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sclerosis progression
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Multiple sclerosis (MS) is an inflammatory disorder causing central nervous system (CNS) 
demyelination and axonal injury. Although its etiology remains elusive, several lines of 
evidence support the concept that autoimmunity plays a major role in disease patho-
genesis. The course of MS is highly variable; nevertheless, the majority of patients initially 
present a relapsing–remitting clinical course. After 10–15 years of disease, this pattern 
becomes progressive in up to 50% of untreated patients, during which time clinical 
symptoms slowly cause constant deterioration over a period of many years. In about 15% 
of MS patients, however, disease progression is relentless from disease onset. Published 
evidence supports the concept that progressive MS reflects a poorly understood mech-
anism of insidious axonal degeneration and neuronal loss. Recently, the type of microglial 
cell and of astrocyte activation and proliferation observed has suggested contribution 
of resident CNS cells may play a critical role in disease progression. Astrocytes could 
contribute to this process through several mechanisms: (a) as part of the innate immune 
system, (b) as a source of cytotoxic factors, (c) inhibiting remyelination and axonal regen-
eration by forming a glial scar, and (d) contributing to axonal mitochondrial dysfunction. 
Furthermore, regulatory mechanisms mediated by astrocytes can be affected by aging. 
Notably, astrocytes might also limit the detrimental effects of pro-inflammatory factors, 
while providing support and protection for oligodendrocytes and neurons. Because 
of the dichotomy observed in astrocytic effects, the design of therapeutic strategies 
targeting astrocytes becomes a challenging endeavor. Better knowledge of molecular 
and functional properties of astrocytes, therefore, should promote understanding of their 
specific role in MS pathophysiology, and consequently lead to development of novel and 
more successful therapeutic approaches.

Keywords: multiple sclerosis, astrocytes, multiple sclerosis progression, microglia, myelin, axon, glial scar, 
mitochondria

introduction

Multiple sclerosis (MS) is an inflammatory disorder causing central nervous system (CNS) demy-
elination and axonal injury. Although its etiology remains elusive, several lines of evidence support 
the concept that autoimmunity plays a major role in disease pathogenesis (1).

The course of MS is highly variable; nevertheless, most patients initially present a relapsing–
remitting clinical course [relapsing–remitting MS (RRMS)]. After 10–15 years of disease, this pattern 
becomes progressive in up to 50% of untreated patients, during which time clinical symptoms slowly 
cause constant deterioration over a period of many years [secondary progressive MS (SPMS)]. In 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://dx.doi.org/10.3389/fneur.2015.00180
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:jcorreale@fleni.org.ar
mailto:jorge.correale@gmail.com
http://dx.doi.org/10.3389/fneur.2015.00180
http://www.frontiersin.org/Journal/10.3389/fneur.2015.00180/abstract
http://www.frontiersin.org/Journal/10.3389/fneur.2015.00180/abstract
http://loop.frontiersin.org/people/31679/overview
http://loop.frontiersin.org/people/64287/overview


August 2015 | Volume 6 | Article 1802

Correale and Farez Astrocytes and multiple sclerosis progression

Frontiers in Neurology | www.frontiersin.org

about 15% of MS patients, however, disease progression is relent-
less from disease onset [primary progressive MS (PPMS)] (2).

In recent decades, better understanding of RRMS disease 
mechanisms has led to development of different disease-
modifying therapies, reducing both severity and frequency of 
new relapses, by modulating or suppressing the immune system 
(3). By contrast, therapeutic options available for progressive MS 
are comparatively disappointing, and remain challenging. One 
possible reason behind this is a lack of understanding of the 
pathogenic mechanisms driving progressive MS.

The conventional view explaining the sequence of MS events 
is one in which systemic activation of myelin reactive cells from 
the periphery migrate into the CNS, leading to inflammation and 
development of focal demyelinating lesions, which constitute 
the main pathological substrate for relapses. The progressive 
phase of MS reflects a poorly understood and insidious form 
of axonal degeneration with neuronal loss, independent of 
relapses. Pathological studies have shown that axonal degenera-
tion occurs diffusely throughout normal appearing white matter 
(4). Although this neurodegenerative component is associated 
with inflammation (5), there is growing awareness that T cell-
mediated inflammatory mechanisms alone, cannot explain the 
degenerative process. Recently, a number of observations have 
challenged the concept of an autoimmune attack against myelin 
mediated only by adaptive immune response to self antigens, as 
the complete and full explanation behind the disease, particularly 
during its progressive phases. For example, pathology studies of 
early lesions show oligodendrocyte and myelin loss, in the absence 
of T or B cell infiltrates (6). Likewise, large areas of myelin loss are 
seen in cerebral cortex and deep gray matter nuclei with a paucity 
of infiltrating immune cells (7–9). Activation and proliferation of 
microglia and astrocytes observed within demyelinating lesions 
suggest that innate immune response contribution by resident 
CNS cells might play a critical role in both oligodendrocyte injury 
and axonal degeneration (10). Indeed, glial cells and astrocytes, in 
particular, were found to be highly abnormal, early in the study of 
MS lesions (11). Large and bizarre astrocytes containing multiple 
and sometimes fragmented nuclei or engulfing other cells were 
found in early active lesions (12), and considered by investigators 
during the late nineteenth and early twentieth century, to be the 
major cell type targeted in MS (13). However, later identifica-
tion of oligodendrocytes as the myelinating cell of the CNS, as 
well as of their depletion from MS lesions, caused the role of 
astrocytes in MS pathogenesis to be largely ignored after about 
1930. Nevertheless, most neuropathologists continue to report 
astrocyte appearance in MS lesions, and consider it an important 
indicator of lesional activity and age (14).

This review summarizes current studies on the role of astro-
cytes in disease progression, and discusses data on some of the 
mechanisms through which these cells may play a key role in MS 
pathogenesis.

Overview of Astrocytes

Astrocytes are the most abundant and heterogeneous type of glial 
cell (15). Two main subtypes exist: fibrous and protoplasmic, 
based on cell morphology and anatomical location. Fibrous 

astrocytes of the white matter have small cell bodies, and their 
processes align with myelinated fibers, giving them an elongated 
morphology (16). Protoplasmic astrocytes have more primary 
processes, as well as a higher degree of branching compared 
to fibrous astrocytes, and are located in the gray matter (17). 
Additionally, other morphologically distinct and more regional 
populations of astrocytes have been described, such as Müller 
cells in the retina, Bergmann glia and velate astrocytes in the 
cerebellum, radial astrocytes in the spinal cord, among others 
(18). Consequently, astrocytes can no longer be considered as 
a homogeneous group of cells. Their morphological diversity, 
specific density, as well as proliferation rate will be determined 
by interactions with the microenvironment, particularly during 
development, reflecting important molecular and functional dif-
ferences between astrocyte types (19, 20).

Astrocytes have at least two different origins: (1) directly from 
radial glial cells located in the ventricular zone and (2) from a 
proliferative and migratory population located in the subven-
tricular zone (SVZ) (21–24). New astrocytes may arise either 
from the proliferation of mature astrocytes or from differentia-
tion of progenitors. Notably, there is little evidence that mature 
astrocytes divide in the uninjured brain (19). By contrast, very 
active proliferation is associated with scar formation following 
injury (see below).

Astrocyte development is regulated by different molecules and 
through different intracellular pathways including the IL6/LIF 
family of cytokines, the TGF-β growth factor family, fibroblast 
growth factor (FGF), and Notch and Notch ligand pairs (25). 
Additionally, epigenetic factors also influence astrocyte devel-
opment. A number of astrocyte genes are methylated early in 
development, including GFAP, Aldolase C, and Kir4.1, a process 
that serves to repress astrocyte specific gene transcription (26). 
By contrast, demethylation occurring during early astrocyte 
development allows LIF to upregulate genes, through binding 
to transcription factors present downstream to astrocyte gene 
promoters in the signaling pathways (26, 27).

Expression of glial fibrillary acidic protein (GFAP) has become 
the prototypic marker for identifying astrocytes within the CNS; 
however, expression patterns differ across anatomical regions (28). 
Moreover, other CNS-resident cells, such as NG2 and pericytes, 
have also been to shown to be GFAP+ (9). Several other antibod-
ies against intermediate filament proteins, including cytoplasmic 
or membrane protein markers, such as vimentin, nestin, S100 
calcium-binding protein β (S100β), glutamine synthetase (GS), 
or glutamate/aspartate transporter (GLAST), are also commonly 
used to label normal and reactive astrocytes (28). A significant 
drawback of current immunohistochemistry techniques is that 
no reliable markers exist to identify different astrocyte subtypes, 
making it hard to establish whether any given behavior observed 
corresponds to astrocytes in general, or is characteristic of a 
particular subtype only.

Astrocytes contact blood vessels and are linked to each other 
via gap junctions, and to oligodendrocytes via heterotypic gap 
junctions. Adjacent astrocytes present homomeric gap junctions 
at the cytoplasmic level, formed by connexin (Cx) 43 and Cx 30, 
through which molecules, such as K+ and glutamate, are dissipated, 
and intercellular Ca++ waves propagate (29). In addition, astrocytes 
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support several activities essential for neuronal function, includ-
ing (1) an active role in both formation and pruning of synapses 
(30); (2) regulation of extracellular concentrations of ions and 
neurotransmitters (29, 31); (3) synthesis of metabolic substrates 
for neurons, such as glycogen, sterols, and lipoproteins (23, 32); (4) 
formation and maintenance of blood–brain barrier (BBB) integ-
rity, thus protecting the brain from influx of toxic substances and 
ions, as well as maintaining extracellular space volume (33); and 
(5) removal of neurotransmitters released by active neurons, such 
as glutamate (34). Central questions remaining include whether 
astrocytes in general carry out all these functions, and if not, what 
relevance differences in subpopulations may play in human disease.

Astrocytes in Multiple Sclerosis

Contribution of Astrocytes to MS Lesion 
Development
Around acute inflammatory lesions, astrocyte reactivity is wide-
spread. A gradient of response is observed, ranging from modestly 
swollen process-bearing cells in normal adjacent white matter, 
to hypertrophic astrocytes in the center of a lesion (14, 35). As 
lesions age not only persist hypertrophic astrocytes but also begin 
to develop bundles of glial filaments, GFAP immunoreactivity 
increases, and edema decreases. Relapsing disease activity is asso-
ciated with recurrent inflammatory activity, astroglial reactivity 
(particularly along lesion borders), and recent astrocyte mitotic 
activity (14, 35). Studies in experimental autoimmune encephalo-
myelitis (EAE) have shown that activation of astrocytes, and loss 
of their end-feet around small blood vessels represent early events 
in lesion development, linked to loss of BBB function, subsequent 
CNS inflammation, as well as perivascular edema (14). It is well 
recognized that factors produced by astrocytes are required for 
establishment and maintenance of endothelial cells forming the 
BBB. For example, astrocyte activation by macrophage produced 
IL-1, leads to induction of hypoxia inducible factor-1 (HIF-1), and 
its target, vascular endothelial growth factor A (VEGF-A) in astro-
cytes, which acting on endothelial cells induces down-regulation or 
loss of tight proteins claudin-5 (CLN5) and occludin, determining 
a focal loss of BBB function in injured tissue, a process mediated 
by eNOS (36, 37). Inactivation of VEGF-A expression, or systemic 
selective inhibition of eNOS reduces BBB breakdown, decreasing 
lymphocyte infiltration and tissue damage, protecting against neu-
rological deficit in EAE (38). Besides tight junctions on endothelial 
cells, astrocyte end-feet forming glia provide an additional barrier 
against autoreactive cell activity in the CNS. Furthermore, imbal-
ance between upregulation of matrix metalloproteinases (MMPs) 
in both astrocytes and macrophages, compared to stable expression 
or reduction of parenchymal basal membrane components aid in 
encephalitogenic cell dispersion into the CNS (39). However, it 
should be noted that remodeling of the extracellular matrix (ECM) 
can be both deleterious and beneficial, depending on the situation 
and on the type of MMP involved (Table 1) (14, 20, 39).

It is important to point out the dual role of astrocytes, not only 
aiding in axonal degeneration and demyelination but also creating 
a permissive environment promoting remyelination (Table  1). 
The particular impact of astrocytes on pathogenesis and repair 
of an inflammatory process, therefore, will be dependent on a 

number of factors, including timing after injury, type of lesion 
and surrounding microenvironment, as well as interaction with 
other cell types and factors influencing their activation (39).

Astrocytes and the innate immune System
Innate immunity is the initial non-specific response to foreign 
pathogens. The system includes cellular barriers, such as the 
BBB and diverse immune cells of myeloid origin, including 
DCs, macrophages, monocytes, NK cells, NKT cells, mast cells, 
granulocytes and γδ T cells in the periphery and microglia cells in 
the CNS. Innate immunity also includes non-myeloid cells, such 
as astrocytes (9). Cellular innate immune responses to diverse 
stimuli are accomplished through an array of pattern recogni-
tion receptors (PRRs) that bind to diverse pathogen-associated 
molecular patterns (PAMPs) (40). Notably, PRRs also recognize 
self-molecules released after cell damage or death. These mol-
ecules, known as danger-associated molecular patterns, include 
diverse ligands, such as heat-shock proteins, double stranded 
DNA, and purinergic metabolites (9, 41). Responses to endog-
enous host molecules may trigger inflammatory reactions, and 
therefore play an important role in autoimmunity.

Astrocytes express diverse PRRs, and can mediate innate 
immune responses through several mechanisms (10, 42). First, 
astrocytes directly affect cell entry to the CNS, via the BBB, by 
regulating expression of adhesion molecules, particularly vascu-
lar adhesion molecule-1 (VCAM-1) and intercellular adhesion-
molecule-1 (ICAM-1) that bind to lymphocyte receptors, namely, 
very late antigen-4 (VLA4) and lymphocyte function-associated 
antigen-1 (LFA-1), respectively (43, 44). In addition, release of 
IL-6, IL-1β, TNF-α, and TGF-β by astrocytes can control passage 
of immune cells through the BBB, by acting on endothelial cells 
and tight junctions (33, 45, 46).

Second, astrocytes secrete different chemokines, such as CCL-2 
(MCP-1), CCL5 (RANTES), IP-10 (CXCL10), CXCL12 (SDF-1), 
and IL-8 (CXCL8), which attract both peripheral immune cells 
(e.g., T cells, monocytes, and DCs), as well as resident CNS cells 
(microglia) to lesion sites (47). This could represent the primary 
mechanism through which astrocytes perpetuate immune-
mediated demyelination and neurodegeneration. In  vitro stud-
ies confirm that human astrocytes secrete IP-10, CCL-2, and 
CXCL12 in response to inflammatory cytokines IL-1β, TNF-α 
and IFN-γ, suggesting astrocyte-induced immunopathology may 
be a consequence of activation by infiltrating T cells (48–50).

Third, astrocytes may affect both the number and the pheno-
type of T cells in the CNS. Cytokines secreted by astrocytes have 
the potential of committing T cells to a pro-inflammatory phe-
notype (Th1 and Th17) or to a regulatory phenotype (Treg, Tr1). 
Under inflammatory conditions astrocytes express all subunits of 
IL-12/IL-23, as well as CD24, favoring the development of Th17 
and Th1 cells in the CNS during EAE, thereby affecting its sever-
ity (51, 52). Additionally, IL-9 receptor complex is constitutively 
expressed in astrocytes, T cell-derived IL-9 induces astrocytes 
to produce CCL20, which in turn induces Th17 cell migration 
in  vitro (53). Treatment with anti-IL-9 neutralizing antibodies 
attenuates EAE, decreasing the number of infiltrating Th17 cells, 
and reducing CCL-20 expression in astrocytes (53). Furthermore, 
astrocyte-driven IL-15 production, which has been observed in 
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MS lesions, has been shown to have an important role in encepha-
litogenic activity of CD8+ T cells (54). By contrast, astrocytes can 
also terminate T cell responses, either by induction of apoptosis 
of infiltrating cells through FAS-L, which is highly expressed on 
astrocyte end-feet (55), or through interaction of galectin-9 and 
its ligand Tim-3, present in Th1 and CD8+ cytotoxic T cells (56).

Fourth, B-cell-activating factor (BAFF), critical for both B cell 
development and survival, as well as for the production of immu-
noglobulins, is constitutively expressed by astrocytes in normal 
CNS. BAFF expression in astrocytes is upregulated in MS lesions 
and in EAE affected mice, suggesting astrocytes may contribute 
to drive B-cell-dependent autoimmunity (57).

Fifth, astrocytes modulate microglial and macrophages activ-
ity through two different pathways: (a) inducing their recruitment 
toward lesion sites by producing chemotactic signals (CXCL-10-
CXCR3) (58) and (b) by secreting GM-CSF, M-CSF, or TGF-β, 
which can regulate Class II expression, and even microglial 
phagocytosis (59).

Finally, an important function of innate immune cells is to act 
as antigen presenting cells (APCs). However, although astrocytes 

TABLe 1 | The dual role of astrocytes in the pathophysiology of multiple sclerosis.

Deleterious roles Protective/remyelinating roles

Recruitment of T cells, macrophages and microglia cells to CNS lesion Modulation of BBB integrity: secretion of TIMPs
 Chemokine production
 Modulation of adhesion molecules (VCAM-1 and ICAM-1)
 Modulation of BBB integrity (VEGF-A and HIF-1)
 Secretion of MMPs

Activation of immune response Termination of the immune response
Secretion of pro-inflammatory cytokines (IL-1β, IL-6, IL-12, IL-17, IL-23; TNF-α) Induction of apoptosis (Gal 9-Tim-3 interaction)
IL-15-driven cytotoxic activity of CD8+ T cells Support differentiation of Treg cells (TGF-β, IL-10, IL-27)
Production of BAFF contributing to B-cell dependent autoimmunity Secretion of anti-inflammatory cytokines (IL-10, TGF-β, IL-27)

Microglia inhibition (Gal-1)

Inhibition of axonal regeneration Viability of neurons: secretion of NT-3, BDNF, and CNTF
Secretion of CSPGs
NOGO-NgR-TROY-LINGO interactions
Secretion of ephrins

Secretion of cytotoxic factors: NO, ROS, purinergic metabolites Prevention of excitotoxicity by glutamate uptake

Inhibition of remyelination Promotion of remyelination
Regulation of NG2/OPC migration (glial scar)a

Secretion of FGF-2 prevents OPC maturation
Production of semaphorin 3A produces OPC repulsion
Notch/Jagged 1 interaction arrested OPC in an immature state

Glial scar formationa

Modulation of NG2/OPCs survival, proliferation and differentiation into 
Oligodendrocytes (IL-6, IL-11, LIF, IGF-1, FGF-2)
Production of semaphorin 3F producing OPC attraction
Myelin breakdown clearance (phagocytosis)b

Secretion of LacCer
Induces activation of microglia (GM-CSF)
Induces chemotaxis of monocytes (chemokine CCL2)

TGF-β production induces a SASP phenotype

Release of HMGB1 (secretion of MMP-9, cyclo-oxigenase2 and chemokines

Antigen presenting cell function (?)b

BAFF, B-cell activating factor; BBB, blood–brain barrier; BDNF, brain-derived neurotrophic factor; CNS, central nervous system; CNTF, ciliary neurotrophic factor; CSPGs, 
chondroitin sulfate proteoglycans; FGF, fibroblast growth factor; Gal, galectin: GM-CSF, granulocyte-macrophage colony-stimulating factor; HIF-1, hypoxia inducible factor-1; 
HMGB1, high-mobility group box-1; ICAM-1, intercellular adhesion molecule-1; IGF-1, insulin growth factor; LacCer, lactosyceramide; LIF, leukemia inhibitory factor; MMPs, 
metalloproteinases; NG2, neuron glial antigen; NgR, NOGO receptor; NO, nitric oxide; NT-3, neurotrophin-3; OPC, oligodendrocyte precursor cells; ROS, reactive oxygen species; 
SASP, senescence-associated secretory phenotype; Tim, T cell immunoglobulin domain; TIMPs, tissue inhibitors; Treg, regulatory T cell; VCAM-1, vascular adhesion molecule-1; 
VEGF-A, vascular endothelial growth factor A.
aGlial scar can impact both beneficially and detrimentally on surrounding neuronal and non-neuronal cells.
bAntigen presenting cell function and phagocytosis by astrocytes remains unclear in vivo under physiological conditions.

express major histocompatibility complex (MHC) class I and 
class II molecules in vitro capable of presenting myelin antigens, 
their ability to also express co-stimulatory molecules including 
CD40, CD80, and CD86 challenges this function, making their 
final effect unclear (60, 61). Nor is it clear to what degree astro-
cytes can perform phagocytosis, or process and present antigens, 
particularly under physiological conditions in vivo (62).

Recent investigations have demonstrated that in chronic 
phases of EAE, astrocyte depletion ameliorates disease severity. 
This deleterious effect of astrocytes on EAE is mediated by pref-
erential expression of 4-galactosyltransferase 5 and 6 (B4GALT5 
and B4GALT6) (63). Notably, in human MS lesions, B4GALT6 is 
expressed by reactive astrocytes. These enzymes synthesize the 
signaling molecule lactosylceramide (LacCer), the expression of 
which is significantly increased in the CNS during progressive 
phases of EAE. Furthermore, intraperitoneal administration 
of LacCer exacerbates existing signs of EAE. LacCer promotes 
astrocyte activation in an autocrine manner, via the NF-κB and 
IRF-1 pathways (63, 64), leading to inducing GM-CSF and CCL2 
genes, consequently activating microglia and causing infiltration 
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of monocytes from blood, respectively. Remarkably, inhibition 
or knockout of B4galt6 in mice suppresses disease progression, 
local CNS innate immunity, and neurodegeneration in EAE, and 
interferes with human astrocyte activation in vitro (63).

Astrocytes as a Source of Cytotoxic Factors
In most areas of myelin breakdown, it has been documented 
that activated astrocytes secrete compounds with toxic effects on 
neurons, axons, and oligodendrocytes/myelin, including reac-
tive oxygen and nitrogen species, glutamate, and ATP (14). In 
rodents, astrocytes stimulated with IFN-γ, IL-17, or LPS induce 
nitric oxide synthase (iNOS) (65, 66). Likewise, IL-1β as well as 
combined treatment with TGF-β plus IFN-γ increases percentage 
of astrocyte secreted nitric oxide (NO), which is among the most 
prominent damage-inducing molecules in neurodegeneration (67, 
68). Moreover, in situ hybridization and immunohistochemistry 
of astrocytes in MS, as well as in EAE lesions, demonstrates exten-
sive iNOS reactivity and positive nitrotyrosine presence (69, 70). 
Furthermore, recent studies suggest a strong relationship between 
excessive calcium influx mediated by glutamate receptor stimula-
tion (see below), and increased NO synthase activity, as well as 
amplified formation of reactive oxygen species (ROS), providing 
a link between excitotoxic insult and NO-mediated damage. 
Simultaneously, excitotoxicity is further increased by NO, which 
stimulates glutamate release from astrocytes (71). Remarkably, 
the predominant contribution of NO to excitotoxicity depends on 
increased superoxide ion O2

- production, which reacts with NO 
forming peroxinitrite (ONOO−), resulting in neuronal necrosis 
or apoptosis, depending on its concentration (72). Furthermore, 
ONOO− inactivates glutamate transporters in astrocytes, directly 
damaging myelin, oligodendrocytes, and axons (73).

Decreased uptake of glutamate by astrocyte transporters could 
also contribute to pathologically elevated levels of extracellular 
glutamate, which are directly toxic to oligodendrocytes, axons, 
and neurons (74). In mice, TNF-α from cortical astrocytes down-
regulates expression of glutamate transporters in astrocytes, thus 
limiting glutamate uptake (75). Furthermore, knock down of 
glutamate transporters: GLAS and GLT-1 using antisense oli-
gonucleotide causes neurotoxicity in mice (76). Excitotoxicity is 
caused mainly by sustained activation of glutamate receptors and 
massive subsequent influx of Ca++ into viable neurons. Calcium, 
which is the primary signaling agent involved in excitotoxicity 
injury, enters cells through various mechanisms, but the most 
important is entrance through ion channels coupled to NMDA 
receptors and AMPA/kainate glutamate receptors (77, 78). 
Calcium overload determined by glutamate receptor activation, 
in turn, activates several Ca++-dependent enzymes associated 
with neurodegeneration and cell death by causing membrane 
breakdown, cytoskeleton alteration, and NO-derived free radical 
formation. Moreover, intracellular calcium increase results in 
changes in microtubules and neurofilament phosphorylation, 
which ultimately leads to axon cytoskeleton breakdown (79, 
80). Recent studies have shown glutamate can also be toxic to 
white matter oligodendrocytes and myelin, via mechanisms 
triggered by AMPA/kainate receptors (81). Indeed, treatment 
with glutamate receptor antagonists protects oligodendrocytes 
from damage, ameliorating EAE (82). Thus, proper function of 

glutamate uptake in astrocytes is critical to preclude brain cell 
damage, and strict regulation of extracellular glutamate levels 
appears to be a very prominent therapeutic strategy preventing 
neurodegeneration in MS.

Extracellular purine/pyrimidine metabolites are also exog-
enous signals playing important destructive/protective roles in 
neuron to glia, or glia to glia communication within normal or 
injured brain tissue. They activate membrane-bound ionotropic 
or metabotropic P2 receptors. Astrocytes express various types of 
metabotropic P2Y metabotropic, and ionotropic P2X purinore-
ceptors. Studies in MS lesions have shown preferential expression 
of P2X7 receptor on astrocytes (83). Although expression is low 
in resting human fetal astrocytes, P2X7 is upregulated in response 
to IL-1β in vitro and in reactive astrocytes around MS lesions, a 
putative IL-1β rich environment (84). Functionally, upregulation 
of P2X7 results in increased responsiveness to ATP, formation of 
membrane pores, and increased influx of Ca++ (85). Furthermore, 
purinergic signaling through P2X7 receptors stimulates IL-1β-
induced upregulation of NO synthase (84). Thus, activation of 
the P2X7 receptor in EAE can trigger toxic effects on oligoden-
drocytes, axons, and neurons through different mechanisms, 
producing in vivo lesions reminiscent of MS plaques, displaying 
oligodendrocyte death, demyelination, and axonal damage.

Astrocytes inhibit Remyelination and Axon 
Regeneration by Forming a Glial Scar
Astrocytes respond to injuries through a process commonly 
referred to as reactive astrogliosis, which involves changes in 
cell morphology and molecular expression. It is important 
to remember that although some aspects of glial reactivity are 
likely to be protective, others may contribute to disease progres-
sion. Establishing the molecular basis of such differences may 
therefore help identify novel therapeutic strategies. Although the 
best known aspect of reactive astrogliosis is scar formation the 
concept of reactive astrogliosis is still incomplete, we are only just 
starting to understand its molecular and cellular characteristics, 
as well as its multifaceted functions in disease pathogenesis and 
in CNS recovery from injury. The scar is composed primarily of 
astrocytes, however, in severe lesions, interaction with other cell 
types including oligodendrocyte progenitor cells (OPCs) and 
fibromeningeal cells also occurs (86, 87). Several specific molecu-
lar and morphological features have been observed in astrocytes 
during reactive astrogliosis in both human pathology and animal 
models (88, 89), of which upregulation of GFAP, vimentin, nestin, 
and the less investigated synemin are hallmarks. A number of 
other molecules, such as TGF-α, ciliary neurotrophic factor 
(CNTF), LIF, and oncostatin M, trigger astrocyte activation in the 
rodent brain (90). Interestingly, levels of IL-6, LIF, and oncostatin 
M mRNA, all ligands in the gp130/activator of transcription 3 
(STAT3) signaling pathway, are elevated prior phosphoryla-
tion and nuclear transcription of STAT 3, both in astrocytes 
and during astroglyosis induction (91). Nevertheless, it is also 
conceivable that at least some of these molecules exert effects on 
astrocytes through other cell types, such as microglia, neurons, or 
endothelial cells. By contrast, signaling mediated by β1-integrin 
has the opposite effect on astrocyte activation and is required to 
promote development of a mature non-reactive astrocyte (92). 
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Other mechanisms may also contribute to astrogliosis. It has 
been shown that inositol 1,4,5-triphophate (IP3)-dependent Ca2+ 
signaling and the downstream functions of N-cadherin in astro-
cytes are required for normal reactive astrogliosis (93). Likewise, 
epidermal growth factor receptor (EGFR) has been implicated in 
astrocyte transition from a non-reactive to a reactive state (94). 
Moreover, astrocytes react to endogenous or exogenous ATP 
with hypertrophy, swelling cell body and main processes, and 
generating proliferation, ultimately resulting in an astrogliosis 
phenotype, which subsequently forms a glial scar (83). ATP per se 
can trigger these biological effects through activation of P2 recep-
tors (P2R), or through its metabolites ADP, activating some P2R 
and adenosine through P1R activation (95). Another factor that 
might contribute to astrocyte ability to react to injury is cell polar-
ity and migration: astrocytes depleted of RhoGTPase Cdc42, a 
key regulator of polarization, impaired recruitment to lesions 
despite GFAP upregulation and hypertrophic response (96). It is 
important to note that reactive astrogliosis is, at least partially, 
disease specific. For example, reactive astrocytes profoundly 
affect post-ischemic stages by secreting VEGF, which in turn 
stimulates formation of new blood vessels and synaptogenesis 
(97, 98), this beneficial effect contrasts sharply with induction of 
BBB breakdown and lymphocyte infiltration observed in autoim-
mune CNS inflammation, which worsen disease (38).

Several experimental approaches have been used to either 
eliminate reactive astrocytes, or prevent them from becoming 
fully reactive. Thus, infiltration of CD11b+ microglia/monocytes 
in a retinal detachment model was blocked in GFAP−/− Vim−/− 
mice, suggesting activated glial cells are critical for recruitment 
of microglia/monocytes to injured areas (99). Similarly, GFAP 
or nestin promoter ablation of STAT3 in astrocytes attenuated 
upregulation of GFAP, reduced astrocytes hypertrophy, limited 
astrocyte migration, and led to more widespread infiltration of 
CD11b+ inflammatory cells, associated with larger lesions and 
more prominent impairment (100, 101). Conversely, mice with 
nestin promoter-driven ablation of SOCS3, which inhibits STAT3 
signaling, showed increased astrocyte migration, and enhanced 
contraction of lesions as well as improvement of functional 
recovery after spinal cord injury (101). Also, ATP released from 
damaged cells after injury, acting via P2Y receptors enhanced 
the proliferative effects of FGF2, whereas P2X receptor stimula-
tion inhibited the ability of FGF2 to stimulate DNA synthesis in 
astrocyte cultures (102). These variable effects of ATP and of other 
purinergic ligands are mediated by phosphorylation of different 
STAT3 residues (103). Therefore, pharmacological antagonists of 
P2X/P2Y receptors might ameliorate long-lasting consequences of 
different CNS injuries. Overall, these results point to an important 
role of STAT3 signaling in CNS injury, which may limit develop-
ment of a potential toxic environment by the rest of the CNS (100, 
101), although this might also restrict regenerative responses at a 
later stage [Ref. (104); see below]. Consequently, there is urgent 
need for better understanding of the molecular pathways regu-
lating distinct aspects of reactive astrogliosis, in  order to allow 
selective blockade of molecules inhibiting axonal outgrowth, but 
still permit reactive astrocytes to form a protective scar.

Glial scars are evident in tissue from MS patients and mice with 
EAE and surround areas of demyelination (105). The purpose of 

scar formation would appear to be isolation of damaged CNS 
areas, to prevent spread of tissue destruction. However, glial scar 
rigidity results in inhibition of both remyelination and axonal 
regeneration, both negative effects mediated through different 
mechanisms. First, astrocytes may be detrimental for remyelina-
tion by over secreting FGF-2, which in turn promotes OPC pro-
liferation and survival, but prevents maturation (106). Another 
molecule that appears to play an important role in preventing OPC 
maturation is the glycosaminoglycan (GAG) hyaluronan, which 
is found throughout the ECM and in CNS white matter (107). 
Hyaluronan is produced by astrocytes, and interacts with CD44, 
a receptor present on OPCs, astrocytes, and T cells in both MS 
and EAE CNS tissue (19, 108). Oligodendrocytes that co-localize 
with hyaluronan express an immature phenotype, and treatment 
of OPCs with hyaluronan in vitro prevents maturation (109).

Second, astrocytes release inhibitory ECM molecules known 
as chondroitin sulfate proteoglycans (CSPGs) in injured areas 
(110). CSPGs are a family of molecules characterized by a protein 
core to which highly sulfated GAG chains are attached. Three 
types of CSPGs are preferentially localized to astrocytes in vivo: 
neurocan, brevican, and NG2. Neurocan (secreted) and brevican 
(cell bound) are the major proteoglycans produced by astrocytes 
in vitro and both have been shown to inhibit axon growth, follow-
ing CNS damage (104). There is clear evidence that CSPGs are 
produced in excess by astrocytes when they become reactive and 
that inhibitory activity of CSPGs depends on the GAG component, 
as removal of GAG chains from the protein core eliminates inhibi-
tion (104, 111). After injury, CSPGs expression is rapidly upregu-
lated by reactive astrocytes, forming an inhibitory gradient that is 
highest at the center of lesions and diminishes gradually toward 
the periphery (112). Meanwhile, NG2 is most often regarded as 
a marker of OPCs in adult CNS tissue. Along the borders of glial 
scars, NG2+ cells are found in great numbers. While many of these 
cells are regarded as OPCs, evidence indicates that NG2+ cells are 
also able to become astrocytes in vivo (113). Therefore, astrocyte-
derived NG2 cells may provide inhibitory signals, suppressing 
axon regeneration. In vitro studies have demonstrated that NG2 
inhibits axonal growth, and that this inhibition can be overcome 
by anti-NG2 antibody treatment (114). CSPG-mediated inhibi-
tion could severely affect both cytoskeleton and membrane com-
ponents of growth cone architecture. In addition, many signaling 
pathways that mediate inhibition, such as those involving the 
GTPase RhoA, share similarities with those triggered by myelin-
associated inhibitors (MAIs) (see below).

Aside from CSPGs, there are other less studied inhibitory 
molecules expressed by astrocytes that suppress axonal growth. 
Ephrins (EPH) and their receptors, for example, are secreted 
by normal astrocytes and increased in MS lesions (115). 
Evidence indicates that astrocyte-derived ephrins create a basal 
lamina around areas of injury, contributing to scar formation. 
Additionally, ephrins induce collapse of the axonal growth 
cone  through activation of axon-bound EPH tyrosine-receptor 
kinase (116).

Finally, MAIs, such as Nogo-A, myelin-associated glycopro-
tein, and oligodendrocyte myelin glycoprotein, can also inhibit 
axonal growth (112). These three proteins share two com-
mon neuronal receptors NgR1, together with its co-receptors 
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(p75, TROY, and LINGO-1), and the recently described paired 
immunoglobulin receptor-B (PirB) (117, 118). In addition, 
new ligands binding to the NOGO receptor complex have been 
reported: glioma-inactivated gene product (LGI), B lymphocyte 
stimulator (BLyS), and FGF (119–121). Moreover, new receptors 
for MAIs have been recently described, such as NgR1 isoform, 
NgR2, and NgR3 (122). CNS regeneration inhibitors target the 
actin cytoskeleton thus regulating dendritic spine maturation, as 
well as long-term synaptic stability and plasticity. Although most 
evidence shows that many CNS inhibitors and their receptors 
are present or near synapses, astrocytes express p75, TROY, and 
BLyS, therefore, interaction with these ligands suggests astrocytes 
may also inhibit remyelination and axonal regeneration through 
these pathways (123).

Astrocytes Contribute to Axon Mitochondrial 
Dysfunction
There is emerging evidence that mitochondrial dysfunction 
actively contributes to neurodegeneration and axonal damage. 
Mitochondria are also key for ATP production and calcium 
signaling regulation (71).

Astrocytes may reduce mitochondrial energy metabolism in 
axons through different mechanisms. One related to increase NO 
production. Nitric oxide synthase (NOS2) expression is increased 
in both active focal lesions and normal appearing white matter 
(124). Interestingly, immunostaining shows NOS2+ cells are pre-
dominantly astrocytes. A loss of astrocytic β2 adrenergic recep-
tors might explain increased NOS2 expression (125). Indeed, 
noradrenergic stimulation leads to increased cAMP levels and 
consequently inhibits NOS2 expression in astrocytes. Elevated 
levels of NO can compete with oxygen for binding on complex 
IV of the mitochondrial respiratory chain, reducing electron 
flow and subsequent ATP synthesis (126); a second mechanism 
is excitoxicity triggered by increased glutamate levels (see above), 
and intracellular calcium overload. Increased Ca++ influx into 
axons mediated by overstimulation of glutamate receptors may 
damage mitochondria by promoting Ca++ entry into the matrix, 
leading to inhibition of respiratory chain complex I, and release of 
cytochrome c into the cytosol (77, 78, 127). Furthermore, excess 
of intra-axonal Ca++ may stimulate a variety of Ca++-dependent 
catabolic enzyme systems, including proteases, phospholipases, 
and calpains, ultimately leading to progressive cytoskeletal 
degeneration within axons (128). These observations have been 
confirmed not only in animal models but also in post-mortem 
studies of MS patients. A third possible mechanism is impaired 
glycogenolysis and lactate formation secondary to β2 adrenergic 
receptor deficiency in astrocytes, leading to decreased axonal 
mitochondrial metabolism and reduced N-acetyl aspartate 
(NAA) synthesis, as well as impaired GS activity (129–131). 
Reduced NAA may alter myelin membrane turnover, leading 
to myelin loss. Damage of the myelin sheath may contribute to 
axonal degeneration by reducing trophic support and impair-
ing  axonal transport. Overall, evidence is accumulating that 
defective  axonal energy metabolism may cause diffuse axon 
degeneration observed in MS. A number of findings suggest that, 
at least in part, this metabolism defect might be secondary to 
astrocyte dysfunction.

effects of Aging on Astrocytes

Aging affects many functional brain characteristics regulated by 
astrocytes, e.g., synaptic plasticity, metabolic balance, and BBB 
permeability. Increased expression of GFAP and vimentin has 
been the most common change observed in astrocytes with aging 
(132, 133). Interestingly, TGFβ1 signaling increases in the aging 
brain and can not only inhibit astrocyte proliferation but also 
stimulate GFAP expression. Furthermore, TGFβ1 is considered 
one of the main inducers of the senescence-associated secretory 
phenotype (SASP) observed in other cell populations (134, 135). 
Notably, senescent astrocytes can repress their capacity to support 
neuronal survival and neurite outgrowth, causing changes resem-
bling those observed in the SASP, namely (1) increased expression 
of GFAP and vimentin filaments (132, 133); (2) accumulation of 
membrane-bound inclusion material in cytoplasm that appears 
to be lipofucsin, and ultraestructural changes in nuclei (136); 
and (3) increased expression of pro-inflammatory cytokines such 
as IL-6, TNF-α, IL-1β, and prostaglandins, which can enhance 
BBB permeability (134, 137). This age-related dysfunction can 
alter Ca++ homeostasis, and induce purinergic signaling in the 
gliovascular interface (138). In addition, astrocytes can release 
high-mobility group box-1 (HMGB1) protein, which promotes 
secretion of a specific subset of inflammatory factors, such as 
MMP-9, cyclo-oxygenase-2, and other chemokines facilitating 
monocyte infiltration (139). Indeed, during EAE progression, 
total and extracellular HMGB1 in the spinal cord is increased, and 
more positive astrocytes, neurons, and microglia are observed. 
Local block of CNS HMGB1 significantly attenuates EAE sever-
ity, suggesting HMGB1 expression in the spinal cord is associated 
with EAE progression (140).

Overall, inflammatory mediators appear to generate a vicious 
age-dependent cycle, where cellular senescence induces a low level 
of chronic inflammation, enhancing acute pathological condi-
tions, and aggravating age-related neurodegenerative processes. 
This occurs through triggering of NO-induced pathways, and 
ROS-mediated dysfunction in mitochondria and endoplasmic 
reticulum.

Concluding Remarks

Astrocytes are a diverse cell population, differing across the CNS 
in their morphology, physiology, and function. In recent years, 
growing evidence indicates that astrocytes are more than simple 
bystander cells providing an optimal physical and metabolic 
environment for neuronal activity. In MS lesions, they exert 
active, dual, and paradoxical roles during disease development 
(39). Some experimental data implicate astrocytes as actual 
mediators of inflammation, as observed in sites of injury, ulti-
mately limiting neuronal repair and remyelination (Figure 1). By 
contrast, other evidence suggests astrocytes curtail detrimental 
effects of pro-inflammatory factors, thus providing support and 
protection for oligodendrocytes and neurons. This dichotomy 
in astrocyte effects makes designing new therapeutic strategies 
targeting astrocytes a challenging endeavor. In this context, a 
better definition of astroglial subtypes based on their molecular, 
functional, and structural properties, should greatly promote 
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Several studies have demonstrated diverse roles of astrocytes in lesion 
development during the course of MS. Activation of astrocytes and loss of end-
feet around small vessels are early events in lesion development, associated to 
loss of BBB function and consequently to CNS inflammation (1). Astrocytes 
mediate innate immune responses through several mechanisms. They 
modulate cell entry into the CNS by regulating adhesion molecule expression 
profiles, particularly of VCAM-1 and ICAM-1 (1). Astrocytes may also affect the 
number and phenotype of T cells in the CNS, committing T cells to a 
pro-inflammatory or regulatory phenotype. By contrast, astrocytes may also 
terminate T cell response, either by induction of apoptosis, or induction of 
Galectin-9. Furthermore, production of IL-15 or of BAFF drives immune 
responses mediated by cytotoxic CD8+ T cells or by B cells (2). Activated 
astrocytes secrete different chemokines, which attract both peripheral immune 
cells and microglia to MS lesions (2, 3). In the EAE model, astrocytes produce 
LacCer during the chronic phase, leading to induction of GM-CSF and CCL2 

genes, and to subsequent microglial activation and monocyte infiltration (4). In 
areas of myelin breakdown, it has been documented that astrocytes secrete 
compounds with toxic effects for neurons, axons, and oligodendrocytes (5), 
reduce glutamate uptake by astrocyte transporters (6), and increase expression 
of purinergic receptors (7). These factors contribute to loss of glutamate 
buffering capacity mediated by astrocytes, mitochondrial dysfunction, energy 
deficiency, accumulation of intra-axonal Ca2+, and subsequent activation of 
proteolitic enzymes (9). Astrocytes respond to injuries by forming a glial scar 
that inhibits remyelination and axonal regeneration. These effects are mediated 
through secretion of fibroblast growth factor-2 (FGF-2) and of inhibitory 
extracellular matrix (ECM) molecules, such as condroitin sulfate proteoglycans 
(CSPGs) and Ephrins (8). Old age adversely affects astrocyte viability and 
self-renewal capacity, resulting in the generation of senescent and/or 
dysfunctional cells, evidenced in the form of cell fragmentation (10). Senescent 
astrocytes appear to be in a state of chronic activation, associated with 
pro-inflammatory cytokine and prostaglandins secretion.

FiGURe 1 | Continued
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