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The autonomic nervous system (ANS) maintains the internal homeostasis by continuously
interacting with other brain structures. Its failure is commonly observed in many neuro-
logical and neuropsychiatric disorders, including neurodegenerative and vascular brain
diseases, spinal cord injury, and peripheral neuropathies. Despite the different underlying
pathophysiological mechanisms, ANS failure associates with various forms of higher level
dysfunctions, and may also negatively impact on patients’ clinical outcome. In this review,
we will discuss potential relationships between ANS and higher level dysfunctions in
a selection of neurological and neuropsychiatric disorders. In particular, we will focus
on the effect of a documented fall in blood pressure fulfilling the criteria for orthostatic
hypotension and/or autonomic-reflex impairment on cognitive performances. Some
evidence supports the hypothesis that cardiovascular autonomic failure may play a
negative prognostic role in most neurological disorders. Despite a clear causal relationship
between ANS involvement and higher level dysfunctions that is still controversial, this
might have implications for neuro-rehabilitation strategies aimed at improving patients’
clinical outcome.

Keywords: autonomic nervous system, cognitive, neurological disorders, orthostatic hypotension, heart rate
variability, baroreflex sensitivity

Introduction

The autonomic nervous system (ANS) acts as an inside control system, which functions largely
below the level of consciousness to regulate and coordinate bodily homeostatic functions and
visceral adjustment under physical and mental stress. ANS outputs are based on secretory activity
of glands and contraction of smooth muscles, while inputs mainly derive from afferent sensations
arising from visceral receptors. In its peripheral section, the ANS can be functionally divided into
parasympathetic and ortho-sympathetic branches, with additional components such as the enteric
system (1). In the brainstem, there are located the principal ANS structures for the control of cardio-
respiratory functions, which mediate vasomotor activity and specific reflexes, such as coughing,
sneezing, vomiting, and swallowing (2). Just above the brainstem, within the diencephalon, the
hypothalamus acts as an integrator for several autonomic functions, by linking together the central
nervous system (CNS) and the endocrine system through the pituitary gland. It also receives inputs
from the limbic system thus supporting a number of higher level functions, including memory,
emotion processing, behavior, and motivation (3). Within the CNS, the so-called central autonomic
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network (CAN) has been identified as the top level system of
regulation and includes the insular cortex and amygdala, the
hypothalamus, the periaqueductal gray matter, the parabrachial
complex, the nucleus of the tractus solitarius, and ventrolateral
medulla (4, 5). These same brain regions are well known to be also
implicated in cognitive functions, such as conflict monitoring,
response inhibition, and interference resolution (6). Despite still
being controversial, cardiac autonomic dysregulation (CAD) and
cognitive decline have been reported in association with various
conditions, such as neurodegenerative disorders with or without
autonomic failure (AF) (7–9). Recent studies have also shown that
brain and spinal cord injuries (mainly due to ischemic stroke)
are frequently associated with cardiac autonomic unbalance, and
that such an association may negatively affect patients’ rehabili-
tation outcome (10). It has been hypothesized that a major role
in this association is played by cognitive impairment (CI), which
may be partially due to cardiovascular dysregulation (11). As
detailed below, there are several ways to explore the efficiency
of the ANS in vivo. With these concepts in mind, this review
aims at exploring the pathophysiological implication of ANS in
higher level dysfunctions occurring in patients with neurolog-
ical and neuropsychiatric diseases. Although this topic is still
unexplored and controversial, this paper attempts to highlight
the potential relationships between ANS and higher level dys-
functions in a selection of neurological and neuropsychiatric
disorders.

Autonomic Failure and Cardiovascular
Autonomic Dysregulation

Symptoms referred to AF can be transiently observed in nor-
mal subjects and may be regarded as para-physiological indi-
vidual features. On the other hand, recurrent or permanent
symptoms of AF are commonly observed in various acute and
chronic conditions, including neurological and non-neurological
disorders. AF can therefore be considered as a pathophysiolog-
ical substrate common to different clinical conditions and its
acute/chronic characteristics and severity may differently impact
on the patients’ clinical status. Orthostatic intolerance, change
in sweating, gastrointestinal complaints, pupillary abnormalities,
neurogenic bladder, and sexual dysfunctions or secreto-motor
abnormalities are the most common features suggestive for AF
(12, 13). Table 1 summarizes the main neurological and neu-
ropsychiatric conditions in which autonomic symptoms may be
observed. In some of them, such as in dementia with Lewy bod-
ies (DLB), CI is a cardinal diagnostic feature (14). Nonetheless,
dysautonomic symptoms are also frequently observed in DLB and
may play a role in modulating patients’ CI. The link between the
ANS and cognition lies on the evidence that patients suffering
from neurogenic orthostatic hypotension (OH), in the presence
of concomitant acute events (e.g., significant reduction of blood
pressure), show a parallel worsening in cognitive performance
(15). In this case, a bottom-up mechanism is responsible for
cognitive dysfunctions. Previous neuroimaging studies in healthy
subjects have indeed shown that individual differences in resting
state or task-induced HRV correlate with brain activity in areas
of the prefrontal cortex (16, 17) and with subjects’ cognitive

TABLE 1 | Neurological and neuropsychiatric causes of autonomic failure.

1. Isolated autonomic failure
1. Progressive
(a) Pure autonomic failure

2. Acute or subacute
(a) Autoimmune autonomic ganglionopathy
(b) Para-neoplastic autonomic neuropathy

2. Progressive autonomic failure associated with parkinsonism, ataxia,
or dementia
1. Multiple system atrophy
2. Lewy body disorders
(a) Parkinson disease
(b) Dementia with Lewy bodies

3. Others
(a) Familial leukoencephalopathies
(b) Prion disorders

3. Acute autonomic failure associated with acquired lesion of the central
nervous system
1. Acquired brain injury
2. Spinal cord injury

4. Autonomic failure associated with peripheral neuropathy
1. Chronic sensorimotor neuropathies
(a) Diabetes
(b) Amyloidosis
(c) Other metabolic disorders (vitamin B12 deficiency, uremia)
(d) Toxic neuropathies

2. Sensory ganglionopathies
(a) Sjögren’s syndrome
(b) Paraneoplastic

3. Distal painful neuropathies
(a) Diabetes
(b) Amyloidosis
(c) Idiopathic (sodium channelopathies)
(d) Infectious (Human immunodeficiency virus)
(e) Hereditary

(i) Hereditary sensory and autonomic neuropathy
(ii) Fabry disease
(iii) Sodium channelopathies

4. Acute or subacute motor polyradiculopathyorneuropathy
(a) Guillain–Barré syndrome
(b) Porphyria

5. Acute autonomic and sensory neuropathy
6. Ross syndrome (segmental anhidrosis, Adie pupils, and areflexia)

Classification modified by Benarroch (13).

performance (18). Consistently, other studies have shown a cor-
relation between ANS efficiency and brain activity in regions
traditionally devoted to various cognitive function (3, 19), but
also implicated in mapping visceral responses. A direct associa-
tion between ANS efficiency, cognitive performance, and regional
brain activity has been recently demonstrated in healthy individ-
uals, using task-related functional magnetic resonance imaging
(fMRI) and parasympathetic stimulation of carotid baroreceptors
(20). Similarly, Reyes del Paso et al. (1) demonstrated an effect of
carotid baroreceptors’ stimulation in reducing pain perception.

Procedures to Assess Cardiac Autonomic
Dysregulation
There are several methods to explore the top-down efficiency of
the ANS in vivo. According to the 2011 Consensus Statement,
the OH test is one of the most widely accepted. It is defined as
a sustained reduction of systolic (at least 20mmHg) or diastolic
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blood pressure (at least 10mmHg) within 3min after standing up
or after a head-up tilt maneuver (at least 60°) (21). Alternative
methods include the assessment of HRV and pressure regulation.
Measures suggestive for CAD include the following: reduction
in standard deviation normal to normal beat (SDNN) of HRV,
unbalance of high/low frequency of HRV, decline of baroreflex
sensitivity (BRS), and fault of nocturnal blood pressure regulation
(22, 23).

The peripheral information is also known to induce autonomic
changes within the CAN by Bottom/Up mechanism (24). How-
ever, there are no standardized measures available for this type of
assessment.

Autonomic Failure and Cognition
In healthy subjects, ANS reflex variability depends on gender
and age. For instance, an attenuation of cardiovascular reflex
is typically observed in young women and regarded, by some
Authors, as a vagal-mediated cardio-protective phenomenon due
to hormonal setting. Indeed, such a characteristic tends to dis-
appear over aging (25–29). In turn, aging is also associated with
a progressive decrease of the autonomic reflex, which is likely
due to several factors, such as increased levels of oxidative stress,
vascular stiffening, and decreased efficiency of cardiac cholinergic
responsiveness (30). Aging associates with both cognitive mod-
ifications or impairments (31). In a selected sample of middle-
aged subjects, a clear association was found between HRV and
memory performance, which was independent from genetic and
cardiovascular risk factors (32). Other studies indicate that vas-
cular brain perfusion, which is also affected by sympathetic to
parasympathetic balance, changes in the elderly. SaintMartin et al.
(33) have investigated, in healthy populations, the potential rela-
tionship between vascular autonomic regulation and cognition,
concluding that it is a risk factor for developing memory deficits
in geriatric communities. Morphological changes in specific brain
structures are also known to occur in the aging. Some of these
structures, such as the brainstem, the insula, and the prefrontal
cortex are implicated in the autonomic control, and again might
contribute to physiological and pathological processes (34–36).
In this complex picture, aging and pathology are clearly imbri-
cated with each other. Based on a bottom-up mechanism, ANS
dysregulationmay contribute in determining successful or unsuc-
cessful aging and in modulating the effect of diseases which affect
cognition (37–39).

Principal Neurological Causes of AF
and Cognition

Table 1 summarizes the current classification of the neurological
and neuropsychiatric causes of AF. Here, we will briefly review the
major clinical conditions by focusing on their relationshipwithCI.

Isolated Autonomic Failure
Isolated autonomic failure (IAF) is mainly due to an autoimmune
mechanism. It is typically characterized by the presence of AF
without any remarkable involvement of the CNS, andmay present
with an acute or subacute/progressive course. In the latter case,
when affecting elderly individuals, IAF needs to be distinguished
from the most common neurodegenerative diseases.

In patients with IAF, data on cognitive functions have been
recently published by Guaraldi et al. (40). Transient worsening
in executive functions was observed concomitantly with a fall in
blood pressure during head-up tilt; this new evidence suggests
a bottom-up causality mechanism for this transient CI. Further
studies are needed to clarify the long-term effects of this vascular
dysregulation on cognition.

Progressive Autonomic Failure Associated with
Neurodegenerative Diseases
Progressive autonomic failure associated with neurodegenerative
diseases (PAaND) is a heterogeneous group of CNS disorders,
all characterized by a progressive clinical course (41). From a
pathological viewpoint, a group of these conditions are known as
α-synucleinopathies, as they are all characterized by intra-nuclear
deposition of α-synuclein, despite a different cellular and anatom-
ical distribution of the damage. They include the multi-system
atrophy (MSA) and the Lewy body disorders.

Multi-System Atropy
Multi-system atropy is a sporadic, progressive disorder with an
incidence of 3/100,000 per year in over 50-year-old individu-
als (42). Clinically, MSA may be dominated by parkinsonism,
cerebellar ataxia or pyramidal deficits (43). The anatomical dis-
tribution of the brain damage mainly involves the striatum, the
substantia nigra, the pontine and inferior olivary nuclei, the cere-
bellum, and the premotor autonomic nuclei (44, 45). The presence
of atrophy in the putamen, middle cerebellar peduncle and pons
on MRI supports a diagnosis of possible MSA (46). T2-weigthed
MRI hypointensity of the posterior putamen surrounded by a
hyperintense lateral putaminal rim or the so-called “hot cross bun
sign” are also characteristic for MSA (47). In MSA, an earlier
and more severe occurrence of AF is known to be associated
with a quicker disease progression andmore severe disability (48–
50). Brown et al. (51) has hypothesized that cardiovascular AF
is an independent predictor for CI in patients with MSA and
progressive supranuclear palsy.

Lewy Body Disorders
The Lewy body disorders are a continuum spectrum, ranging
from Parkinson’s disease (PD) to DLB, whose different clinical
expression is believed to be due to the anatomical distribution
of the damage. Damage is not only present in the substantia
nigra and in the association cortex, but involves also structures
which are directly or indirectly connected with the ANS. Addi-
tionally, Lewy body disorders are always (i.e., DLB) or frequently
associated to CI. From an autonomic perspective, the clinical
expression of these disorders ranges from asymptomatic cases
to those experiencing frequent syncopes caused by AF. Other
conditions associated with a progressive AF include the adult-
onset autosomal-dominant leukodystrophies and prion disorders.
In a proportion of cases, the clinical features are similar to those
observed in the α-synucleinopathies, including autonomic symp-
toms and CI (52–55). Structural brain imaging is an essential
tool for the differential diagnosis between the different forms of
PAaND. For instance, the DAT scan is an essential assessment
in the suspicion of DLB, when extrapyramidal symptoms are
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not fully manifest. The association between CAD and CI in α-
synucleinopathies is an issue of emerging interest with potentially
relevant clinical implications. CI is indeed largely explained by
cortical neurodegeneration. However, patients with similar levels
of brain atrophy may differ from each other for the severity of
cognitive decline and clinical evolution. Cardiac AF is also known
to impact on patients’ cognition through mechanisms of vascular
dysregulation.

In PD patients with cardiac AF, it has been described an
increased risk for stroke and mortality (56–58). Moreover, a strict
association has been reported between the severity of cardiac
noradrenergic denervation and the occurrence of visual halluci-
nations and dementia in patients with PD (59). In this association
between AF and disease severity in patients with Lewy body
disorders, the CI (which is at least partially explained by AF) is
likely to play a remarkable role. For instance, in PD, Kim and
co-authors (7) have reported an association between measures
of vascular dysregulation (i.e., OH, supine hypertension, and
vascular white matter changes) and patients’ level of cognitive
decline. The link between AF and cognition certainly involves
the whole brain, but some areas, implicated in both ANS control
and cognition may play a more specific role. A recent study
found that OH specifically reduces the cerebral blood flow in
the anterior cingulate gyrus, which is critical for the cognitive
domains typically affected in Lewy body disorders (60, 61). A
chronic disarrangement of cerebral blood flow regulation might
therefore exacerbate or worsen patients’ cognitive decline (62, 63).
This pathophysiological mechanism lies on evidence obtained in
animal model research (64, 65). Another specific brain structure,
targeted by a-synuclein pathology and involved in both, ANS
control and higher level functions, is the reticular formation. It is
known that a specific association exists between REM-behavioral
disorders and DLB, for which cognitive fluctuations represent one
of the cardinal diagnostic criteria (14) and CAD is also often
present (66). So far, in familial leukoencephalopathies and prion
diseases, a strict association between CAD and cognition needs to
be demonstrated. Future studies focused on this issue are needed
to address this point.

Overall, in PAaND, a clear bottom-up causality mechanism for
CI cannot be delineated. Indeed, CI is part of CNS degeneration
(either cortical or subcortical). Nevertheless, we speculate that
CAD may modulate the cognitive effect of such neurodegenera-
tion, as documented by transient worsening of patients’ perfor-
mances. Again, the long-term contribution of ANS dysfunction
on permanent impairments in cognition needs to be clarified.

Acute Autonomic Failure Associated With
Acquired Lesions of the Central Nervous System
Acquired CNS injury causes neurological impairment with a clin-
ical spectrum depending on lesion localization and extension. In
this picture, the ANS may also be implicated. The most common
etiologies of Acute Autonomic Failure Associated With Acquired
Lesions of the Central Nervous System (AAaAL) are as follows:
stroke, subarachnoid hemorrhage, anoxia, and trauma. When the
clinical presentation includes CI (typically in acute conditions
overlapped to chronic risk factors, such as hypertension), the neu-
ropsychological profile is dominated by executive dysfunctions

(9, 67). Despite still being unclear, the presence of CAD may
significantly determine worsening in patients’ cognition (68). In
support to this hypothesis, it has been shown that, in patients
with acute brain injury, the presence of sympathetic hyperactivity
associates with a poor clinical outcome (69). Unfortunately, there
are only few studies that investigate the relationship between brain
lesion, AF, and CI. This is mainly due to patients’ heterogeneity
in terms of etiologies, anatomical distribution of damage, etc. A
causal interpretation of CNS and ANS contribution to patients’
CI needs to be further investigated.

Autonomic Failure Associated With Peripheral
Neuropathy
The potential relationship between CI and AF as due to periph-
eral neuropathies has not been systematically investigated in the
literature. This is probably due to the concomitant presence of
CNS involvement in the most common peripheral neuropathies,
such as the diabetes mellitus. In this case, CAD as well as CI may
be due to vascular lesions which are commonly detected in the
brain tissue of diabetic patients. These lesions, which are mainly
located in thewhitematter tissue,may induce brain disconnection
and secondary gray matter degeneration. On the other hand,
peripheral neuropathies involve not only the sensory-motor but
also the autonomic fibers, thus resulting in ANS dysregulation.
ANS dysregulationmay therefore take part in causing/modulating
patients’ CI (54). Studies focusing on AF and CI in purely periph-
eral neuropathies (e.g., CIDP) might be helpful in clarifying this
relationship.

Discussion

In many neurological and neuropsychiatric conditions character-
ized by CI, AF may also be present. OH is the most common fea-
ture suggestive for ANS dysregulation, and should always be care-
fully investigated in all patients. For this assessment, as described
above, there are various techniques to identify ANS dysfunction
not only when it is symptomatic but also subclinical. Despite the
fact that the exact relationship between CI and AF still remains to
be fully clarified, it is reasonable to assume that AF may at least
contribute in determining cognitive symptoms. This is somehow
obvious for neurological conditions such as the PAaNDs, for
which ANS dysfunction is an essential part of the clinical picture.
On the other hand, this seems more controversial when consider-
ing other conditions. For instance, DLB is by definition dominated
by CI, but cognitive fluctuations are also a cardinal symptom for
the diagnosis of DLB (14). Fluctuationsmay be partially explained
by AF which, in turn, may play a role in modulating patients’
CI. In other common conditions, such as cerebrovascular disor-
ders, ANS implication remains substantially neglected. In these
patients, different clinical outcomes may be observed, and ANS
dysfunction may directly or indirectly play a role in modulating
patients’ clinical prognosis. We believe that, similar to PAaND,
the clinical prognosis might depend on the presence of CI as
caused by clinical or subclinical ANS dysfunction. There is also
some emerging evidence that ANS dysregulation may be impli-
cated in the unsuccessful aging and other degenerative forms of
cognitive decline with no obvious autonomic impairment, such as

Frontiers in Neurology | www.frontiersin.org September 2015 | Volume 6 | Article 1824

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


Bassi and Bozzali ANS and higher level functions

Alzheimer’s disease. In these cases, subliminal symptoms should
be explored by using measures which are more sensitive than the
head-up tilt test, namely BRS and HRV (70–72). Meel-van den
Abeelen et al. (15) have reported a direct association between
BRS and cognitive performance in healthy elderly subjects as well
as in patients with Alzheimer’s disease at different clinical stages
(73–75).

In conclusion, the autonomic impairment especially in subclin-
ical states is present in several pleiotropic neurological perturba-
tions associated with CI. The most likely scenario is that there
is a reciprocal relationship between the status of the ANS and
central cognitive functionality. Considering the contribution of
ANS dysfunctions will open new perspective for pharmacological
and non-pharmacological interventions in several neurological
and neuropsychiatric disorders.

Conclusion

The implication of ANS in cognition seems to be a critical
aspect in more and more neurological conditions. The autonomic
impairment, at state of current knowledge, is associated in neu-
ropsychiatric disorders with CI without a direct causal relation-
ship. Despite the absence of conclusive data, this relationship
deserves attention from both researchers and clinicians. Although
it is still largely unexplored, this is indeed an interesting field not
only for speculative reasons but also for potentially improving
patients’ prognosis and for setting up more appropriate programs
of neuro-rehabilitation. In order to fully clarify the relationship
between CAD and CI, longitudinal studies are needed based on
the use of standardized procedures for clinical and subclinical
assessment of ANS dysregulation.
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