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Histone deacetylases exert
class-specific roles in conditioning
the brain and heart against acute
ischemic injury
Sverre E. Aune, Daniel J. Herr, Craig J. Kutz and Donald R. Menick*

Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC, USA

Ischemia-reperfusion (IR) injury comprises a significant portion of morbidity and mortality
from heart and brain diseases worldwide. This enduring clinical problem has inspired myr-
iad reports in the scientific literature of experimental interventions seeking to elucidate the
pathology of IR injury. Elective cardiac surgery presents perhaps the most viable scenario
for protecting the heart and brain from IR injury due to the opportunity to condition the
organs prior to insult. The physiological parameters for the preconditioning of vital organs
prior to insult through mechanical and pharmacological maneuvers have been heavily
examined. These investigations have revealed new insights into how preconditioning
alters cellular responses to IR injury. However, the promise of preconditioning remains
unfulfilled at the clinical level, and research seeking to implicate cell signals essential
to this protection continues. Recent discoveries in molecular biology have revealed
that gene expression can be controlled through posttranslational modifications, without
altering the chemical structure of the genetic code. In this scenario, gene expression
is repressed by enzymes that cause chromatin compaction through catalytic removal
of acetyl moieties from lysine residues on histones. These enzymes, called histone
deacetylases (HDACs), can be inhibited pharmacologically, leading to the de-repression
of protective genes. The discovery that HDACs can also alter the function of non-histone
proteins through posttranslational deacetylation has expanded the potential impact of
HDAC inhibitors for the treatment of human disease. HDAC inhibitors have been applied
in a very small number of experimental models of IR. However, the scientific literature
contains an increasing number of reports demonstrating that HDACs converge on
preconditioning signals in the cell. This review will describe the influence of HDACs on
major preconditioning signaling pathways in the heart and brain.

Keywords: ischemia-reperfusion injury, histone deacetylase inhibitors, stroke, posttranslational modification,
enzymatic crosstalk, preconditioning, postconditioning, reperfusion injury salvage kinase

Introduction

Worldwide, 33 million people suffer a stroke each year (1). Ischemia, which can occur in
all tissues, is defined as the stress that a tissue experiences when both oxygen and substrate
are reduced (2). Stroke, defined as insufficient blood flow to the brain, is one major type of
cerebral ischemia and may cause transient to permanent loss of brain function or death (3).
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In a subset of patients (<15%), stroke occurs as a result of cardiac
arrest and cardiac surgery; secondary stroke is, by definition,
the result of embolic events originating in the heart (4). In spite
of intense research effort directed toward reducing the impact
of these conditions, world rates of morbidity and mortality as
a result of brain and heart disease continue to rise, most strik-
ingly in developing countries (5). The lack of broadly effective
treatment continues to fuel the search for new molecular tar-
gets in ischemia-reperfusion injury (IRI). Intriguingly, studies of
molecular pathology in the brain and heart are often informed
by cancer research. Recent clinical advances have revealed the
efficacy of using small molecule inhibitors of histone deacetylases
(HDACs) to target malignancy (6). HDACs are enzymes which
control signal transduction and gene expression in all cell types
(7). Here we review the experimental evidence in support of
applying HDAC inhibitors in settings of cerebral and cardiac
ischemia, with emphasis on the roles thatHDACs play in signaling
events that occur as a result of IRI. Importantly, this nascent
experimental work indicates that HDAC inhibitors show great
promise for treating patients at high risk for stroke or cardiac
arrest and for patients electing to receive brain and heart surgeries.

Endogenous tolerance to ischemia can be evoked in the heart
and brain (4, 8). Classical ischemic conditioning in a tissue
requires the mechanical application of several momentary, sub-
lethal reductions in oxygen and substrate delivery, which reduce
the injury caused by amore severe ischemic insult (9). Organs sub-
jected to classical ischemic conditioning experience only transient
stimulation of endogenous protective mechanisms, which limits
application of the conditioning stimulus to shortly before pro-
longed insult, as in preconditioning a patient of elective surgery,
or to shortly afterward, as in postconditioning a patient of out-of-
hospital stroke or cardiac arrest. The idea that similar magnitudes
of endogenous protection can be evoked pharmacologically is a
considerable advancement over the barrier of time-dependence
instituted by mechanical ischemic conditioning (10). It follows
that drug-evoked conditioning is a promising treatment strategy
for patients undergoing elective brain or heart surgery, or those at
high risk of stroke or cardiac arrest (11).

Prevention of cell death is the primary effect of ischemic condi-
tioning (12, 13). Many forms of ischemic conditioning (including
classical, pharmacological, and remote conditioning) converge
on signaling pathways that either inhibit cell death or activate
endogenous cell survival maintenance programs. Once active, cell
survival programs improve endoplasmic reticulum stabilization
(14), increase expression of antioxidant enzymes (SOD2; cata-
lase) (15), inhibit endogenous cell death programs (Bax/Bad/Bcl2;
c-jun) (16), activate transcription of genes for repair enzymes
(Hsp70; HIF-1-alpha) (17, 18), and stimulate autophagic flux
(HDAC6) (19).

Acute adaptation to ischemia through conditioning stimuli
is mediated by protein posttranslational modifications (PTMs)
(20, 21). Historically, protein phosphorylation has been the
most rigorously characterized of the PTMs in settings of exper-
imental ischemic conditioning. These include the reperfusion
injury salvage kinases (RISK) pathways of Raf/MEK/ERK1/2
and PI3K/Akt/eNOS, the JAK/STAT transcriptional pathways
and the calcium-responsive PKC pathways (22–25). However,

accumulating evidence shows that protein acetylation also
plays major roles in regulating cell survival through ischemic
conditioning (7).

Histone Deacetylases Regulate Cell Fate in
Cerebral Ischemia

Histone deacetylases are a class of epigenetic enzymes that have
come under recent intense scrutiny as pharmacological targets
for patients suffering stroke. HDACs remove acetyl moieties from
ε-amino groups of lysine residues on histones and non-histone
proteins (25). Deacetylation of histones enhances chromatin com-
paction, which renders DNA less available for binding by regu-
latory factors leading to repression of gene expression (26, 27).
In this function, HDACs exert classical transcriptional control.
This process is reversible via enzymatic histone acetyltransferase
(HAT) activity. The zinc-dependent HDACs have been divided
into classes based on homology to yeast transcriptional repressors.
Class I comprises HDACs 1, 2, 3, and 8; class IIa comprises 4, 5,
7, and 9; class IIb comprises 6 and 10; and class IV comprises
HDAC11 (7). Class III, called sirtiuns, are NAD+-dependent
and will not be discussed in this review, but have been expertly
reviewed elsewhere (28). HDAC enzymes are widely expressed in
rodent brains, and are localized to specific cellular compartments
in isoform-specific patterns (29, 30). Class I HDACs are gener-
ally restricted to the nucleus where they impose transcriptional
control, whereas class IIa HDACs transit the nuclear membranes
and enter the cytoplasm in a processmediated by phosphorylation
(31). Furthermore, HDAC6 is primarily, though not constitu-
tively, cytoplasmic (19).

As mentioned above, HDACs deacetylate both histone and
non-histone proteins. When HDACs deacetylate histones and
repress gene transcription, cell survival is impacted after several
hours and days on time scales necessary for protein expression
(7). Non-histone deacetylation is another element of this com-
plex code of enzymatic crosstalk, which is distinct from direct
inhibition of gene expression by histone deacetylation. Impor-
tantly, the acetylation state of a given metabolic signaling factor
maymediate its phosphorylation,methylation, and ubiquitination
state, thereby determining its subcellular location, activation, or
degradation, with immediate implications for cell survival in the
seconds to minutes following the insult (32). The acetylation state
of transcription factors, co-activators, and co-repressors can reg-
ulate their activity (33). Decoding the complex patterns of HDAC
enzymatic crosstalk will enhance our understanding of histone
and non-histone protein lysine deacetylation and its impact on the
survival of cells under ischemic stress (34).

Importantly, experimental cerebral ischemia causes upregula-
tion of class I/IIb HDAC expression, which possibly implicates
them in ischemic pathology (29). For example, HDAC1 must
exist in complex with HDAC3 to promote apoptosis in cerebellar
granule neurons; the toxic effects of HDAC1:HDAC3 associa-
tion were mitigated by activation of PI3K/Akt signaling (35).
Cortical neurons transfected with HDAC3 or HDAC6 shRNA
each exhibited decreased apoptosis when exposed to prolonged
oxygen–glucose deprivation (30). Furthermore, HDAC2 mutant
mice exhibited reduced retinal degeneration following ischemia
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(36). In response to these findings and many others, a variety
of pharmacological HDAC inhibitors have been developed and
applied in animal models of cerebral ischemia. Results from
these studies have revealed that HDAC inhibitors can pharma-
cologically condition the neuron against ischemic injury through
de-repression of transcription (37, 38). While these studies sug-
gest that pharmacological inhibition of class I/IIb HDAC iso-
forms (so-called “pan-inhibitors”) promote survival of stressed
neurons, the evidence reviewed below indicates that the catalyt-
ically inactive IIa isoforms may be beneficial to cell survival
from IRI.

Small Molecule HDAC Inhibitors
Condition the Brain Against Ischemic Injury

Reduction in infarct volume and prevention of apoptosis are the
most obvious physiological effects of class I/IIb HDAC inhibitors
in experimental cerebral ischemia (see Table 1). The molecu-
lar mediators are numerous but consensus is forming around
certain cellular processes: modulation of apoptotic intermedi-
ates (caspases, Bcl-2), stabilization of the cellular stress response
(Hsp-70, EIF-2α, CHOP), transcription of oxygen-responsive
enzymes (HIF-1α, Nrf2), regulation of calcium handling (BDNF,
CREB), and activation of survival kinase cascades (Akt, ERK,
AMPK, p21).

Administration of the mood stabilizer and weak HDAC
inhibitor valproic acid (VPA) after permanent right carotid artery
occlusion prevented neuronal apoptosis in a dose-dependent
manner in neonatal rats (39). Rats treated with VPA during mid-
dle cerebral artery occlusion (MCAo) exhibited reduced infarct
volume, enhanced angiogenesis (40), neurogenesis (41, 42), and
reduction of monocyte infiltration (43). These effects were cor-
related with increased transcription of Hsp70 (43, 44), HIF1-
alpha and MMP-2/9 (40), or GLT-1, a transporter protein, which
accelerates clearance of glutamate in damaged gray and white
matter (41). VPA protected retinal ganglion cells from ischemia-
reperfusion (IR) through reduction of mitochondria-mediated
apoptosis (45) and endoplasmic reticulum stress-induced apop-
tosis (46), and enhanced Hsp70 promoter acetylation in cortical
neurons through inhibition of a class I HDAC (47). The potent
hydroxamate trichostatin A (TSA) decreased infarct volume in
rodents given MCAo, which depended on induction of Hsp70,
Bcl-2, and Akt phosphorylation, or on gelsolin, an essential regu-
lator of actin homeostasis (43, 48, 49). Mice treated with TSA at
the onset of permanent MCAo exhibited reduced infarct volume
through increased Nrf2-dependent transcription of antioxidant
enzymes (50). TSA also reduced transcription of inflammatory
proteins MMP-1 and MMP-3, and reduced caspase-3 activation
up to 24 h after the onset of ischemia in the retina (51, 52).
Sodium butyrate (a potent analog of VPA) treatment before per-
manentMCAo evoked a 50% reduction in infarct volume through
increased expression of p21, a cyclin-dependent kinase inhibitor,
which prevents pro-apoptotic gene transcription (53–55). Fur-
thermore, mice treated with 4-phenylbutyrate before or after
ischemia–hypoxia exhibited reduced ER-stress-mediated apopto-
sis through reduction of EIF2-alpha phosphorylation (56). Mice

treated with the potent hydroxamate Vorinostat (FDA approved
for treatment of T-cell lymphoma) at the onset ofMCAo exhibited
reduced infarct size and increased transcription of Hsp70 and
Bcl2 (57, 58). Furthermore, neurons exposed to oxygen–glucose
deprivation in vitro andmice subjected toMCAo in vivo exhibited
increased acetylation at the Bcl-xL promoter when treated with
Entinostat, a class I selectiveHDAC inhibitor; the effect wasmedi-
ated by enhanced NF-kB p50 acetylation and decreased activation
of the Bim promoter (59).

While class I HDACs seem to play pathological roles in cerebral
ischemia, there is evidence that class IIa HDACs are required for
cell survival following neuronal stress. Genetic heterogeneity sur-
rounding theHDAC9 gene is associated with large vessel ischemic
stroke (60). By directly inhibiting the c-jun promoter, HDAC4
(61) and HDAC7 prevented neuronal cell death induced by low
potassium (62). HDAC4 is required for the normal development
of retinal neurons through the stabilization of HIF-1-alpha (63).
HDAC4 and HDAC5 knock-in protected neuron-like pheochro-
mocytoma cells from apoptosis induced by OGD, which was
partly dependent on HMGB1 activity (64). Conversely, nuclear
export of HDAC5 was required for regeneration after acute
axonal injury, a condition that promotes rapid influx of calcium
(65). In fact, nuclear calcium levels regulate the association of
class IIa HDACs with a MEF2-SMRT corepressor complex (66–
68). Given this, it is possible that class IIa HDACs may cor-
rect calcium-induced pathological gene expression in neuronal
ischemia.

HDAC Enzymatic Crosstalk in Cerebral
Ischemia

Evidence is accumulating that HDAC signal transduction path-
ways communicate in crosstalk with kinase signal cascades in
cerebral ischemia. The ability ofHDAC inhibitors to condition the
neuron in the seconds to minutes following acute ischemic stress
may be dependent on the concurrent activity of certain cell sur-
vival kinases. As mentioned above, TSA prevented oxidative cell
death in cortical neurons through increased transcription of p21,
which inactivates pro-apoptotic c-jun transcription by inhibiting
the kinase ASK-1 (53–55). HDAC3was phosphorylated by GSK3-
beta and was required for cell death induced by low potassium
in cultured cortical neurons; neuronal death was prevented by
pharmacological inhibition of GSK3-beta, and with constitutively
active Akt, a known inhibitor of GSK3-beta (69). Conversely, the
class IIa HDAC4 protects neurons from cell death induced by
low potassium by direct inhibition of cyclin-dependent kinase-
1 activity, independent of PI3K/AKT, c-jun, or RAF/MEK/ERK
signaling (61).

PI3K and AKT activities are both required for the neuronal
conditioning achieved with VPA (47). Interestingly, induction of
Hsp70 by VPA and other Class I HDAC inhibitors resulted in
increased histone methylation in primary neurons and astrocytes
(70). In particular, as confirmed by chromatin immunoprecipita-
tion, HDAC inhibition caused increasedmethylation at theHsp70
promoter, a histone landscape favoring transcriptional activation.
This suggests an intricate interplay between histone acetylation
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TABLE 1 | Physiological effects of HDAC inhibitors in experimental models of stroke.

Reference Stroke model Treatment Treatment time Molecular target Acetylated protein Physiological effect

(36) Mouse retinal I/R HDAC2+/− Ac-histone H3 ↓Apoptosis

(39) Rat pup RCAo+ 1 h
hypoxia

VPA 200 or
400mg/kg/day

Post for 5 days ↓Neuronal apoptosis

(40) Rat MCAo (1 h) with
reperfusion

VPA 200mg/kg/day Post for 14 days ↑HIF-1α, VEGF,
MMP-2/9

Ac-histone H3;
Ac-histone H4

↓Brain infarction

(41) Rat pMCAo VPA 100mg/kg/day Post for 7 days ↑GLT-1 Ac-histone H4 ↓Brain infarction;
↓neuronal apoptosis

(43) Rat pMCAo VPA
300mg/kg/12 h×2

Post for 1 or
2 days

↑HSP-70, p53;
↓iNOS

Ac-histone H3 ↓Brain infarction

(43) Rat pMCAo SB
300mg/kg/12 h×2

Post for 1 or
2 days

↑HSP-70, COX-2,
p-Akt

Ac-histone H3 ↓Brain infarction

(43) Rat pMCAo TSA
0.5mg/kg/12 h×2

Post for 1 or
2 days

↑HSP-70, Bcl-2,
p-Akt

Ac-histone H3 ↓Brain infarction

(44) Rat MCAo (1 h) with
reperfusion

VPA
300mg/kg/12 h×2

Post for 1 or
2 days

↑HSP-70; ↓active
caspase-3

Ac-histone H3 ↓Brain infarction

(45) Rat (optical nerve
crush)

VPA
300mg/kg/12 h×2

Post for 5 or
8 days

↑CREB DNA
binding, p-ERK;
↓active caspase-3

↓Retinal ganglion cell
death; ↑axonal
regeneration

(46) Rat retinal I/R VPA 300mg/kg/day Pre for 1 day
and post for
7 days

↑GRP78; ↓active
caspase-12, CHOP

Ac-histone H3 ↓Retinal ganglion cell
death; ↓ER
stress-mediated
apoptosis

(47) Heat shock (42°C) 1 h
in cultured rat cortical
neurons

VPA 0.25–1.0mM Post for 1 day ↑HSP-70; ↓active
caspase-3

Ac-histone
H3K9/14; Ac-Sp1

(53) Rat pMCAo SB 1200mg/kg Pre for 1 day
and post for
30min

↑p21 Ac-histone H4 ↓Brain infarction

(42) Rat pMCAo SB 300mg/kg day Post for 14 days ↑BDNF, p-CREB,
GFAP

↑Cell proliferation,
migration,
differentiation

(56) Mouse
MCAo+ hypoxia

4-PBA 40 or
120mg/kg/day

Pre for 3 days or
post for 3 days

↓Active
caspase-12,
p-EIF-2α, CHOP

↓Brain infarction;
↓neuronal apoptosis;
↓ER stress-mediated
apoptosis

(58) Mouse pMCAo Vorinostat
50mg/kg x 2

Post at 0 h and
6 h

↑HSP-70, Bcl-2,
p-Akt

Ac-histone H3 K18 ↓Brain infarction

(59) OGD (3 h) with
reperfusion (2 h) in
mouse cultured
cortical neurons

Entinostat 0.1, 0.5,
or 1µM

Post for 2 h ↑p-AMPK, Bcl-xL
promoter Ac; ↓Bim
promoter Ac

Ac-NF-kB p50
K310; Ac-histone
H3 K9/18

↓Neuronal apoptosis

(59) Mouse MCAo (1 h) with
reperfusion

Entinostat 20 or
200µg/kg

Post at 1, 3, 5,
or 7 h

↑Bcl-xL promoter
Ac; ↓Bim promoter
Ac

Ac-histone H3
K9/18

↓Brain infarction

(49) Mouse MCAo (1 h) with
reperfusion

TSA 1 or
5mg/kg/day

Post for 14 days Gelsolin Ac-histone H4 ↓Brain infarction

(49) OGD for 90 or 150min
in mouse cultured
cortical neurons

TSA 300 nM Pre for 12 h ↓[Ca2+]i, ↑∆Ψ

(50) Mouse pMCAo TSA 1 or
5mg/kg/day

Post at 0 and
6 h

↓Brain infarction

(50) OGD for 150min in
mouse cultured
cortical neurons

TSA 3, 10, or
30 ng/mL

Pre for 1 h ↑Nrf2:ARE binding,
NQO1, HO1

↓Neuronal apoptosis

(51, 52) Rat retinal I/R TSA 2.5mg/kg/12 h Post for 3 days ↑TNF-α Ac-histone H3 ↓Apoptosis

RCAo, right carotid artery occlusion; pMCAo, permanent carotid artery occlusion; ONC, optical nerve crush; Ac, acetylated; OGD, oxygen–glucose deprivation.

Frontiers in Neurology | www.frontiersin.org June 2015 | Volume 6 | Article 1454

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


Aune et al. Histone deacetylases in ischemic conditioning

and histone methylation. In fact, this phenomenon of functional
and structural cooperation between HDACs and lysine-specific
demethylase (LSD) enzymes is well established, as in the mul-
tifaceted corepressor CoREST/REST/HDAC/LSD complex (71).
However, complex crosstalk between lysine “readers” (enzymes
that recruit PTM enzymes to acetyl-lysine residues) and “writers”
(enzymes that catalyze acetylation of lysine residues) results in
combinations of histone modifications that form a hierarchal
landscape, which dictates the transition between silencing and
activation of a certain transcription domain (72). Clearly, HDAC
enzymatic crosstalk with other PTM enzymes occurs on both
histones and non-histone proteins.

HDAC Inhibitors Mitigate Cardiac
Infarction Following IRI

Histone deacetylase inhibitors have also shown potential in miti-
gating cardiac IRI (73). Importantly, HDAC activity is also upreg-
ulated in hearts after IR. Mice treated with TSA following in vivo
IRI exhibited marked reduction of infarct area which correlated
with stabilization of HIF-1a. This effect was abrogated in HDAC4
knockout cardiomycytes, in another example of the putative pro-
tective nature of a class IIa HDAC (74).

Multiple kinase pathways have been implicated in promoting
myocyte survival in response to ischemic injury, including
p38 MAPK (75–77), the RISK PI3K/AKT/eNOS (78–83) and
RAF/MEK/ERK1/2 (84), and the survivor activating factor
enhancement pathway (SAFE) (85, 86). Evidence for enzymatic
crosstalk between HDACs and these pathways is growing. The
cardioprotective action of HDAC inhibitors in IRI is also appar-
ently dependent on the gp-91 subunit of NADPH oxidase (87),
p38 (88), Akt1, and Mkk3 (89, 90). The transcription factor NF-
kB has been suggested as a common target of multiple types of
preconditioning stimuli (91). Interestingly, NF-kB is a common
target of the p38 MAPK (92), Akt (93), and Erk1/2 (94) signal-
ing pathways, and is required for p38-mediated adaptation to
mechanical preconditioning in isolated hearts (92). TSA-induced
pharmacological preconditioning was recently correlated with
nuclear translocation, activation, and hyperacetylation of NF-kB,
while specific deletion of NF-kB p50 abrogated the TSA protective
effect (95). The effects of HDAC inhibition on ERK1/2 signaling
have not been directly assessed in a model of IR. Intriguingly,
however, HDAC inhibition prevents cell death in multiple cell
lines by activating ERK1/2, while this effect is not present in
several cancer cell lines (96). The absence of HDAC-mediated
ERK1/2 activation in cancer cells is likely the result of suppressed
HDAC1 activity (97).

Recent work in mouse tissues demonstrated that the endoge-
nous HDAC1 inhibitor -β-hydroxybutarate (β-OHB) caused
increased acetylation at the promoter of the FOXO3a tran-
scription factor. This led to upregulation of FOXO3a and its
targets SOD2 and catalase, free radical scavengers, which fur-
ther prevented paraquat-induced renal oxidative stress in mouse
kidneys (98–100). Additionally, we recently reported preserved
cardiac contractile function and reduced infarction following IR
by pre-treating rats with Entinostat (101). This was associated

with dramatic nuclear FOXO3a enrichment, along with increased
transcript and protein levels of SOD2 and catalase. Nuclear
enrichment of FOXO3a was likely due to decreased Akt-mediated
phosphorylation at the key nuclear exclusion site S318/321 (102),
suggesting that class I HDAC inhibition also influences the
nuclear trafficking of transcription factors which upregulate these
enzymes. HDAC4/5 are excluded from the nucleus by phospho-
rylation by AMPK, but localize to the nucleus in situations of
low glucose, where they recruit HDAC3. Intriguingly, in this case,
HDAC3 deacetylates and activates FOXO-mediated transcription
of anti-apoptotic genes (103).

Conclusion

Histone deacetylases evidently form signaling hubs for cellular
communication in cerebral and cardiac IRI. Class IHDACs appear
to play mainly pathologic roles in IRI, by repressing transcription
of genes required for cell survival, while Class IIa HDACs appear
necessary for cell survival. The roles of the class IIbHDAC6 in pre-
conditioning are not full understood, though HDAC6 is a major
regulator of autophagic flux in neurodegenerative diseases (104)
and a contributor to pathological responses in the heart (105).
Recent studies demonstrate that the modulation of endogenous
antioxidant transcription is a significant mechanism by which the
inhibition of HDACs confers preconditioning protection against
IRI. Neurons and cardiomyocytes may share epigenetic signal-
ing mechanisms for activation of endogenous protection from
ischemia by HDAC inhibitors.

Lines of evidence have begun to accumulate that support a
role for communication between HDAC and kinase signaling
networks in ischemia of the heart–brain axis. While the mech-
anisms behind the protective preconditioning effect of HDAC
inhibition remain to be fully elucidated, it is evident that the
RISK pathway and related kinases are integral components. More
research into the details of the specific interactions between
HDACs and other PTMs will advance our understanding of the
role of HDAC inhibition in ischemic preconditioning. Dissecting
the dual roles of HDACs as transcriptional repressors and as
effectors of enzymatic crosstalk is needed to dissect the chronic
and acute phases of preconditioning protection. Given that sev-
eral small molecule inhibitors of HDAC activity are currently
used in patients or in clinical trials, HDAC inhibitors represent
promising treatment modalities for patients undergoing elective
brain or heart surgery, or patients at high risk of stroke or cardiac
arrest.
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