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Alzheimer’s disease (AD) is characterized as a complex, age-related neurological disorder of the
human central nervous system (CNS) that involves the progressive mis-regulation of multiple
biological pathways at multiple molecular, genetic, epigenetic, neurophysiological, cognitive, and
behavioral levels. It has been about 8 years since the first reports of altered microRNA (miRNA)
abundance and speciation: (i) in anatomical regions of the brain targeted by the AD process after
post-mortem examination, (ii) in blood serum, and (iii) in cerebrospinal fluid (CSF) (1-3). Since
then an in depth overview of the peer-reviewed literature has provided no general consensus of
what miRNAs are up-or-down regulated in any tissue or biofluid compartment in thousands of AD
patients. In this brief “Opinion” paper on “Biomarkers of Alzheimer’s disease: the present and the
future” we will highlight the extremely heterogeneous nature of miRNA expression in AD, based on
very recent advances in the analysis of miRNA populations in various biofluid compartments com-
pared to normally aging, neurologically normal controls. This work is based against a background of
our laboratory’s 24 years of research experience into the structure and function of small, non-coding
RNAs in the aging human CNS in health and in age-related neurological disease (4).

First, it is important to appreciate that all forms of dementia due to AD are broadly classified
as either early onset (EOAD, under 65 years of age), or late onset (LOAD, over 65 years of age)
(5, 6). About ~5% of all AD cases have a genetic component (see below) while the remaining
~95% of all AD cases are of a sporadic (idiopathic) nature or are of unknown origin (5-8). The
extremely heterogeneous nature of AD pervades all molecular, genetic, neuropathological and
behavioral, mnemonic, and cognitive levels, including the clinical presentation of the disease (6-
15). For example, the key neuropathological markers of AD include: (i) the progressive deposition
of amyloid-beta (AB) peptides into dense, insoluble pro-inflammatory senile plaques (SP); (ii)
the accumulation of hyperphosphorylated tau into neurofibrillary tangles (NFT); (iii) synaptic
atrophy, “pruning” and loss, neuronal degeneration and neuronal cell death; (iv) alterations in the
innate-immune response; and (v) the progressive inflammatory neurodegeneration and anatomical
targeting of only specific anatomical regions of the brain (1-15). These highly interactive character-
istics collectively suggest the participation of multiple pathogenic pathways, and the involvement
of multiple deficits in the expression of CNS genes (1-15). Accordingly, this culminates in a
remarkably heterogeneous neuropathological scaffold for AD, with significant variations in disease
onset, progression, severity of neuropathology, extent of behavioral and cognitive deficits, and
memory loss (4-12). To cite one very recent example, a relatively large epidemiological study of
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AD patient data (N =7815) (12) indicated significant hetero-
geneity in the first cognitive/behavioral symptomatic “indicator”
experienced by AD patients (13-16). In other recent studies,
two laboratories have independently reported significant varia-
tion in the miRNA-34a-mediated triggering receptor expressed
in myeloid/microglial cells-2 (TREM2) down-regulation in an
African-American population that further underscores (i) the
importance of investigating different ethnic populations for AD
epigenetic risk; (ii) intrinsic variance and human biochemical and
genetic individuality; and (iii) allelic heterogeneity and potentially
diverse pathogenic contributory mechanisms to the AD process
(sufficient TREM2 is important in the clearance of excessive AP
peptides from the brain) (9-16). Related to these observations
are studies that over the last 15years have indicated that gene
expression patterns at the messenger RNA (mRNA) level, AP pep-
tide load, SP and NFT densities and localization, and familial and
clinical histories further underscore AD heterogeneity (8-12, 17-
20). Indeed, there appears to be intrinsic limitations of useful AD
biomarkers because just one biomarker cannot define the mecha-
nism of AD, by nature are associative and/or correlative, and are
unable to unequivocally prove disease causality (13-17, 21-23).
For example current genome-wide association studies (GWAS),
whole-exome and whole-genome sequencing have revealed muta-
tions in excess of 20 genetic loci associated with AD risk (11, 19,
20, 24). Three main genes are involved in EOAD: amyloid precur-
sor protein (APP), presenilin 1 (PSENTI), and presenilin 2 (PSEN2),
while the apolipoprotein E (ApoE) E4 allele has been found to be
a main risk factor for LOAD (1, 17-19, 23). Additionally, recent
studies have discovered other genes that might be peripherally
involved in AD, including clusterin (CLU), complement receptor
1 (CR1), phosphatidylinositol binding clathrin assembly protein
(PICALM), sortilin-related receptor (SORL1), complement factor
H (CFH), the triggering receptor expressed on myeloid/microglial
cells 2 (TREM?2), and the cluster of differentiation 33 (CD33) gene
loci; although not one single case of AD has yet been found to be
associated with more than one of these aberrant genetic loci (11,
25). Indeed, most AD cases do not contain any of these mutant
genetic “biomarkers” (11, 20, 24-26). Further, the persistence
of mutations in these genes from birth and throughout life, in
contrast to the general development of AD in old age, suggests that
multiple age-associated gene regulatory mechanisms must come
into play to initiate and drive development and propagation of the
AD process, and miRNAs are excellent candidates for these diverse
age-related, developmental, and regulatory roles (1-5, 9, 22).
Regarding the rate and variability of cognitive decline in
AD, one large recent study did not find evidence support-
ing a substantial role of the mini-mental status examination
(MMSE) as a stand-alone single-administration test in the
identification of mild cognitively impaired patients who even-
tually develop AD, suggesting the need for additional neu-
ropsychological testing and comprehensive biomarker analy-
sis (21-23). Indeed, although AD is the most common form
of senile dementia, it can often be challenging to distinguish
this insidious and fatal disorder from other equally hetero-
geneous neurodegenerative disorders, such as frontal tempo-
ral dementia, human prion disease [including bovine spongi-
form encephalopathy (BSE; mad cow disease), Creutzfeldt-Jakob

disease, Gerstmann-Striussler-Scheinker syndrome, and other
relatively rare human prion diseases], Huntington’s disease, Lewy
Body dementia, Parkinson’s disease, cerebrovascular disease, or
vascular (multiple infarct) dementia (16-18, 21-23). Indeed, the
diagnostic accuracy of when brain-mediated cognitive deficits
actually begin may require a dimensional rather than a cate-
gorical classification, and a lifespan rather than aging group-
ing, and it has been recently suggested that a multidimensional
system-vulnerability approach rather than a simple “hypothetical
biomarker” model of age-associated cognitive decline and demen-
tia may be more useful diagnostically (12, 20). Put another way,
AD might be classified not as a discrete disease entity but rather
as a “neurological disconnection syndrome” (7, 8, 11, 15, 24). This
“neurological disconnection syndrome” is more broadly defined as
an abnormal condition characterized by an established group of
variable neurological signs, symptoms, and molecular markers,
including miRNA abundance and speciation, that individually
possess only limited neuropathological and cognition/behavioral
similarities from patient to patient (7-9, 11-18, 21-24).

Further to the concept of AD heterogeneity are the ideas that
form the conceptual basis for “human biochemical and genetic
individuality” (5, 9, 18). These include individual gene sequence
variation, gene-based susceptibility to disease and heterogeneity
in miRNA abundance and complexity, that may in part drive a
general redundancy in gene expression in different human popu-
lations (5, 9, 16, 21, 22). Interestingly, these variations may directly
impact the genetic evolution of the human species (4, 5, 18-20, 24~
26). Much independently derived data support the concept that
the genetics, epigenetics, and genome-wide regulatory networks
of AD vary considerably among different human populations
that possess different genetic and/or environmental backgrounds.
Furthermore, despite the fact that genetic factors are inherited
and fixed, non-genetic factors, such as (i) environmental or occu-
pational exposures to pesticides, organic solvents, anesthetics,
and/or food additives; (ii) pre-existing medical conditions such
as cancer, cerebrovascular, and/or cardiovascular disease, depres-
sion, diabetes, dyslipidemia, hypertension, traumatic brain injury,
older age, female gender, and ApoE status; and (iii) lifestyle factors
such as alcohol and coffee consumption, salt, sugar, and choles-
terol and fat intake, body mass index, cognitive activity, physical
activity, and smoking, are life-style determined and these are
known to impact the incidence, development and propagation of
AD (18-20, 24-31). Interestingly, certain potentially pathogenic
“pro-inflammatory miRNAs” of the host are significantly inducible
by common microbial and environmental factors such as herpes
simplex-1 virus (HSV-1) and naturally occurring elements of the
biosphere (such as aluminum oxides that make up almost 9% of
the earth’s crust) (32-35).

To make another important point concerning the variable
contribution of specific miRNAs to AD, we surveyed the most
recently published papers on “miRNA biomarkers for AD” using
the National Institutes of Health National Library of Medicine
website MedLine (www.ncbi.nlm.nih.gov; using the keywords
“Alzheimer’s disease,” “miRNA” and “2015”). The most recent
findings of 15 independent labs further support the contention of
extremely high miRNA heterogeneity in AD tissue and biofluids
(36-50). For example, the last 15 reports of diagnostic markers
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in AD CSF (36-39; involving miRNA-27a, miRNA-29a, miRNA-
191, miRNA-384) and others, AD blood serum (38-46; involving
miRNA-107, miRNA-125b, miRNA-128, miRNA-132, miRNA-
191, miRNA-206, miRNA-384) and others; “humanized” AD cell
models (47-50; involving miRNA-125b, miRNA-128, miRNA-
138) and others, and several recent reviews (51-55) provides no
common or general consensus of any single miRNA that defines
causality for the onset or duration of the AD process. To further
complicate these findings, recent molecular-genetic studies have
also shown that even when derived from homogenous source pop-
ulations, such as pluripotent stem cells, individual cells from those
populations exhibit significant differences in gene expression,
protein abundance and phenotypic output; here specific families
of miRNAs appear to have a deterministic role in reconfigur-
ing the “pluripotency network” of individual cells with important
downstream functional consequences (47-49, 56, 57).

It is further important to point out exactly what an advanced
analytical technique will tell us. For example, most AD researchers
would agree that the production of AB42 peptides is involved in
the AD process. AP42 peptides and fragments are generated by
a variety of secretases (chiefly a.-, B-, and y-secretases), however,
other secretase-like enzymes and enzyme modifiers appear to be
involved (5, 8, 14, 25, 31, 58). While RNA-seq and other “next
generation sequencing” (NGS) methods will tell us something
about the levels of expression of these secretases they would give
us no clue about the activity of these secretases in the brain,
and their ability to generate AB42 or other AD-relevant peptides,
which are affected by many other genetic, epigenetic, non-genetic,
environmental, and host lifestyle factors. So it is unlikely that
RNA-seq, NGS, or other “advanced sequencing methodologies”
could give us the entire story of what is going on in AD, although
most agree it would give us very valuable insight as to what is
happening at the molecular-genetic level, and perhaps be of some
value diagnostically.

Lastly, if high-density microarray- and advanced RNA-
sequencing based profiles of AD brain or biofluid samples
are any indication of AD variability then there are real and
significant human population differences in AD onset, incidence,
epidemiology, disease course and progression (9, 16, 21, 22, 25,
50, 57). It is unlikely that a single miRNA in the CSE blood
serum, urine, or any other biofluid compartments from multiple
human populations will be predictive for AD at any stage of
the disease. However, what might be particularly useful for
significantly improved AD diagnostics would be a selective, high-
density panel of a “pathogenic and neurodegeneration-associated
miRNA family” that along with other gene expression-based
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