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Our understanding of the pathogenesis of Alzheimer disease (AD) has been greatly
influenced by investigation of rare families with autosomal dominant mutations that cause
early onset AD. Mutations in the genes coding for amyloid precursor protein (APP),
presenilin 1 (PSEN-1), and presenilin 2 (PSEN-2) cause over-production of the amyloid-β
peptide (Aβ) leading to early deposition of Aβ in the brain, which in turn is hypothesized
to initiate a cascade of processes, resulting in neuronal death, cognitive decline, and
eventual dementia. Studies of cerebrospinal fluid (CSF) from individuals with the common
form of AD, late-onset AD (LOAD), have revealed that low CSF Aβ42 and high CSF tau are
associated with AD brain pathology. Herein, we review the literature on CSF biomarkers
in autosomal dominant AD (ADAD), which has contributed to a detailed road map of
AD pathogenesis, especially during the preclinical period, prior to the appearance of
any cognitive symptoms. Current drug trials are also taking advantage of the unique
characteristics of ADAD and utilizing CSF biomarkers to accelerate development of
effective therapies for AD.
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Introduction

In 1901, Dr. Alois Alzheimer began treating Auguste D., a 51-year-old womanwithmemory loss and
hallucinations. Ms. D’s dementia progressed and she died at the age of 56. Upon histopathological
examination,Alzheimer found two types of abnormalities in the brain thatwere later termed amyloid
plaques and neurofibrillary tangles (1). Over a century later, when patients die with a characteristic
history of progressive cognitive decline and upon autopsy are found to have significant quantities
of amyloid plaques and neurofibrillary tangles, they are assigned the neuropathological diagnosis of
Alzheimer disease (AD). The vast majority of patients with AD develop dementia at age 65 or older.
Genetic studies of patients like Ms. D, who develop cognitive decline before age 65, have revealed
rare autosomal dominant mutations that cause AD (2). Recently, surviving samples from Ms. D
were subjected to genetic analysis and found to have a genetic mutation in presenilin 1 (PSEN-1)
(3), although there has been some controversy about this finding (4).

There is some concern that the pathogenesis of autosomal dominant AD (ADAD) may vary
from the common late-onset AD (LOAD). However, while there are certainly some differences
between ADAD and LOAD in terms of disease etiology, clinical features, and neuropathology, they
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share many characteristics including an abnormal pattern of cere-
brospinal fluid (CSF) biomarkers (Table S1 in Supplementary
Material). Although we cannot completely dismiss the notions
that the pathogenesis of ADAD and LOAD are distinct and that
findings from ADAD do not apply to LOAD, investigation of
families with ADAD have contributed enormously to our under-
standing of AD. Finding mutations that cause ADAD identi-
fied key molecules in the disease process (5–9). Transgenic mice
expressing human ADAD mutations revolutionized the field and
have been used to examine almost every aspect of the disease
(10). Recently, studies of CSF and brain imaging biomarkers have
helped establish the time course of AD-related brain changes in
individuals affected by ADAD, especially during the preclinical
stage, prior to the appearance of cognitive symptoms (11, 12).
Furthermore, after the failure of numerous drug trials to halt,
slow, or reverse cognitive decline in symptomatic individuals with
LOAD, clinical trials are now utilizing the unique nature of ADAD
and the data derived from these families to design prevention trials
for AD dementia in both ADAD mutation carriers (MCs) and
individuals at risk for LOAD, while they are still asymptomatic
(13, 14). Just as Ms. D’s genetic misfortune benefited the entire
field of AD research, it is likely that ADAD patients will lead us to
better treatments for all people afflicted by this disease.

Epidemiology

Alzheimer disease is the most common cause of dementia and,
in the United States, affects ~4.7 million individuals aged 65
and older (15). Less than five percent of AD patients develop
symptoms before age 65 and are classified as having early onset
Alzheimer disease (EOAD) (16). Even rarer are the <1% of AD
patients who carry mutations that cause ADAD with 100% pene-
trance who are distributed world-wide. Carriers of ADAD muta-
tions typically develop symptoms of dementia in their 30s to 60s,
depending on their specific gene mutation and the age of onset
within their family (17, 18).Much of our current knowledge about
ADAD and biomarkers of ADAD comes from two large studies:
the multi-center, international Dominantly Inherited Alzheimer
Network (DIAN) cohort, and the Alzheimer’s Prevention Initia-
tive (API) cohort that studies a large pedigree living in the state
of Antioquia in Colombia, South America. The DIAN cohort
includes carriers and non-carrier (NC) family members with
many different ADAD mutations, while the Colombian kindred
is likely descended from a single individual (19) and carries the
E280A mutation in the PSEN-1 gene.

Clinical Features

Regardless of whether patients develop symptoms of AD before
age 65 (EOAD) or after age 65 (LOAD), the typical first symp-
tom of brain dysfunction is progressive episodic memory loss
that slowly worsens over years (20). However, about 30–40%
of patients with early symptom onset either from non-familial
EOAD or ADAD have an increased frequency of atypical presen-
tations, such as impairments in non-memory domains, including
executive, behavioral, language, and visuospatial (21–23). PSEN-
1 MCs have been reported to be more likely to have headaches,
myoclonus, gait abnormalities, pseudobulbar affect, and spastic

paraparesis (24–26). Some mutations in the gene for amyloid
precursor protein (APP) cause severe cerebral amyloid angiopathy
(CAA), with resultant strokes and brain hemorrhages (27). These
clinical features are rarely observed in LOAD.

Neuropathology

The hallmarks of AD, regardless of the age at dementia onset
and its underlying cause (ADAD versus LOAD), are aggrega-
tion of the amyloid-β (Aβ) peptide into amyloid plaques and
region-specific development of intraneuronal neurofibrillary tan-
gles composed of hyperphosphorylated forms of the microtubule-
associated protein, tau (28). AD-affected brains also demonstrate
significant neuronal loss and associated neuroinflammation (29–
31), although these features are not specific to AD.

In addition to these classic pathologies, some ADADmutations
have been associated with neuropathological abnormalities not
typically seen in LOAD. For example, amyloid deposition has been
observed in the cerebellum of PSEN-1 E280A carriers (32), an
area not typically affected in LOAD. “Cotton-wool” type plaques
that are larger than typical plaques, lack congophilic cores and
have few associated dystrophic neurites (33) are often seen in
individuals carrying certain PSEN-1mutations (34). Some ADAD
mutations (notably in APP) result in severe CAA, which appears
histologically as deposition of Aβ40 in the blood vessel wall. The
specific pattern of CAA distribution in the brain depends on the
mutation (e.g., Dutch, Flemish, Arctic, Iowa, and Italian) (34).

Genetics and Pathogenesis

The genetics of ADAD have provided key insights into the molec-
ular pathogenesis of AD. The observation in 1984 that older adults
with Trisomy 21, also known as Down syndrome, develop the
brain changes of AD suggested that a genetic locus on chromo-
some 21 might be involved in AD (35). Indeed, the first ADAD
mutations were identified in the APP gene that resides on chro-
mosome 21, thus implicating amyloid as a key player in AD
pathogenesis (5–7, 36). We also now know that duplication of
the APP locus results in ADAD (37, 38), likely because of amy-
loid over-production. Following the discovery of APP mutations,
mutations in PSEN-1 (8) and the gene for presenilin 2 (PSEN-
2) (9) were identified and found to increase the amount of the
more aggregation-prone Aβ42 compared to Aβ40 (39). Later, it
was discovered that presenilin 1 is a critical component of the
γ-secretase enzyme complex that cleaves APP to form Aβ (40).
To date, 40 mutations in APP, 197 mutations in PSEN-1, and 25
mutations in PSEN-2 have been identified that cause ADAD (2).

Since ADAD mutations either increase total Aβ or increase
the ratio of Aβ42:Aβ42, amyloid has been hypothesized to be the
initiator of AD, an idea described as the “Amyloid Hypothesis”
(41). In further support of this hypothesis, amutationwas recently
discovered in APP that decreases Aβ production and lowers the
risk for AD (42). According to this hypothesis, initial deposition
of Aβ into amyloid plaques leads to downstream tau-related neu-
ronal pathology (tangles), neuronal injury, and subsequent neu-
ronal death, which is then manifested as cognitive impairment,
ultimately culminating in dementia at the end stage of the disease.
Data from neuropathological, brain imaging, and CSF biomarker
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studies in LOAD are consistent with this hypothesis (43–49), but
it has only been through study of ADAD that we have a more
precise knowledge of the timing of these changes during the early,
preclinical (presymptomatic) stage.

CSF Biomarkers in ADAD

Due to its high prevalence, the majority of AD biomarker studies
to date have evaluated individuals with LOAD.CSF levels of Aβ42,
tau, and phosphotau181 (ptau) (markers of amyloid, neuronal
injury, and tangles, respectively) have stood the test of time in
exhibiting both diagnostic and prognostic utility (50). Individuals
diagnosed with very mild or mild AD dementia have low levels
of CSF Aβ42 (51–54) that inversely correlate with the presence
of amyloid as visualized by positron emission tomography (PET)
(55–59). Concentrations of CSF tau and ptau are increased in AD
and have been shown to positively correlate (albeit to differing
degrees) with tangle load at autopsy (52, 53, 60) and regional brain
atrophy as defined bymagnetic resonance imaging (MRI) (61–64).
Whenpaired, the combination of lowCSFAβ42 andhigh tau/ptau
has been shown to be a strong predictor of future cognitive decline
in both early symptomatic (very mild dementia or mild cognitive
impairment, MCI) and asymptomatic individuals (55, 65–68).
However, while such analyses in individuals at risk for LOAD can

estimate the risk for decline, they cannot provide the information
that ismost useful for clinical care –where an individual falls along
the pathologic disease cascade or when an individual can expect
to develop symptoms of dementia.

In contrast, ADAD provides a unique resource for characteriz-
ing changes in CSF biomarkers, especially those that occur long
before the onset of dementia. With ADAD families, investigators
know if and when an individual will develop dementia. Mutations
have 100% penetrance, allowing investigators to know with cer-
tainty that an individual will develop AD. Furthermore, within a
given family, the age of dementia onset remains fairly consistent,
allowing researchers to calculate an estimated number of years
until symptom onset (EYO). The EYO construct permits evalua-
tion of biomarker concentrations as a function of where along the
disease trajectory an individual falls, independent of the actual age
of dementia onset of their parent (17).UsingADAD families, stud-
ies can examine biomarker levels in MCs and NCs at distinct time
points throughout the course of the disease, including the preclin-
ical AD interval many years prior to dementia onset. However,
the low prevalence of ADAD has historically created difficulties
in evaluating CSF biomarkers in these families. Most early studies
analyzed CSF from fewer than 10 MCs (69–71) (Table 1), and
with the exception of those evaluating the large Columbia kindred
(PSEN-1 E280A) (12, 72), most have pooled together carriers of

TABLE 1 | Studies examining CSF biomarkers in participants with autosomal dominant Alzheimer disease.

Study Mutation(s) Aβ42 Tau pTau Comments

Moonis et al. (69)
6 MC
6 Unrelated controls

PSEN-1 C410Y, PSEN-1 P242H,
and R352H

↓ N.S. Not tested MC EYO −8±3

Ringman et al. (74)
20 MC
9 NC

PSEN-1 A431E, PSEN-1 L235V,
PSEN-1 G206A, APP V717I

↓ (trend) ↑ ↑ MC EYO ~−12
NC EYO −9±12

Fortea et al. (70)
8 MC
5 NC

PSEN-1 L286P, PSEN-1 M139T ↓ (trend) N.S. N.S. MC EYO −6±10
NC EYO −7±9

Scholl et al. (71)
4 MC
7 Unrelated controls

APP KM670/671 NL, APP E693G,
PSEN-1 H163Y

↓ ↑ ↑

Reiman et al. (72)
10 MC
10 NC

PSEN-1 E280A (API) ↑ N.S. N.S. MC EYO ~−25
NC EYO ~−26

Ringman et al. (75)
13 MC
5 NC

PSEN-1 A431E, PSEN-1 L235V,
PSEN-1 S212Y, APP V717I

↓ ↑ ↑ MC EYO −12±10
NC EYO −6±14

Bateman et al. (11)
88 MC
40 NC

Many (DIAN) ↓ at EYO −10 and
closer to EAO

↑ at EYO −15 and
closer to EAO

Not shown

Thordardottir et al. (76)
10 MC
12 NC

APP KM670/671 NL, APP E693G,
PSEN-1 H163Y, PSEN-1 I143T

↓ ↑ ↑ MC EYO −7±9
NC EYO −7±12

Fleisher et al. (12)
32 MC
22 NC

PSEN-1 E280A (API) ↓ at EYO −25 and
closer to EAO

↑ at EYO −20 and
closer to EAO

↑ at EYO −18 and
closer to EAO

API, Alzheimer’s Prevention Initiative; APP, amyloid precursor protein; DIAN, Dominantly Inherited Alzheimer Network; EAO, estimated age of symptom onset; EYO, estimated years to
symptom onset; MC, mutation carrier; NC, mutation non-carrier (typically first-degree relative of MC); N.S., not significant; PSEN-1; presenilin 1.
Numbers in parentheses refer to associated reference.
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different mutations. Despite the relatively small sample sizes and
potential heterogeneity caused by pooling together individuals
with different mutations, the pattern of CSF biomarker changes
seen in ADAD MCs is remarkably similar to that observed in
LOAD, namely, reduced levels of CSF Aβ42 and elevated levels
of tau and ptau (Table 1; Table S1 in Supplementary Material).
The one exception is very young MCs (in their 20s, about 25 years
prior to AD symptom onset), who have elevated CSF Aβ42 (72).
This was hypothesized to reflect over-production of CSF Aβ42 in
ADAD MCs, which has more recently been confirmed directly in
kinetic studies (73).

The larger DIAN and API studies have permitted analysis of
CSF and imaging biomarkers in greater numbers of both asymp-
tomatic and symptomatic individuals that span a wide range
of EYOs, thus allowing conclusions to be drawn regarding the
timing of such biomarker changes during the preclinical period
(Figure 1). Results from cross-sectional analyses demonstrate
higher levels of CSF Aβ42 in MCs compared to NCs very early
in the disease process (~20–30 years prior to estimated symptom
onset, EYO −20 to −30), which then drop with disease pro-
gression, becoming significantly lower than NCs ~10–20 years
prior to symptom onset (~EYO −10 to −20) (11, 12, 72, 77).
These low levels then begin to plateau with the development of
cognitive symptoms. After Aβ42 levels begin to drop, levels of tau
and ptau in MCs become significantly higher than NCs (~EYO
−15), and then continue to increase with disease progression.
However, a recent study of within-person change in biomark-
ers in a small sub-cohort of DIAN participants with longitudi-
nal biomarker data has shown that although levels of CSF tau
and ptau increase in MCs during the preclinical (asymptomatic)
phase, levels stabilize or decline over time in individuals who
are symptomatic (77). Similar patterns were observed in levels of

FIGURE 1 | A time course of changes in ADAD mutation carriers
versus non-carriers. Cross-sectional data obtained in the DIAN cohort
demonstrates that CSF Aβ42 (yellow) declines as Aβ deposition increases as
shown by amyloid PET imaging (orange). CSF tau (green) increases as
hippocampal volume (blue) and glucose metabolism as shown by FDG PET
(purple) decreases. CDR-SOB (Clinical Dementia Rating-Sum of Boxes)
(black), which quantifies clinical symptoms of dementia, increases (indicating
worse performance) relatively late in the disease course. Reproduced with
permission from Bateman et al. (11).

visinin-like protein 1 (VILIP-1) (77), a neuronal calcium sensor
protein that is a marker of neuronal injury/death (78). Consistent
with this pattern, a previous report of a single asymptomatic
ADAD (APP V717I) MC showed substantial increases in tau and
ptau over a 4- to 5-year period very early in the disease process
(~EYO −19 to −14) (79), whereas a longitudinal decrease (or a
lack of increase) in ptau was reported in a small Japanese cohort
(n= 4) of symptomatic PSEN1 MCs (80). Although not often
discussed, results consistent with these changes in the trajectories
of neuronal injury-related markers have been reported in LOAD
(81–83).

Although this general model is consistent with data obtained
from cross-sectional studies in LOAD (49, 84–86) and suggests
a common pathophysiology for AD due to mutations and the
much more common “sporadic” form, the longitudinal data from
DIAN supports a model that incorporates an eventual slowing
down of the rate of neuronal injury and death as may be indi-
cated by reductions in these markers. It is also possible that the
later decreases during the symptomatic phase may reflect fewer
neurons left to contribute to the pool of CSF tau/ptau/VILIP-1.
If corroborated in additional cohorts, this reversing pattern of
marker change will likely have an impact on the definition of a
positive neurodegenerative biomarker outcome in clinical trials,
especially during the symptomatic phase. For example, an effective
therapy may only slow the rate of increase in injury markers
in individuals who are in the preclinical phase, but stabilize or
decrease the rate of change in injury markers later in the disease.
Confirmation of such patterns awaits evaluation of biomarker
trajectories in clinical trials.

Use of ADAD in Clinical Trial Design

Many clinical trials in symptomatic individuals with LOAD have
failed to meet their clinical endpoints of delaying, halting, or
reversing cognitive decline. One possibility proposed to explain
this failure is that therapies must be delivered earlier, in individu-
als known to have underlyingADpathology, but before significant
symptoms aremanifest (87). However, there are several challenges
associated with the design and implementation of such “preven-
tion trials,” including identifying asymptomatic participants with
known underlying AD pathology and who are at a point in their
disease trajectory when they are close to becoming symptomatic.
Although CSF and imaging biomarkers are currently being used
in clinical trials to confirm underlying amyloid pathology in
individuals at risk for developing LOAD (http://www.nia.nih.gov/
alzheimers/clinical-trials/), the onset of dementia in LOAD is
characteristically difficult to predict, even in individuals who are
biomarker-positive. As a result, large numbers of participants are
required in order to provide adequate statistical power to show a
potential drug effect. In contrast, since ADAD is fully penetrant
and the time until onset of dementia symptoms in MCs can be
predicted with relatively high precision, fewer trial participants
are required to demonstrate treatment efficacy within a suitable
timeframe. Two such prevention trials in ADAD are currently
underway; the DIAN-Trials Unit (DIAN-TU) and API, both of
which are testing monoclonal antibodies directed against various
forms of Aβ (13, 14).
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Another possibility to explain the failure of previous clinical
trials in LOAD is that the drug did not engage its purported
target. Given the compelling data from observational biomarker
studies of ADAD (Table 1), biomarkers can serve as meaningful
endpoints to verify target engagement even before the possible
appearance of significant cognitive effects. To this end, the DIAN-
TU has defined biomarkers as the primary endpoint [amyloid
PET or CSF Aβ, with CSF tau(s) as downstream targets], with the
trial design transitioning to a cognitive endpoint only for those
drugs shown to have properly engaged their pathologic targets
(14, 88, 89). CSF biomarkers are also being used as exploratory
measures in the API trial (13) and the Anti-Amyloid Treatment in
Asymptomatic Alzheimer’s (A4) prevention trial in LOAD (90).

Conclusion

Although there are some differences in the pathology and clin-
ical expression in ADAD compared to LOAD (Table S1 in Sup-
plementary Material), studies of ADAD have provided critical
insight that has propelled our knowledge and investigation of
all forms of AD. Investigators have proposed the relative timing
of biomarker changes in LOAD (48, 49), but these hypotheses
cannot yet be empirically verified because we do not know a priori
when individuals with LOAD will develop symptoms. Because
the EYO is known in ADAD cases, data-based models of AD can
be generated (Figure 1) (11, 12). Curves representing changes in

CSF and imaging biomarkers over the disease course in ADAD
can be superimposed on curves of cognitive function, resulting in
a detailed road map of AD pathologic processes. These analyses
confirm that AD brain changes begin to develop over two decades
before the onset of dementia. Now, as researchers work to develop
drugs that prevent dementia associated with AD pathology, they
are using ADAD to accelerate clinical trials (13, 14). It would be
appropriate if ADAD, which represents <1% of all AD but has
provided so much insight into the disease, leads to a drug that
ultimately prevents all forms of AD.
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