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Limbic encephalitis is characterized by adaptive autoimmune inflammation of the 
gray matter structures of the limbic system. It has recently been identified as a major 
cause of temporal lobe epilepsy accompanied by progressive declarative – mainly epi-
sodic –  memory disturbance as well as a variety of rather poorly defined emotional and 
behavioral changes. While autoimmune inflammation of the hippocampus is likely to be 
responsible for declarative memory disturbance, consequences of autoimmune inflam-
mation of the amygdala are largely unknown. The amygdala is central for the generation 
of adequate homoeostatic behavioral responses to emotionally significant external stimuli 
following processing in a variety of parallel neuronal circuits. Here, we hypothesize that 
adaptive cellular and humoral autoimmunity may target and modulate distinct inhibitory 
or excitatory neuronal networks within the amygdala, and thereby strongly impact pro-
cessing of emotional stimuli and corresponding behavioral responses. This may explain 
some of the rather poorly understood neuropsychiatric symptoms in limbic encephalitis.
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introduction – autoimmune inflammation of  
the amygdala in Limbic encephalitis

Limbic encephalitis is characterized by adaptive autoimmune inflammation of the gray matter 
structures of the limbic system (1). It has recently been identified as a major cause of temporal lobe 
epilepsy accompanied by progressive declarative – mainly episodic – memory disturbance as well as 
a variety of rather poorly defined emotional and behavioral changes (2–4).

Magnetic resonance imaging exhibits dynamic changes of volume and signal intensity that use to 
be most prominent in the amygdala and the hippocampus suggesting considerable inflammation and 
subsequent degeneration (together with structural reorganization) in these brain areas (1, 5–7). While 
autoimmune inflammation of the hippocampus is likely to be responsible for declarative memory 
disturbance, consequences of autoimmune inflammation of the amygdala are poorly understood (8).

A role of the amygdala in appropriate human emotional behavior was first reported by Adolphs et al. 
(9). This finding was supported by studies on individuals with impaired ability to recognize emotions 
from facial or prosodic expressions after amygdala damage of variable etiology (10–12). However, 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://dx.doi.org/10.3389/fneur.2015.00171
http://www.frontiersin.org/Neurology/
https://creativecommons.org/licenses/by/4.0/
mailto:nico.melzer@ukmuenster.de
mailto:sven.meuth@ukmuenster.de
http://dx.doi.org/10.3389/fneur.2015.00171
http://www.frontiersin.org/Journal/10.3389/fneur.2015.00171/abstract
http://www.frontiersin.org/Journal/10.3389/fneur.2015.00171/abstract
http://www.frontiersin.org/Journal/10.3389/fneur.2015.00171/abstract
http://www.frontiersin.org/Journal/10.3389/fneur.2015.00171/abstract
http://loop.frontiersin.org/people/18673/overview
http://loop.frontiersin.org/people/2019/overview
http://loop.frontiersin.org/people/445/overview
http://loop.frontiersin.org/people/107551/overview
www.frontiersin.org


August 2015 | Volume 6 | Article 1712

Melzer et al. Autoimmune amygdala inflammation

Frontiers in Neurology | www.frontiersin.org

the recognition of facial (13) and prosodic (14, 15) emotions is 
apparently normal in some patients with amygdala damage. Two 
factors related to this discrepancy have been suggested: (i) age at 
damage onset [early-onset (congenital) vs. late-onset of amygdala 
damage] and (ii) extent of the damage (selective amygdala dam-
age vs. broad damage to the mesial temporal lobe) (16).

Emotion recognition (happiness, sadness, anger, fear, surprise, 
disgust) from facial and non-facial stimuli was investigated in 
two patients with non-herpetic limbic encephalitis 14 weeks after 
the onset of the disease. One patient who had a lesion relatively 
restricted to the amygdala and hippocampus experienced diffi-
culty in recognizing fear from facial expressions. In contrast, the 
other patient who had a lesion that extended beyond the amyg-
dala experienced difficulty in recognizing fear from non-facial 
(prosodic and written verbal) stimuli (17). Moreover, recognition 
of emotional stimuli, such as fear, and disgust both from faces 
and voices has been shown to be impaired in a patient with Ma 
antibody-associated limbic encephalitis (18).

Furthermore, autonomic responses to such emotional stimuli 
have been reported to be severely impaired in patients with 
limbic encephalitis. Sweating on the palms of the hands and 
soles of the feet, so-called emotional sweating, is considered to 
be mediated by the limbic system, including the amygdala and 
anterior cingulate cortex. Hence, sweat and skin vasoconstriction 
responses to arousal stimuli were recorded on the palms of seven 
patients with viral (herpes simplex virus and Epstein–Barr virus 
encephalitis; n = 3) and autoimmune (voltage-gated K+ channel 
antibody positive, glutamate receptor antibody positive, and 
antibody-negative limbic encephalitis; n  =  4) bilateral limbic 
encephalitis, which included both the amygdala and hippocam-
pus 3 weeks to 4 months after disease onset. Sweat responses and 
skin vasoconstriction responses were absent or markedly reduced 
in patients with limbic encephalitis compared to normal controls 
following a variety of emotional stimuli (19). The same results 
were obtained in a patient with autoimmune limbic encephalitis 
restricted bilaterally to the amygdala (20) indicating that affection 
of the amygdala rather than the hippocampus seemingly accounts 
for impaired emotional sweating in these patients.

Interestingly, another case of extensive bilateral limbic damage 
(including amygdala damage) after an episode of herpes simplex 
virus encephalitis 30  years ago did not present any emotional 
impairment besides difficulty to identify anger expression (21), 
suggesting that some adaptive mechanisms may compensate for 
the neuropsychological symptoms during the disease course.

The amygdala is an almond-shaped nucleus located deep in 
the temporal lobe. It is considered as a core region of the limbic 
system involved in the control of positive and negative affects, 
as well as the modulation of social and cognitive functions (22). 
Different amygdala subnuclei exist, of which we will focus here 
on lateral (LA) and basal amygdala (BA), which are often jointly 
(together with the accessory-basal nuclei) considered the basolat-
eral complex of the amygdala (BLA). We argue that interference 
with BLA function through known B cell-derived autoantibodies 
and T cells may explain, at least in part, some neuropsychiatric 
features in limbic encephalitis.

The BLA is a main input site for sensory information reaching 
the amygdala from thalamic and cortical regions and for their 

convergence with affective information. Sensory input is organ-
ized in a topographic manner in that the LA is more concerned 
with unimodal information, whereas the BA tends to receive 
more complex multimodal inputs. Through its projections to the 
central amygdala (CeA), the bed nucleus of the stria terminalis 
(BNST), and the ventral hippocampus (23, 24), the BLA has been 
implicated in the control of fear and anxiety [for review see Ref. 
(25)]. Moreover, the BLA modulates reward and addiction via 
direct projections to the nucleus accumbens (26) and controls the 
function of the medial prefrontal cortex (27).

The amygdala receives prominent neuromodulatory input 
and triggers arousal and stress responding through projections 
to the septum and locus coeruleus. It is further a key site for the 
activity of corticosterone in the brain, which increases excitability 
of BLA projection neurons and reduces the inhibition through 
γ-aminobutyric acid (GABA) receptors (28). By mediating the 
effects of these modulatory factors, the BLA is also thought to 
act as an important modulator of neural plasticity and memory 
formation in the hippocampus and prefrontal cortex (29, 30).

Glutamatergic principal cells in the BLA are under a tight 
control by GABAergic interneurons (Figure 1). Approximately 
10–20% of neurons in the amygdala are GABAergic and control 
information flow as well as rhythmic network activity (31). 
Various types of inhibitory interneurons (32) exist in the BLA 
that control specific aspects of information flow and behavioral 
function (33). Disinhibitory local circuits have also been reported 

FiGUre 1 | putative effects of adaptive humoral and cellular 
autoimmunity on a simplified neuronal network. Glutamatergic principal 
neurons and GABAergic interneurons can be selectively targeted by neuronal 
antigen-specific CD8+ T cells based on their differential intracellular antigen 
expression (and presentation) [e.g., GAD65 in interneurons (blue), Hu in 
principal neurons (yellow)] with distinct consequences for network function 
and excitability. With regard to neuronal cell membrane antigens, excitatory 
glutamatergic synaptic transmission and plasticity can be disturbed by 
antibodies against NMDA and AMPA receptors, GABAergic synaptic 
transmission and plasticity can be disturbed by antibodies against GABAA 
and GABAB receptors. Antibodies against LGI1 and CASPR2 may interfere 
with both glutamatergic and GABAergic synaptic transmission and intrinsic 
neuronal excitability within the network, respectively.
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taBLe 1 | putative effects of adaptive humoral and cellular autoimmunity on inhibitory and excitatory transmission and network activity of the 
amygdala together with potential clinical consequences.

immune mechanisms target antigens neuronal effects potential clinical effects

Inhibitory 
neurotransmission

Humoral GABAA receptor abs Hyperexcitability and function of 
principal cells

State of increased anxiety, generalized fear 
and hyperarousal, epileptic seizuresGABAB receptor abs

LGI1 abs
CASPR2 abs

Cellular GAD65-reactive T cells and others Hyperexcitability and function of 
principal cells

State of increased anxiety, generalized fear 
and hyperarousal, epileptic seizures

Excitatory 
Neurotransmission

Humoral NMDA receptor abs Hypoexcitability and function of 
principal cells

Disturbed processing of emotional stimuli, 
lower levels of anxiety, generalized fearAMPA receptor abs

LGI1 abs
CASPR2 abs

Cellular HuD-reactive T cells and others Hypoexcitability and function of 
principal cells

Disturbed processing of emotional stimuli, 
lower levels of anxiety, generalized fear

For details, please refer to the text.
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(34) and implicated in fear memory formation (35). This internal 
circuitry of the BLA is particularly well set to process information 
via rhythmic network activities. BLA neurons show intrinsic low-
frequency oscillations (36) and can develop gamma oscillations 
upon GABAergic blockage (37). GABAergic interneurons are 
furthermore selectively recruited to theta rhythms originating 
in the hippocampus (38). Thus, network oscillations in the BLA 
closely reflect periods of safety and threat exposure (39) and 
synchronize with the hippocampus and prefrontal cortex during 
states of fear retrieval and extinction (40, 41).

Amygdala lesions lead to emotional numbness and fearless-
ness, whereas hypertrophy of amygdala has been observed in 
patients with post-traumatic stress disorder and depression 
(42). Indeed, it has been suggested that the amygdala is a key 
structure for the long-term behavioral adaptation to stress (43). 
The amygdala has furthermore been identified as a major epi-
leptic focus in temporal lobe epilepsy, and in rodents it is widely 
used as a site of stimulation in the kindling model of epilepsy. 
Importantly, within the amygdala the BLA plays a central role in 
seizure generation (44).

Considering these findings, we hypothesize that changes in 
BLA excitability and information processing induced by autoim-
mune inflammation contribute to seizures, different levels of 
anxiety, mood disorder, and potentially also memory deficits in 
limbic encephalitis as – depending on the predominant immune 
effector mechanism and the neuronal target antigen – autoim-
mune inflammation of the amygdala may result in decreased or 
increased excitability and function of principal neurons of the 
BLA network (Figure 1; Table 1).

putative pathogenesis of  
autoimmune Gray Matter 
inflammation and Consequences  
for neuronal Function and integrity

Adaptive neuron-directed autoimmunity underlying limbic 
encephalitis is illustrated by the presence of specific anti-neuronal 
antibodies binding to either intracellular or plasma membrane 
neuronal antigens in sera and cerebrospinal fluid in many cases 

(45–47). Depending on the cellular localization of their antigens, 
these antibodies provide some hints on the predominant autoim-
mune effector mechanisms toward single neurons and neuronal 
networks.

In a subgroup of patients with limbic encephalitis, autoanti-
bodies are detected that bind to intracellular neuronal antigens. 
These are molecules with a role in a variety of gene expression 
and signal transduction processes, which are expressed in 
distinct neuronal cell populations [reviewed in Ref. (46)]. In 
these patients, CD8+ T cells usually recognize continuous linear 
peptide epitopes consisting of 8–10 amino acids that are derived 
from intracellular neuronal proteins by extensive antigen pro-
cessing and presented in the context of MHC I molecules on the 
cell surface membrane (48–51). T cell receptor (TCR)-signaling 
upon recognition of the appropriate antigen in the context of 
MHC I molecules during engagement of activated CD8+ T 
cells with neurons leads to the formation of the immunological 
synapse (52). Subsequent CD8+ T cell-mediated impairment of 
neuronal excitability and integrity is predominantly mediated 
via two largely independent pathways (53, 54). (i) Granule cyto-
toxicity occurs by liberation of perforin together with a variety 
of granzymes. Depending on the amounts released, perforin 
alone can lead to the formation of unselective transmembrane 
pores with a subsequent impairment of electrical excitability 
and signaling (50, 55) or neuronal necrosis with immediate 
swelling and rupture of the neuronal cell membrane (56). 
Alternatively, perforin mediates the trafficking of granzymes 
into the target cell promoting apoptosis within few hours (56, 
57). (ii) Impairment of neuronal excitability and structural 
integrity may also occur through the ligation of cell death 
receptors (50, 58). Moreover, CD8+ T cells are able to liberate 
potentially neurotoxic cytokines, such as interferon-(IFN)γ and 
tumor necrosis factor-(TNF)α (59, 60) as well as distinct neuro-
transmitters like glutamate (61, 62), adding to the repertoire of 
molecular effector mechanisms directly impacting on neuronal 
excitability and integrity (63).

Given these molecular effector mechanisms, CD8+ T cells 
cannot directly impact the function or expression of their 
cognate neuronal antigens but recognize their expression by the 
respective neuron. This enables them to contribute to neuronal 

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
www.frontiersin.org


August 2015 | Volume 6 | Article 1714

Melzer et al. Autoimmune amygdala inflammation

Frontiers in Neurology | www.frontiersin.org

dysfunction and cell death (50, 55, 64, 65). These effects may be 
restricted to distinct inhibitory (1) or excitatory (66, 67) neu-
ronal populations and networks due to their differential antigen 
expression pattern and capability of MHC I-mediated antigen 
presentation (65, 68).

In a subset of patients with limbic encephalitis, antibodies 
against a family of intracellular neuron-specific RNA binding pro-
teins, the neuronal “embryonic lethal and abnormal vision-like” 
RNA binding proteins, HuB, HuC, and HuD, can be detected (69, 
70). These Hu proteins are expressed in specific neuronal popula-
tions, including large glutamatergic pyramidal-like neurons in 
layer V of the neocortex, the cornu amonis (CA) 1–4, and dentate 
gyrus (DG) regions of the hippocampus, as well as principal cells 
of the amygdala (71). Neuron-specific Hu proteins have recently 
been shown to maintain neuronal glutamate levels by stabilizing 
glutaminase mRNA and protein levels (66, 67). Glutamate is the 
major excitatory neurotransmitter in the mammalian brain and 
also impacts inhibitory neuronal signaling in two ways: (i) it is the 
biochemical precursor for the major inhibitory neurotransmitter 
GABA (72) and (ii) activates inhibitory neuronal feedback loops 
(73). Consistent with a net inhibitory effect of Hu-expressing 
neurons on neuronal network excitability, genetic deficiency 
of neuron-specific Hu proteins leads to spontaneous neuronal 
hypersynchrony and epileptic seizure activity (66, 67). Moreover, 
Hu-expressing neurons have been implicated in hippocampus and 
amygdala-based synaptic plasticity, learning, and memory (74, 75).

In another subset of patients with limbic encephalitis, antibod-
ies against neuronal glutamate decarboxylase (GAD) have been 
detected (1). GAD is an intracellular enzyme expressed in a subset 
of interneurons and catalyzes the conversion of glutamate to GABA 
therein. The brain contains two isoforms, GAD65 and GAD67, 
which display characteristic differences in localization and activity 
patterns (76, 77). GAD67 is typically distributed throughout the 
neuron and almost all of it exists in its active cofactor-bound form, 
whereas GAD65 is predominantly found in synaptic terminals 
and much of it is in the form of an inactive apoenzyme (72, 78). 
In accordance with a net inhibitory effect of GAD65-expressing 
interneurons on neuronal network excitability, genetic deficiency 
of GAD65 leads to spontaneous neuronal hypersynchrony and 
epileptic seizures (79). Moreover, GAD65-expressing neurons 
have been implicated in hippocampus and amygdala-based syn-
aptic plasticity, learning, and memory (41, 80–82).

In light of these physiological effects of Hu-expressing pyrami-
dal-like neurons and GAD65-expressing interneurons on synaptic 
transmission, plasticity, learning, and memory, as well as neuronal 
network excitability and seizure development, it seems conceiv-
able that similar effects observed upon genetic deficiency of these 
 molecules occur if these cell populations become targets of neuronal 
antigen-specific CD8+ T cells as in limbic  encephalitis (51).

In another subgroup of patients with limbic encephalitis, 
autoantibodies are detected that bind to synaptic and extrasyn-
aptic neuronal cell membrane antigens. These include a variety 
of ionotropic and metabotropic neurotransmitter receptors and 
associated molecules [reviewed in Ref. (46)]. In these patients, 
antibody-mediated disturbance of synaptic transmission and 
plasticity as well as neuronal (network) excitability occurs 
together with some neurodegenerative effects (51).

Antibodies recognize and bind to discontinuous conforma-
tional epitopes composed of segments of the respective neuronal 
plasma membrane protein antigen that come in close spatial 
proximity in their three-dimensional structure and exposed 
on the neuronal plasma membrane. These are synaptic and 
extra-synaptic ligand- and voltage-gated ion channels involved 
in excitatory [mainly N-methyl-d-aspartate (NMDA) (83, 84) 
and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA) (85, 86) receptors] and inhibitory [mainly GABAA (87) 
and GABAB (88) receptors] synaptic transmission and plastic-
ity. Moreover, these antibodies also target neuronal membrane 
proteins implicated in clustering of voltage- and ligand-gated ion 
channels inside the synapse [leucine-rich glioma-inactivated 1; 
LGI1 (89, 90)] or outside the synapse at the juxtaparanodal region 
of the node of Ranvier [contactin-2 and contactin-associated 
protein-like 2; CASPR2 (89, 91)], thereby indirectly impacting 
neuronal excitability.

Depending on the IgG subtype, antibodies may (i) specifically 
activate or block the function of their target molecules, (ii) cross-
link and internalize the receptors, (iii) activate the complement 
cascade with subsequent formation of the terminal membrane 
attack complex and target cell lysis, and (iv) activate Fc-receptors 
with subsequent antibody-dependent cell-mediated cytotoxicity 
(ADCC) mainly by NK cells (92).

Regarding excitatory synaptic transmission, NMDA receptor 
antibodies have been described to directly impact the gating 
behavior of the receptor (93). It has been shown that the N368/
G369 region of the GluN1 subunit of NMDA receptors may 
represent the immunodominant binding region for IgG on 
the receptor molecule. In single channels recordings, antibody 
binding to the receptor caused more frequent channel openings 
and prolonged open time of the receptor as immediate effects 
(93). Moreover, NMDA receptor antibodies have been shown to 
cause a selective and reversible decrease in post-synaptic NMDA 
receptor surface density and synaptic localization in inhibitory as 
well as excitatory cultured rat hippocampal neurons by selective 
antibody-mediated cross-linking and internalization (94, 95). 
Consistently, NMDA receptor antibodies selectively decreased 
NMDA receptor-mediated miniature excitatory post-synaptic 
currents (mEPSCs) without affecting AMPA receptor-mediated 
mEPSCs in cultured rat hippocampal neurons. However, despite 
these strong effects, NMDA receptor antibodies did not impact 
the number of synapses, dendritic spines, dendritic complex-
ity, or cell survival in cultured rat hippocampal neurons (94). 
Consistent with these mechanisms, NMDA receptor antibodies 
have been shown to suppress induction of long-term poten-
tiation (LTP) at Schaffer collateral-CA1 synapses in mouse 
hippocampal slices (96). Once internalized, antibody-bound 
NMDA receptors traffic through both recycling endosomes and 
lysosomes, but do not induce compensatory changes in gluta-
mate receptor gene expression. This process eventually results in 
a decrease in inhibitory synapse density onto excitatory cultured 
rat hippocampal neurons through distinct homeostatic synaptic 
plasticity  mechanisms (95, 97).

Additionally, autoantibodies in limbic encephalitis target 
GluA1 and GluA2 subunits of the AMPA receptor (85, 98). 
Application of antibodies to cultures of neurons reversibly 
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decreased the number of GluA1- and GluA2-containing AMPA-
receptor clusters at synapses and beyond through increased inter-
nalization and degradation of surface AMPA receptors (85, 98). In 
contrast, antibodies do not alter the density of excitatory synapses 
or cell viability (98). Consistently, whole-cell patch clamp record-
ings of cultured hippocampal neurons incubated with antibodies 
revealed decreased AMPA receptor-mediated currents, but not 
NMDA receptor-mediated currents. Interestingly, probably by 
distinct homeostatic plasticity mechanisms like those observed by 
NMDA receptor antibodies (97), several functional properties of 
AMPA receptor antibody-targeted neurons are altered. Affected 
neurons exhibit decreased inhibitory post-synaptic currents 
(IPSCs) and reduced inhibitory synapse density onto excitatory 
cultured rat hippocampal neurons, whereas the intrinsic excit-
ability of neurons and short-interval firing increase (98).

Hence, both NMDA and AMPA receptor antibodies eliminate 
ionotropic glutamate receptors from the post-synaptic (and extra-
synaptic) neuronal plasma membrane through cross-linking and 
internalization, resulting in disturbed excitatory synaptic trans-
mission and a concomitant homeostatic decrease in inhibitory 
synaptic transmission and increased intrinsic excitability.

Antibodies to LGI1 have been described in limbic encepha-
litis (89, 90). Extracellularly secreted LGI1 has been reported to 
link two receptors, ADAM (a disintegrin and metalloproteinase 
domain-containing protein) 22 and ADAM23, and establish a 
transsynaptic protein complex that includes presynaptic voltage-
gated K+ channels and post-synaptic AMPA receptors. A lack of 
LGI1 disrupts this synaptic protein connection and selectively 
reduces AMPA receptor-mediated synaptic transmission in the 
hippocampus (99, 100). LGI1 antibodies associated with limbic 
encephalitis specifically inhibit the ligand–receptor interaction 
between LGI1 and ADAM22/23 by targeting the EPTP repeat 
domain of LGI1 and reversibly reduce synaptic AMPA receptor 
clusters in rat hippocampal neurons (101). Interestingly, condi-
tional knockout of LGI1 restricted to glutamatergic pyramidal 
cells is sufficient to generate seizures, whereas seizure thresholds 
were shown to be unchanged after depletion of LGI1 in GABAergic 
interneurons. Hence, LGI1 secreted from excitatory pyramidal 
neurons, but not inhibitory interneurons, makes a major contribu-
tion to LGI1-related epileptogenesis (102). Similar effects may be 
expected from antibody-mediated disruption of LGI1 function.

Antibodies against contactin-2 and CASPR2 (89, 91) have 
been implicated to impair clustering of voltage-gated K+ channels 
at the juxtaparanodal region of the node of Ranvier of myelinated 
axons, thereby probably interfering with axonal excitability and 
action potential conduction.

Regarding inhibitory synaptic transmission, antibodies directed 
against the extracellular epitope of the β3 subunit of the GABAA 
receptor have been reported (87). Rat hippocampal neuronal 
cultures exposed to GABAA receptor antibodies specifically 
decreased both synaptic and surface GABAA receptors, and showed 
selectively reduced miniature inhibitory post-synaptic currents 
(mIPSCs) without affecting mEPSCs (103). Concomitant changes 
in excitatory synaptic transmission have not been reported thus far.

The presence of GABAB receptor autoantibodies constitutes 
another form of limbic encephalitis (88). GABAB receptors are 
G-protein-coupled receptors composed of two subunits, GABAB1 

and GABAB2 (104). The main antigen recognized by the antibodies, 
the GABAB1 subunit, is necessary for GABA binding and receptor 
function, whereas the GABAB2 subunit is required for localization 
of the receptor to appropriate areas of the cell membrane and 
G-protein coupling (104). GABAB receptors mediate presynaptic 
inhibition by activation of G-protein-coupled-inward rectify-
ing K+ channels and inhibition of Ca2+ channels. Post-synaptic 
GABAB receptors mediate inhibition by similar mechanisms 
and by inducing a slow inhibitory post-synaptic potential (104). 
GABAB receptors limit the duration of increased activity states in 
neuronal networks, preventing excessive neuronal synchroniza-
tion, and development of epileptic seizures. Hence, although 
experimental evidence of the molecular consequences of antibody 
targeting of GABAB receptors is still lacking, it seems conceiv-
able to assume that they will also reduce pre- and post-synaptic 
GABAergic inhibition and thus promote increased activity states 
with excessive synchronization in neuronal networks and promo-
tion of epileptic seizures.

Taken together, experimental evidence thus far suggest 
reduced inhibitory synaptic transmission (and plasticity) – either 
indirectly via homeostatic plasticity mechanisms following 
antibody binding to NMDA oder AMPA receptors or directly via 
antibody binding to GABAA or GABAB receptors  –  as a major 
consequence of humoral neuron-directed autoimmunity in dif-
ferent forms of limbic encephalitis. Moreover, cellular immune 
effects may either directly or indirectly selectively target inhibi-
tory interneuron networks with similar functional consequences 
(Figure 1; Table 1).

In other forms of limbic encephalitis, humoral immune effects 
may predominantly affect excitatory synaptic transmission (and 
plasticity). Furthermore, cellular immune effects may directly 
target excitatory principal neuron networks with similar conse-
quences (Figure 1; Table 1).

In the following, we speculate on the consequences of humoral 
and cellular autoimmune impact on either inhibitory or excita-
tory pathways for amygdala function, i.e., emotion processing 
and behavioral responses.

putative effects of Cellular and Humoral 
autoimmunity toward Circuit Function of 
the amygdala

The local network in the BLA is organized to integrate sensory 
and affective information and to control emotional responses 
and cognitive function through its efferent connections to the 
brainstem, hypothalamus, and forebrain. Key features of the 
local network function are the strong GABAergic control of 
activity and the propensity to develop network oscillations at 
different frequencies. On the one hand, this allows the BLA to 
resonate with cortical brain regions during emotional informa-
tion processing; on the other hand, these characteristics may 
explain why the BLA is prone to the development of epileptic 
activity.

T cell responses toward GAD65-expressing GABAergic 
interneurons and autoantibodies to GABA receptors, by reducing 
GABAergic tone, can be expected to exert profound effects on 
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the amygdala, leading to hyperexcitability of principal cells and a 
state of increased anxiety and hyperarousal (Figure 1; Table 1).

Loss of GAD65 in knockout mice and concomitant hyper-
activity in the amygdala results in anxiety, hyperactivity, 
and generalized fear (80, 81, 105, 106). It also increases the 
susceptibility to seizures (107). In fact, it has also been shown 
that GAD65 antibodies isolated from a stiff-person-syndrome 
patient induce anxiety in rats upon binding to the amygdala, hip-
pocampus, and prefrontal cortex (108). However, a considerable 
ability exists to compensate for reduction in GAD65 expression 
without emergence of profound fear phenotype (109), likely due 
to activity-dependent regulation of residual enzyme and the 
co-expression of its isozyme, GAD67, or other components of 
the GABA metabolism and synaptic cycling. Thus, a consider-
able variability can be expected in patients with autoimmunity 
toward GAD65 in interneurons concerning the development of 
BLA-related symptoms.

Several other autoantibodies also may have the capacity to 
disturb the inhibitory control of the BLA. For example, loss of 
GABAB receptors upon antibody binding would likely disrupt 
synaptic regulation of GABA release in the BLA, which has been 
related to fear generalization (110). On the post-synaptic level, 
endocytosis of β3 subunits of the GABAA receptor has been 
observed during the reinstatement of extinguished fear memory 
(111). Thus, autoantibody-induced endocytosis of this receptor 
subunit in the amygdala could have the potential to reactivate 
memory for fearful experiences, triggering stress and anxiety.

As discussed above, T cell responses toward glutamatergic 
Hu-expressing principal neurons and antibody-mediated loss 
of NMDA and AMPA glutamate receptors may affect both 
glutamatergic and  –  by mechanisms of homeostatic plastic-
ity – GABAergic neurons in the BLA. Given the local network 
architecture, it can be expected that this will lead to a reduced net 
activation of principal cells in the BLA, potentially resulting in 
disturbed processing of emotional stimuli. Indeed, loss of Hu in 
knockout mice is associated with lower levels of anxiety and over-
all activity compared to wild-type counterparts (67). Moreover, 
lack of precision in information processing in cortico-amygdala 
circuits can lead to generalization of fear (112) as mechanisms 
of synaptic competition in the LA contribute to the specificity of 
conditioned fear (113). GABAergic neurons in the amygdala can 
be divided into two major populations: cells, which are scatter 
distributed within the local neurophil (32), and groups of highly 
clustered GABAergic neurons, the so-called intercalated cells 
(ITCs) that are targeted by glutamatergic projections from the 
medial prefrontal cortex mediating fear extinction (114) have 
been shown to control the information flow between BLA and 
CeA. Increased internalization of AMPA receptors has been 
reported in ITCs to mediate long-term depression (LTD) (115). 
Reduced excitability and plasticity in this structure is likely 
relevant for the management of previously acquired fearful 
memories. Hence, internalization of AMPA receptors, induced 
by AMPA receptor or LGI1 autoantibodies, may mimic a state of 
LTD in the amygdala (116).

Evidence suggests that autoantibodies to LGI1 are also associ-
ated with neuropsychiatric disturbances and seizures (117, 118). 
In line, selective genetic ablation of LGI1 in excitatory neurons 

induces seizures, whereas the conditional knockout in parvalbu-
min expressing interneurons remains without such effect (102). 
Interfering with the function of LGI1 released from BLA principle 
cells, via interaction with the disintegrin ADAM23 could alter 
neuronal morphology and decrease seizure threshold (119), and 
via ADAM22 reduce the expression of synaptic AMPA receptors 
(101). On the other hand, somatostatin-positive interneurons 
in the amygdaloid complex revealed selective vulnerability in 
temporal lobe epilepsy and following toxic insults, thereby con-
tributing to hyperexcitability of amygdala synaptic circuits and 
anxiety-like behavior (120–122). Some neuropsychiatric condi-
tions, like schizophrenia, are characterized by remodeling of the 
perineuronal nets surrounding somatostatin expressing interneu-
rons in the amygdala, which results in GABAergic dysfunction 
and immune system dysregulation (123), thereby also pointing to 
possible localized pathological processes in the amygdala.

Moreover, reduced modulatory input from the BLA impairs 
synaptic plasticity in the hippocampus- and hippocampus-
dependent learning. Thus, in addition to putative direct effects 
on hippocampal synaptic function, the BLA may be involved in 
memory deficits observed in limbic encephalitis patients. The 
amygdala provides a site for the modulation of memory acquisi-
tion, storage, recall, and modification via the hippocampus (124) 
and interaction of the BLA with the nAcc is required for active 
avoidance learning (125). Patients with autoantibodies to voltage-
gated K+ channels display deficits in cognitive and executive 
function (126). However, these disturbances of memory-related 
functions are rather likely to involve direct effects of the autoanti-
bodies on the different amygdala target areas, and at this time it is 
difficult to estimate the contribution of the BLA to the observed 
deficits.

The findings discussed above open up the possibility to experi-
mentally assess the role of distinct neuronal cell populations using 
gene targeting and optogenetics. Furthermore, it can be tested 
whether disruption of the extracellular matrix, which normally can 
act as a passive diffusion barrier for cell surface molecules (127) 
and possibly limits access of immune cells and antibodies to the 
neuronal cell surface, may influence the impact of both immune 
effector arms on neuronal network structure and function.

Hence, accumulating evidence suggests that adaptive autoim-
mune amygdala inflammation may be a major determinant of 
emotional and behavioral disturbance in limbic encephalitis.
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