PM, Zhao S, Zikopoulos B, et al.  
State-dependent architecture of thalamic reticular subnetworks. Cell (2014) 
158:808–21. doi:10.1016/j.cell.2014.06.025 

 139. McAlonan K, Cavanaugh J, Wurtz RH. Guarding the gateway to cortex with 
attention in visual thalamus. Nature (2008) 456:391–4. doi:10.1038/nature07382 

 140. Kayahara T, Nakano K. The globus pallidus sends axons to the thalamic reticular 
nucleus neurons projecting to the centromedian nucleus of the thalamus: a light 
and electron microscope study in the cat. Brain Res Bull (1998) 45:623–30. 
doi:10.1016/S0361-9230(97)00464-4 

 141. Gulcebi MI, Ketenci S, Linke R, Hacioglu H, Yanali H, Veliskova J, et al.  
Topographical connections of the substantia nigra pars reticulata to higher-or-
der thalamic nuclei in the rat. Brain Res Bull (2012) 87:312–8. doi:10.1016/j.
brainresbull.2011.11.005 

 142. Jourdain A, Semba K, Fibiger HC. Basal forebrain and mesopontine tegmental 
projections to the reticular thalamic nucleus: an axonal collateralization 
and immunohistochemical study in the rat. Brain Res (1989) 505:55–65. 
doi:10.1016/0006-8993(89)90115-7 

 143. Bickford ME, Gunluk AE, Van Horn SC, Sherman SM. GABAergic projection 
from the basal forebrain to the visual sector of the thalamic reticular nucleus in 
the cat. J Comp Neurol (1994) 348:481–510. 

 144. Zaborszky L, Gaykema RP, Swanson DJ, Cullinan WE. Cortical input to the basal 
forebrain. Neuroscience (1997) 79:1051–78. doi:10.1016/S0306-4522(97)00049-3 

 145. Golmayo L, Nunez A, Zaborszky L. Electrophysiological evidence for the exis-
tence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating 
sensory responses in visual and somatosensory rat cortical areas. Neuroscience 
(2003) 119:597–609. doi:10.1016/S0306-4522(03)00031-9 

 146. Gyengesi E, Zaborszky L, Detari L. The effect of prefrontal stimulation on the 
firing of basal forebrain neurons in urethane anesthetized rat. Brain Res Bull 
(2008) 75:570–80. doi:10.1016/j.brainresbull.2007.09.008 

 147. Pinault D, Deschenes M. Control of 40-Hz firing of reticular tha-
lamic cells by neurotransmitters. Neuroscience (1992) 51:259–68. 
doi:10.1016/0306-4522(92)90313-Q 

 148. Pinault D, Deschenes M. Voltage-dependent 40-Hz oscillations in rat 
reticular thalamic neurons in  vivo. Neuroscience (1992) 51:245–58. 
doi:10.1016/0306-4522(92)90312-P 

 149. MacDonald KD, Fifkova E, Jones MS, Barth DS. Focal stimulation of the thalamic 
reticular nucleus induces focal gamma waves in cortex. J Neurophysiol (1998) 
79:474–7. 

 150. Van Der Werf YD, Witter MP, Groenewegen HJ. The intralaminar and midline 
nuclei of the thalamus. Anatomical and functional evidence for participation in 
processes of arousal and awareness. Brain Res Brain Res Rev (2002) 39:107–40. 
doi:10.1016/S0165-0173(02)00181-9 

 151. Alkire MT, McReynolds JR, Hahn EL, Trivedi AN. Thalamic microinjection 
of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. 
Anesthesiology (2007) 107:264–72. doi:10.1097/01.anes.0000270741.33766.24 

 152. Alkire MT, Asher CD, Franciscus AM, Hahn EL. Thalamic microinfusion of anti-
body to a voltage-gated potassium channel restores consciousness during anes-
thesia. Anesthesiology (2009) 110:766–73. doi:10.1097/ALN.0b013e31819c461c 

 153. Quinkert AW, Schiff ND, Pfaff DW. Temporal patterning of pulses during deep 
brain stimulation affects central nervous system arousal. Behav Brain Res (2010) 
214:377–85. doi:10.1016/j.bbr.2010.06.009 

 154. Lioudyno MI, Birch AM, Tanaka BS, Sokolov Y, Goldin AL, Chandy KG, et al.  
Shaker-related potassium channels in the central medial nucleus of the thalamus 
are important molecular targets for arousal suppression by volatile general anes-
thetics. J Neurosci (2013) 33:16310–22. doi:10.1523/JNEUROSCI.0344-13.2013 

 155. Baker R, Gent TC, Yang Q, Parker S, Vyssotski AL, Wisden W, et al.  Altered 
activity in the central medial thalamus precedes changes in the neocortex 

during transitions into both sleep and propofol anesthesia. J Neurosci (2014) 
34:13326–35. doi:10.1523/JNEUROSCI.1519-14.2014 

 156. Duncan GE, Breese GR, Criswell HE, McCown TJ, Herbert JS, Devaud LL, et 
al.  Distribution of [3H]zolpidem binding sites in relation to messenger RNA 
encoding the alpha 1, beta 2 and gamma 2 subunits of GABAA receptors in rat 
brain. Neuroscience (1995) 64:1113–28. doi:10.1016/0306-4522(94)00433-6 

 157. Fritschy JM, Mohler H. GABAA-receptor heterogeneity in the adult rat brain: 
differential regional and cellular distribution of seven major subunits. J Comp 
Neurol (1995) 359:154–94. doi:10.1002/cne.903590111 

 158. Chen L, Savio CC, Yung WH. Electrophysiological and behavioral effects of 
zolpidem in rat globus pallidus. Exp Neurol (2004) 186:212–20. doi:10.1016/j.
expneurol.2003.11.003 

 159. Zhang LL, Chen L, Xue Y, Yung WH. Modulation of synaptic GABAA receptor 
function by zolpidem in substantia nigra pars reticulata. Acta Pharmacol Sin 
(2008) 29:161–8. doi:10.1111/j.1745-7254.2008.00735.x 

 160. Dennis T, Dubois A, Benavides J, Scatton B. Distribution of central omega 1 
(benzodiazapine1) and omega 2 (benzodiazapine2) receptor subtypes in the 
monkey and human brain. An autoradiographic study with [3H]flunitrazepam 
and the omega 1 selective ligand [3H]zolpidem. J Pharmacol Exp Ther (1988) 
247(1):309–22.  

 161. Schiff ND. Recovery of consciousness after brain injury: a mesocircuit hypothesis. 
Trends Neurosci (2010) 33:1–9. doi:10.1016/j.tins.2009.11.002 

 162. Brefel-Courbon C, Payoux P, Ory F, Sommet A, Slaoui T, Raboyeau G, et al.  
Clinical and imaging evidence of zolpidem effect in hypoxic encephalopathy. 
Ann Neurol (2007) 62(1):102–5. doi:10.1002/ana.21110

 163. Whyte J, Myers R. Incidence of clinically significant responses to zolpidem among 
patients with disorders of consciousness: a preliminary placebo controlled trial. 
Am J Phys Med Rehabil (2009) 88:410–8. doi:10.1097/PHM.0b013e3181a0e3a0 

 164. Hall SD, Yamawaki N, Fisher AE, Clauss RP, Woodhall GL, Stanford IM. 
GABA(A) alpha-1 subunit mediated desynchronization of elevated low fre-
quency oscillations alleviates specific dysfunction in stroke – a case report. Clin 
Neurophysiol (2010) 121:549–55. doi:10.1016/j.clinph.2009.11.084 

 165. Machado C, Estevez M, Perez-Nellar J, Gutierrez J, Rodriguez R, Carballo M, et 
al.  Autonomic, EEG, and behavioral arousal signs in a PVS case after Zolpidem 
intake. Can J Neurol Sci (2011) 38:341–4. doi:10.1017/S0317167100011562 

 166. Whyte J, Rajan R, Rosenbaum A, Katz D, Kalmar K, Seel R, et al.  Zolpidem 
and restoration of consciousness. Am J Phys Med Rehabil (2014) 93:101–13. 
doi:10.1097/PHM.0000000000000069 

 167. Nicolelis MA, Chapin JK, Lin RC. Somatotopic maps within the zona 
incerta relay parallel GABAergic somatosensory pathways to the neo-
cortex, superior colliculus, and brainstem. Brain Res (1992) 577:134–41. 
doi:10.1016/0006-8993(92)90546-L 

 168. Urbain N, Deschenes M. Motor cortex gates vibrissal responses in a thal-
amocortical projection pathway. Neuron (2007) 56:714–25. doi:10.1016/j.
neuron.2007.10.023 

 169. Bartho P, Slezia A, Varga V, Bokor H, Pinault D, Buzsaki G, et al.  Cortical 
control of zona incerta. J Neurosci (2007) 27:1670–81. doi:10.1523/
JNEUROSCI.3768-06.2007 

 170. Gritti I, Mariotti M, Mancia M. GABAergic and cholinergic basal forebrain 
and preoptic-anterior hypothalamic projections to the mediodorsal nucleus 
of the thalamus in the cat. Neuroscience (1998) 85:149–78. doi:10.1016/
S0306-4522(97)00573-3 

 171. Metherate R, Cox CL, Ashe JH. Cellular bases of neocortical activation: modula-
tion of neural oscillations by the nucleus basalis and endogenous acetylcholine. 
J Neurosci (1992) 12:4701–11. 

 172. Grothe M, Heinsen H, Teipel SJ. Atrophy of the cholinergic basal forebrain over 
the adult age range and in early stages of Alzheimer’s disease. Biol Psychiatry 
(2012) 71:805–13. doi:10.1016/j.biopsych.2011.06.019 

 173. Freund TF, Gulyas AI. GABAergic interneurons containing calbindin D28K or 
somatostatin are major targets of GABAergic basal forebrain afferents in the rat 
neocortex. J Comp Neurol (1991) 314:187–99. 

 174. Henderson Z, Fiddler G, Saha S, Boros A, Halasy K. A parvalbumin-containing, 
axosomatic synaptic network in the rat medial septum: relevance to rhythmogen-
esis. Eur J Neurosci (2004) 19:2753–68. doi:10.1111/j.0953-816X.2004.03399.x 

 175. Korotkova T, Fuchs EC, Ponomarenko A, Von EJ, Monyer H. NMDA receptor 
ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, 
spatial representations, and working memory. Neuron (2010) 68:557–69. 
doi:10.1016/j.neuron.2010.09.017 

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://dx.doi.org/10.1113/jphysiol.1970.sp009233
http://dx.doi.org/10.1016/0014-4886(81)90238-7
http://dx.doi.org/10.1113/jphysiol.1991.sp018791
http://dx.doi.org/10.1016/j.cell.2014.06.025
http://dx.doi.org/10.1038/nature07382
http://dx.doi.org/10.1016/S0361-9230(97)00464-4
http://dx.doi.org/10.1016/j.brainresbull.2011.11.005
http://dx.doi.org/10.1016/j.brainresbull.2011.11.005
http://dx.doi.org/10.1016/0006-8993(89)90115-7
http://dx.doi.org/10.1016/S0306-4522(97)00049-3
http://dx.doi.org/10.1016/S0306-4522(03)00031-9
http://dx.doi.org/10.1016/j.brainresbull.2007.09.008
http://dx.doi.org/10.1016/0306-4522(92)90313-Q
http://dx.doi.org/10.1016/0306-4522(92)90312-P
http://dx.doi.org/10.1016/S0165-0173(02)00181-9
http://dx.doi.org/10.1097/01.anes.0000270741.33766.24
http://dx.doi.org/10.1097/ALN.0b013e31819c461c
http://dx.doi.org/10.1016/j.bbr.2010.06.009
http://dx.doi.org/10.1523/JNEUROSCI.0344-13.2013
http://dx.doi.org/10.1523/JNEUROSCI.1519-14.2014
http://dx.doi.org/10.1016/0306-4522(94)00433-6
http://dx.doi.org/10.1002/cne.903590111
http://dx.doi.org/10.1016/j.expneurol.2003.11.003
http://dx.doi.org/10.1016/j.expneurol.2003.11.003
http://dx.doi.org/10.1111/j.1745-7254.2008.00735.x
http://dx.doi.org/10.1016/j.tins.2009.11.002
http://dx.doi.org/10.1002/ana.21110
http://dx.doi.org/10.1097/PHM.0b013e3181a0e3a0
http://dx.doi.org/10.1016/j.clinph.2009.11.084
http://dx.doi.org/10.1017/S0317167100011562
http://dx.doi.org/10.1097/PHM.0000000000000069
http://dx.doi.org/10.1016/0006-8993(92)90546-L
http://dx.doi.org/10.1016/j.neuron.2007.10.023
http://dx.doi.org/10.1016/j.neuron.2007.10.023
http://dx.doi.org/10.1523/JNEUROSCI.3768-06.2007
http://dx.doi.org/10.1523/JNEUROSCI.3768-06.2007
http://dx.doi.org/10.1016/S0306-4522(97)00573-3
http://dx.doi.org/10.1016/S0306-4522(97)00573-3
http://dx.doi.org/10.1016/j.biopsych.2011.06.019
http://dx.doi.org/10.1111/j.0953-816X.2004.03399.x
http://dx.doi.org/10.1016/j.neuron.2010.09.017
http://www.frontiersin.org


June 2015 | Volume 6 | Article 13516

Brown and McKenna GABAergic control of arousal

Frontiers in Neurology | www.frontiersin.org

 176. Furuta T, Koyano K, Tomioka R, Yanagawa Y, Kaneko T. GABAergic basal 
forebrain neurons that express receptor for neurokinin B and send axons to the 
cerebral cortex. J Comp Neurol (2004) 473(1):43–58. doi:10.1002/cne.20087

 177. Hermanstyne TO, Kihira Y, Misono K, Deitchler A, Yanagawa Y, Misonou 
H. Immunolocalization of the voltage-gated potassium channel Kv2.2 in 
GABAergic neurons in the basal forebrain of rats and mice. J Comp Neurol 
(2010) 518:4298–310. doi:10.1002/cne.22457 

 178. Hermanstyne TO, Subedi K, Le WW, Hoffman GE, Meredith AL, Mong JA, et al.  
Kv2.2: a novel molecular target to study the role of basal forebrain GABAergic 
neurons in the sleep-wake cycle. Sleep (2013) 36:1839–48. doi:10.5665/sleep.3212 

 179. Borhegyi Z, Varga V, Szilagyi N, Fabo D, Freund TF. Phase segregation of medial 
septal GABAergic neurons during hippocampal theta activity. J Neurosci (2004) 
24(39):8470–9. doi:10.1523/JNEUROSCI.1413-04.2004

 180. Simon AP, Poindessous-Jazat F, Dutar P, Epelbaum J, Bassant MH. Firing prop-
erties of anatomically identified neurons in the medial septum of anesthetized 
and unanesthetized restrained rats. J Neurosci (2006) 26:9038–46. doi:10.1523/
JNEUROSCI.1401-06.2006 

 181. Maloney KJ, Cape EG, Gotman J, Jones BE. High-frequency gamma 
electroencephalogram activity in association with sleep-wake states and 
spontaneous behaviors in the rat. Neuroscience (1997) 76:541–55. doi:10.1016/
S0306-4522(96)00298-9 

 182. Gross DW, Gotman J. Correlation of high-frequency oscillations with the sleep-
wake cycle and cognitive activity in humans. Neuroscience (1999) 94:1005–18. 
doi:10.1016/S0306-4522(99)00343-7 

 183. Morris NP, Harris SJ, Henderson Z. Parvalbumin-immunoreactive, 
fast-spiking neurons in the medial septum/diagonal band complex of the rat: 
intracellular recordings in vitro. Neuroscience (1999) 92:589–600. doi:10.1016/
S0306-4522(99)00026-3 

 184. Henderson Z, Lu CB, Janzso G, Matto N, McKinley CE, Yanagawa Y, 
et al.  Distribution and role of Kv3.1b in neurons in the medial septum 
diagonal band complex. Neuroscience (2010) 166:952–69. doi:10.1016/j.
neuroscience.2010.01.020 

 185. Rudy B, Chow A, Lau D, Amarillo Y, Ozaita A, Saganich M, et al.  Contributions 
of Kv3 channels to neuronal excitability. Ann N Y Acad Sci (1999) 868:304–43. 
doi:10.1111/j.1749-6632.1999.tb11295.x 

 186. Kocsis B, Li S. In  vivo contribution of h-channels in the septal pace-
maker to theta rhythm generation. Eur J Neurosci (2004) 20:2149–58. 
doi:10.1111/j.1460-9568.2004.03678.x 

 187. Xu C, Datta S, Wu M, Alreja M. Hippocampal theta rhythm is reduced by 
suppression of the H-current in septohippocampal GABAergic neurons. Eur 
J Neurosci (2004) 19:2299–309. doi:10.1111/j.0953-816X.2004.03316.x 

 188. Furuta T, Mori T, Lee T, Kaneko T. Third group of neostriatofugal 
neurons: neurokinin B-producing neurons that send axons predomi-
nantly to the substantia innominata. J Comp Neurol (2000) 426:279–96. 
doi:10.1002/1096-9861(20001016)426:2<279::AID-CNE9>3.0.CO;2-F 

 189. Navarro VM, Ruiz-Pino F, Sanchez-Garrido MA, Garcia-Galiano D, Hobbs 
SJ, Manfredi-Lozano M, et al.  Role of neurokinin B in the control of female 
puberty and its modulation by metabolic status. J Neurosci (2012) 32:2388–97. 
doi:10.1523/JNEUROSCI.4288-11.2012 

 190. Wu M, Shanabrough M, Leranth C, Alreja M. Cholinergic excitation of septo-
hippocampal GABA but not cholinergic neurons: implications for learning and 
memory. J Neurosci (2000) 20(10):3900–8. 

 191. Liu W, Kumar A, Alreja M. Excitatory effects of muscarine on septohippocampal 
neurons: involvement of M3 receptors. Brain Res (1998) 805:220–33. 

 192. Wu M, Hajszan T, Leranth C, Alreja M. Nicotine recruits a local glutamatergic 
circuit to excite septohippocampal GABAergic neurons. Eur J Neurosci (2003) 
18:1155–68. doi:10.1046/j.1460-9568.2003.02847.x 

 193. Zant JC, Kim T, Kalinchuk AV, Yang C, Brown RE, McNally JM, et al.  Optogenetic 
stimulation of basal forebrain cholinergic neurons promotes cortical activation 
both directly and indirectly. Soc Neurosci Abs (2014). abstr. 257.208. 

 194. Alreja M, Liu W. Noradrenaline induces IPSCs in rat medial septal/diagonal 
band neurons: involvement of septohippocampal GABAergic neurons. J Physiol 
(1996) 494(Pt 1):201–15. doi:10.1113/jphysiol.1996.sp021485 

 195. Xu C, Michelsen KA, Wu M, Morozova E, Panula P, Alreja M. Histamine 
innervation and activation of septohippocampal GABAergic neurones: 
involvement of local ACh release. J Physiol (2004) 561:657–70. doi:10.1113/
jphysiol.2004.071712 

 196. Alreja M. Excitatory actions of serotonin on GABAergic neurons of the medial 
septum and diagonal band of Broca. Synapse (1996) 22:15–27. doi:10.1002/
(SICI)1098-2396(199601)22:1<15::AID-SYN2>3.0.CO;2-L 

 197. Wu M, Zhang Z, Leranth C, Xu C, Van Den Pol AN, Alreja M. Hypocretin 
increases impulse flow in the septohippocampal GABAergic pathway: impli-
cations for arousal via a mechanism of hippocampal disinhibition. J Neurosci 
(2002) 22(17):7754–65. 

 198. Wu M, Zaborszky L, Hajszan T, Van Den Pol AN, Alreja M. Hypocretin/orexin 
innervation and excitation of identified septohippocampal cholinergic neurons. 
J Neurosci (2004) 24:3527–36. doi:10.1523/JNEUROSCI.5364-03.2004 

 199. Gaykema RP, Zaborszky L. Parvalbumin-containing neurons in the basal 
forebrain receive direct input from the substantia nigra-ventral tegmental area. 
Brain Res (1997) 747:173–9. doi:10.1016/S0006-8993(96)01309-1 

 200. Joho RH, Ho CS, Marks GA. Increased gamma- and decreased delta-oscillations 
in a mouse deficient for a potassium channel expressed in fast-spiking interneu-
rons. J Neurophysiol (1999) 82:1855–64. 

 201. Espinosa F, Marks G, Heintz N, Joho RH. Increased motor drive and sleep loss in 
mice lacking Kv3-type potassium channels. Genes Brain Behav (2004) 3:90–100. 
doi:10.1046/j.1601-183x.2003.00054.x 

 202. Joho RH, Marks GA, Espinosa F. Kv3 potassium channels control the duration 
of different arousal states by distinct stochastic and clock-like mechanisms. Eur 
J Neurosci (2006) 23:1567–74. doi:10.1111/j.1460-9568.2006.04672.x 

 203. Espinosa F, Torres-Vega MA, Marks GA, Joho RH. Ablation of Kv3.1 and Kv3.3 
potassium channels disrupts thalamocortical oscillations in vitro and in vivo. J 
Neurosci (2008) 28:5570–81. doi:10.1523/JNEUROSCI.0747-08.2008 

 204. Suntsova N, Szymusiak R, Alam MN, Guzman-Marin R, McGinty D. Sleep-
waking discharge patterns of median preoptic nucleus neurons in rats. J Physiol 
(2002) 543(2):665–77. doi:10.1113/jphysiol.2002.023085

 205. Takahashi K, Lin JS, Sakai K. Characterization and mapping of sleep-waking 
specific neurons in the basal forebrain and preoptic hypothalamus in mice. 
Neuroscience (2009) 161:269–92. doi:10.1016/j.neuroscience.2009.02.075 

 206. Sakai K. Sleep-waking discharge profiles of median preoptic and sur-
rounding neurons in mice. Neuroscience (2011) 182:144–61. doi:10.1016/j.
neuroscience.2011.03.010 

 207. Zecharia AY, Yu X, Gotz T, Ye Z, Carr DR, Wulff P, et al.  GABAergic inhibition 
of histaminergic neurons regulates active waking but not the sleep-wake switch 
or propofol-induced loss of consciousness. J Neurosci (2012) 32:13062–75. 
doi:10.1523/JNEUROSCI.2931-12.2012 

 208. Ciccarelli A, Calza A, Panzanelli P, Concas A, Giustetto M, Sassoe-Pognetto M. 
Organization of GABAergic synaptic circuits in the rat ventral tegmental area. 
PLoS One (2012) 7:e46250. doi:10.1371/journal.pone.0046250 

 209. Gao B, Hornung J-P, Fritschy J-M. Identification of distinct GABAA-receptor 
subtypes in cholinergic and parvalbumin-positive neurons of the rat and 
marmoset medial septum – diagonal band complex. Neuroscience (1995) 65(1): 
101–17. doi:10.1016/0306-4522(94)00480-S

 210. Sasaki K, Suzuki M, Mieda M, Tsujino N, Roth B, Sakurai T. Pharmacogenetic 
modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS One 
(2011) 6:e20360. doi:10.1371/journal.pone.0020360 

Conflict of Interest Statement: The authors declare that the research was conducted 
in the absence of any commercial or financial relationships that could be construed 
as a potential conflict of interest.

Copyright © 2015 Brown and McKenna. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License (CC BY). The use, distribution 
or reproduction in other forums is permitted, provided the original author(s) or licensor 
are credited and that the original publication in this journal is cited, in accordance with 
accepted academic practice. No use, distribution or reproduction is permitted which does 
not comply with these terms.

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://dx.doi.org/10.1002/cne.20087
http://dx.doi.org/10.1002/cne.22457
http://dx.doi.org/10.5665/sleep.3212
http://dx.doi.org/10.1523/JNEUROSCI.1413-04.2004
http://dx.doi.org/10.1523/JNEUROSCI.1401-06.2006
http://dx.doi.org/10.1523/JNEUROSCI.1401-06.2006
http://dx.doi.org/10.1016/S0306-4522(96)00298-9
http://dx.doi.org/10.1016/S0306-4522(96)00298-9
http://dx.doi.org/10.1016/S0306-4522(99)00343-7
http://dx.doi.org/10.1016/S0306-4522(99)00026-3
http://dx.doi.org/10.1016/S0306-4522(99)00026-3
http://dx.doi.org/10.1016/j.neuroscience.2010.01.020
http://dx.doi.org/10.1016/j.neuroscience.2010.01.020
http://dx.doi.org/10.1111/j.1749-6632.1999.tb11295.x
http://dx.doi.org/10.1111/j.1460-9568.2004.03678.x
http://dx.doi.org/10.1111/j.0953-816X.2004.03316.x
http://dx.doi.org/10.1002/1096-9861(20001016)426:2 < 279::AID-CNE9 > 3.0.CO;2-F
http://dx.doi.org/10.1523/JNEUROSCI.4288-11.2012
http://dx.doi.org/10.1046/j.1460-9568.2003.02847.x
http://dx.doi.org/10.1113/jphysiol.1996.sp021485
http://dx.doi.org/10.1113/jphysiol.2004.071712
http://dx.doi.org/10.1113/jphysiol.2004.071712
http://dx.doi.org/10.1002/(SICI)1098-2396(199601)22:1 < 15::AID-SYN2 > 3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1098-2396(199601)22:1 < 15::AID-SYN2 > 3.0.CO;2-L
http://dx.doi.org/10.1523/JNEUROSCI.5364-03.2004
http://dx.doi.org/10.1016/S0006-8993(96)01309-1
http://dx.doi.org/10.1046/j.1601-183x.2003.00054.x
http://dx.doi.org/10.1111/j.1460-9568.2006.04672.x
http://dx.doi.org/10.1523/JNEUROSCI.0747-08.2008
http://dx.doi.org/10.1113/jphysiol.2002.023085
http://dx.doi.org/10.1016/j.neuroscience.2009.02.075
http://dx.doi.org/10.1016/j.neuroscience.2011.03.010
http://dx.doi.org/10.1016/j.neuroscience.2011.03.010
http://dx.doi.org/10.1523/JNEUROSCI.2931-12.2012
http://dx.doi.org/10.1371/journal.pone.0046250
http://dx.doi.org/10.1016/0306-4522(94)00480-S
http://dx.doi.org/10.1371/journal.pone.0020360
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org

	Turning a negative into a positive: ascending GABAergic control of cortical activation and arousal

	Introduction

	Novel Technological Tools Have Allowed Us to Identify, Record from, and Selectively Manipulate the Activity of GABAergic Neurons Controlling the Sleep-Wake Cycle
 
	Brainstem GABAergic Neurons Controlling Theta Rhythms

	Nucleus Incertus

	VTg

	Summary


	Ventral Tegmental Area GABAergic Neurons Involved in Arousal and Reward

	VTA GABAergic Neurons are Fast-Firing and Electrically Coupled

	The Discharge of VTA GABAergic Neurons is Associated with Arousal

	VTA GABAergic Neurons are Excited by Wake/Arousal Promoting Neurotransmitters

	Role of VTA GABAergic Neurons in Reward Processes

	VTA GABAergic Interneurons Control Dopaminergic activity

	The GABAergic Neurons of the RMTg Convey Aversive Information to VTA Dopaminergic Neurons

	Summary


	Ascending Hypothalamic GABAergic Systems Controlling the Thalamus and Neocortex

	GABAergic Neurons Controlling Thalamocortical Activity during Wakefulness

	Thalamic Reticular Nucleus

	Basal Ganglia GABAergic Input to the Thalamus

	ZI GABAergic Input to the Thalamus

	Summary


	Cortically Projecting BF GABAergic Neurons Promote Cortical Activation and Wakefulness

	Anatomy and Projections of BF GABAergic Neurons

	Subtypes of Cortically Projecting BF GABAergic Neurons

	PV Neurons: Anatomy and In vivo Recordings

	PV Neurons: In vitro Recordings and Intrinsic Properties

	Neurokinin3 Receptor Immunoreactive Neurons

	Kv2.2 Channel Immunoreactive Neurons

	Neurotransmitter Regulation of Wake-Promoting BF GABAergic Neurons

	Summary


	Wake-Active GABAergic Neurons are Fast-Firing, Whereas Sleep-Active GABAergic Neurons are Slow Firing

	Wake-Active GABAergic Neurons May Be a Prominent Target of Hypnotic Agents

	Summary and Conclusion

	Acknowledgments

	References



