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Multiple sclerosis (MS) is a frequent, highly debilitating inflammatory demyelinating
disease, starting to manifest in early adulthood and presenting a wide variety of symp-
toms, which are often resistant to pharmacological treatments. Cortical dysfunctions
have been demonstrated to be key components of MS condition, and plasticity of the
corticospinal motor system is highly involved in major MS symptoms, such as fatigue,
spasticity, or pain. Cortical dysfunction in MS can be studied with neurophysiological
tools, such as electroencephalography (EEG) and related techniques (evoked potentials)
or transcranial magnetic stimulation (TMS). These techniques are now widely used to
provide essential elements of MS diagnosis and can also be used to modulate plasticity.
Indeed, the recent development of non-invasive brain stimulation techniques able to
induce cortical plasticity, such as repetitive TMS or transcranial direct current stimulation,
has brought promising results as add-on treatments. In this review, we will focus on the
use of these tools (EEG and TMS) to study plasticity in MS and on the major techniques
used to modulate plasticity in MS.

Keywords: multiple sclerosis, transcranial magnetic stimulation, non-invasive brain stimulation, electroen-
cephalography, plasticity

Introduction

Multiple sclerosis (MS) is usually described as an inflammatory demyelinating disease involving
mainly the white matter. However, axonal loss (1) and cortical damage (2–6) are also important
clinical features of the disease. The first demonstration of cortical involvement was reported in
the 1980s, showing losses of orientation-specific contrast sensitivity and abnormal visual evoked
potentials (VEPs) in MS (7, 8). The role of cortical damage in the disease course and clinical
deficits has been since then further investigated and plasticity of the corticospinal motor system
has been identified as a key component of major debilitating symptoms, such as fatiguability or
spasticity (9–19).

Neurophysiological examinations are thus of primary importance in the clinical care of MS. They
allow both the investigation of corticospinal sensorimotormechanisms involved in the disease, using
electroencephalography (EEG), electromyography (EMG), and transcranial magnetic stimulation
(TMS), and also allow clinicians to directly act on deficient cortical circuits to improve subjects’
condition, using non-invasive brain stimulation (NIBS), such as repetitive TMS (rTMS), theta burst
stimulation, transcranial direct current stimulation (tDCS), or using peripheral nerve stimulation,
such as transcutaneous electrical nerve stimulation (TENS).

In this review, we will focus on the importance of neurophysiological tools to study and modulate
plasticity in MS to help treat major symptoms of the disease.
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Exploring Cortical Plasticity in MS

Event-Related EEG Oscillations
EEG represents an important exploratory tool in clinical neu-
rophysiology practice in general and in particular in the care
of MS, especially using multimodal evoked potentials (EPs),
such as somatosensory evoked potentials (SEPs), auditory evoked
potentials (AEPs), or VEPs. These measurements allow indeed
a quantitative assessment of the system function targeted by the
examination.

Apart from the evoked activity, cortico-thalamo-cortical loops
can be studied using induced EEG activity in relation to inter-
nal or external events. In particular, event-related desynchro-
nization/synchronization (ERD/ERS) of the sensorimotor mu
(8–12Hz) and beta (13–25Hz) rhythms is strongly related to the
cortical motor control (20–22). ERD represents an attenuation of
the EEG signal amplitude. Mu and beta ERD, predominating over
the sensorimotor cortical areas contralateral tomovement, initiate
about 1.5 s before movement onset and are maximal at movement
onset. Mu/beta ERD, usually observed before and during self-
paced voluntary movements (23, 24), reaction time paradigms
(25), passive movements (26, 27), or motor imagery (28), reflect
the activation of cortical motor/premotor areas involved in motor
planning. Beta ERS corresponds to a brisk, intense amplitude
increase following movement termination, observed in the beta
band. Beta ERS would be related to a post-event inhibitory period
strongly related to sensory reafferentation (29–32). The mu/beta
ERD/ERS analysis is thus a robust method to study the cortical
processing of motor control.

Beta ERD was abnormally increased in the fronto-central
regions in fatigued MS subjects, compared to non-fatigued
subjects or controls (11). The study involved non-disabled sub-
jects [with score ≤1.5 according to the Expanded Disability
Status Scale (EDSS)]. Non-fatigued subjects did not show abnor-
mal mu/beta ERD/ERS. Conversely, beta ERS was significantly
lower in fatigued MS participants over fronto-central areas. These
abnormal ERD/ERS patterns were significantly correlated with
the amount of fatigue. Such increased beta ERD and decreased
beta ERS reflected an increased cortico-thalamo-cortical activity
in fatigued MS subjects, consistent with the central origin of
fatigue in MS, and suggesting an over-activity of frontal struc-
tures (probably the supplementary motor area). In another study
involving more severe MS participants, the authors showed a
significant correlation between mu ERD onset and T1/T2 total
lesion volume, themore severe subjects having higher lesion loads
andmore delayed mu ERD (33). These results imply that, with the
progression of the disease, the extent of brain lesion load affects
cortico-cortical and cortico-subcortical activity related to motor
planning.

Long-Latency Reflexes
Long-latency reflexes (LLRs) are muscular responses elicited by
electrical stimulations of mixed nerves during slight contrac-
tion of the targeted muscle. In particular, LLR-II would be the
most reliable (34) and would represent a transcortical reflex (35–
40). LLR-II represents an important neurophysiological tool to
study simultaneously the sensory-motor corticospinal tracts and

intracortical circuits. There is a strong correlation between LLR-II
latencies and the sum of latencies of the N20 SEP and motor-
evoked potential (MEP) evoked by TMS, suggesting that the
three phenomena (LLR-II, SEP, and MEP) are essentially con-
ducted along the same fibers (39). The cortical relay time (CRT)
can be obtained by subtracting the sum of the latencies of N20
and of MEP to the LLR-II latency. CRT is usually consistent
with polysynaptic or oligosynaptic intracortical transmission (41).
Delayed or absent LLRs in MS were revealed in the early 90s,
demonstrating the relevance of studying simultaneously LLRs and
SEPs to evaluate afferent and efferent pathways in MS (42, 43).
More specifically, the CRT was reported prolonged in people with
definite MS (44, 45). Tataroglu and colleagues demonstrated also
prolonged LLR-II, N20 SEP, and MEP latencies in MS. The CRT
was not correlated with the clinical form of the disease or with
its duration, in contrast to the other measurements. Bonfiglio and
colleagues showed only weak differences between people with MS
and controls in terms of afferent (N20) or efferent (MEP) conduc-
tion times, but demonstrated strong differences of LLR latencies
between both groups (45). Moreover, CRT was greatly prolonged
in MS compared to controls, and not only in subjects who had
severe slowing of central sensory and/or motor conduction. The
CRT increase did not correlate with disease duration. This study
showed how slowing of intracortical sensorimotor circuits greatly
contributes to the delayed LLR-II latencies in MS. LLR recording
may thus be useful to detect dysfunctions of the intracortical
sensorimotor pathway inMS. Attention can be directed on the fact
that these intracortical sensorimotor disorders are present inmost
of MS subjects, independently from the disease duration and even
in non-severe forms.

Transcranial Magnetic Stimulation
TMS was initially used in MS to measure central motor conduc-
tion time (CMCT) to evaluate the effects of demyelination on
neuronal conduction. CMCT is indeed significantly prolonged in
MS (46–48). Moreover, depending on the paradigm used, sin-
gle or paired-pulse TMS allows the investigation of the whole
corticospinal tract integrity, including intracortical excitability.
Such paradigms have been used in MS and showed increased
resting motor threshold (RMT), or absent MEPs in most of sub-
jects, demonstrating abnormal excitability of pyramidal neuron
membrane (46, 47, 49). Increased threshold and reduced cortical
silent period (CSP, a measure of intracortical GABAb transmis-
sion) were demonstrated characteristic of “relapsing” subjects.
These participants also lacked short-interval intracortical inhi-
bition (SICI), a measurement of intracortical GABA-a interneu-
ronal transmission (50–52). Normal threshold and prolongedCSP
were observed in the “remitting” phase (53). Strong correlations
were shown between hand motor function (measured with the
Purdue Pegboard score) and RMT, MEP amplitude/latencies in
relapsing-remitting MS (54). Relapsing-remitting subjects had
lower RMT and higher MEP amplitudes than subjects with sec-
ondary progressive MS, who had significantly higher RMT and
smaller MEPs than controls (48, 55). Secondary progressive MS
also showed lower amounts of SICI than relapsing-remitting form
and than healthy controls, directly demonstrating an alteration of
the intracortical GABAergic transmission in MS (55). These TMS
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measures correlated with EDSS scores, revealing normal TMS
measures in subjects with lower EDSS scores and abnormal corti-
cospinal excitability in peoplewith higher EDSS scores (i.e., higher
disability), demonstrating that TMS evaluation is of importance
in quantifying MS disease severity (48, 55, 56). Also, changes
in the balance of intracortical excitation and inhibition, favoring
excitation, have been reported using paired-pulse TMS after high-
dose corticosteroids in relation to a relapse (57). More studies are
needed in order to ascertain the respective role of lesion location
(e.g., motor or extra-motor relapse), of spontaneous recovery and
of treatment administration.

TMS can also be used as a non-invasive tool able to interfere
temporarily with a specific cortical activity in order to investi-
gate its particular role. To this aim, single pulse TMS has been
used to investigate the role of ipsilateral motor/premotor cortex
hyperactivity during a simple reaction time task in MS (58). The
authors applied a suprathreshold TMS pulse targeting, in different
sessions, the contralateral and ipsilateral hand motor cortices or
the ipsilateral dorsal premotor cortex during a simple reaction
time task. They showed that the concomitant stimulation of the
contralateral primary motor cortex increased significantly the
reaction times in both people with MS and controls. Conversely,
stimulation of the ipsilateral motor/premotor cortex increased
reaction times only in MS, and not in controls. These changes in
reaction times, however, did not correlate with hand motor func-
tion tests orwith the total brain lesion load. The authors concluded
thus that the ipsilateral hyperactivity might be a “functionally
relevant, yet limited adaptive response to chronic brain injury in
MS patients.”

Modulating Cortical Plasticity in MS

Non-Invasive Brain Stimulation
Non-invasive brain stimulation techniques are relatively new
tools for modulating cortical excitability to provide symptomatic
treatments in a large range of neurologic and psychiatric dis-
eases. Among them, rTMS and tDCS have been widely studied
and proven effective in conditions, such as Parkinson’s disease,
stroke, or dystonia (59–62). Since these techniques have been
particularly applied in the field of neurorehabilitation, a spe-
cial interest rose to improve specific dysfunctions of subjects
with MS.

Cortical plasticity can indeed by induced in MS. Subjects
with moderately severe stable MS showed the same rapid-onset
motor plasticity than healthy subjects, despite motor impair-
ment and central nervous system injuries (63). The authors used
paired-associative stimulation (PAS), a NIBS protocol modeling
long-term synaptic potentiation (LTP) (64), combining repetitive
electric nerve stimulation with TMS of the contralateral motor
cortex. In both groups (MS and controls), PAS induced an increase
in corticospinal excitability and improved motor learning perfor-
mances equally in subjects with MS and controls. On the other
hand, PAS-induced plasticity was reduced in relapsing-remitting
MS subjects suffering incomplete or absent recovery (65). The
authors showed that PAS-induced plasticity (measuredwithMEPs
and SEPs amplitude and latencies) and age could contribute to
predict symptom recovery after a relapse.

One of the first applications of NIBS in MS has been to reduce
spasticity. Indeed, rTMS is able to modulate the presynaptic inhi-
bition of the soleus Ia afferents mediating the stretch reflex (66,
67). Centonze and colleagues first applied low (inhibitory) and
high (excitatory) frequency rTMS over the leg primarymotor cor-
tex in 19 subjects with remitting MS and showed that a single ses-
sion of high-frequency rTMS (5Hz) could reduce the amplitude of
the H/M ratio of the soleus H reflex and increase MEP amplitude
(18). Two consecutive weeks of 5Hz rTMS treatment decreased
H/M amplitude ratio as well as spasticity [directly measured on
Modified Ashworth Scale (MAS) mean score], up to 1week after
the end of treatment (18). In a pilot study using the H-coil, which
is able to deliver a wider and deeper magnetic field than the
regular focal coils without the need to increase the stimulation
intensity (68), 3 weeks of treatment with 20Hz rTMS over the leg
area of subjects with progressive MS could improve walking and
reduce spasticity more than rehabilitation alone (69). Intermittent
theta burst stimulation (iTBS), which represents another way of
using high-frequency rTMS to increase corticospinal excitability
(70), has also been reported to reduce spasticity (MAS scores
and H/M amplitude ratio) in the remitting phase of MS for up
to 2weeks after the end of the 2-week stimulation protocol (71,
72). The effects of iTBS, combined with exercise therapy, were
potentiated with respect to the two treatments alone, suggesting
the association of these two rehabilitationmethods as a promising
strategy (72). Conversely, iTBS-induced LTP was reported absent
in subjects with primary progressive MS, who also presented
lesser amounts of platelet-derived growth factor (73), a molecule
considered neuroprotective (74) and favoring LTP (75).

NIBS techniques have also been used to treat fatigue in
MS. Indeed, cortical involvement in fatigue mechanisms was
demonstrated through impaired intracortical inhibition (13),
dysfunction of inhibitory mechanisms engaged after movement
termination (11, 76), in line with neuroimaging evidence (6).
Positron emission tomography at rest revealed metabolic abnor-
malities of frontal cortex and basal ganglia (77) and functional
magnetic resonance imaging during motor activity showed dys-
function of cortical and subcortical areas involved in motor plan-
ning (12). tDCS, another NIBS method for inducing long-term
modulation of cortical excitability (78, 79), has been recently
explored to reduce fatigue in MS. Anodal (excitatory) tDCS of the
motor cortex applied for 5 days in 25 MS subjects (22 relapsing-
remitting) could improve fatigue impact scale (FIS) scores by
about 30% in 65% of participants (80). These benefits were still
present 3weeks after the end of treatment. More recently, 5 days
of bilateral anodal tDCS over the primary somatosensory cortical
areas were able to decrease fatigue (modified FIS scores) in 10 MS
subjects (81). Anodal tDCS over the somatosensory cortex could
also reduce tactile sensory deficits by improving discriminatory
thresholds at the grating orientation task and increasing the visual
analog scale (VAS) for sensory scores in 20 remitting subjects (82).

Another application of NIBS in MS has been neuropathic pain.
Central neuropathic pain is influenced by functional changes at
the supra-spinal level, in various components involved in pain
perception. In particular, the thalamic nuclei, limbic system, sen-
sorimotor, and insular cortices function in a hyperactivated state.
A lack of intracortical inhibition would also be involved in central
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neuropathic pain (83). Based on these observations, epidural and
transcranial stimulation of the motor cortex, modulating pain
perception through indirect neural networks, have been applied
in humans for the treatment of drug-resistant neuropathic pain
(84). Five days of anodal tDCS over the primary motor cortex
reduced pain (assessed by VAS for pain andMcGill questionnaire)
and improved quality of life in 19 remitting MS subjects (85), up
to 3weeks after the end of treatment.

These studies demonstrated that neuromodulation of cortical
plasticity using NIBS can have diverse applications to benefit
people with MS. NIBS over M1 might reduce spasticity and neu-
ropathic pain through an increase in corticospinal excitability (18,
70, 86), while the positive effects on fatigue might depend on
cortico-cortical and/or cortico-subcortical mechanisms (80, 81).

Transcutaneous Electrical Nerve Stimulation
Transcutaneous electrical nerve stimulation is used in the treat-
ment of acute or chronic pain symptoms (87). TENS usually
consists on the use of small battery-powered devices deliver-
ing alternative current through cutaneous electrodes placed near
the painful area. TENS efficacy depends on the intensity and
frequency of stimulation. TENS activates large diameter affer-
ent fibers, which in the central nervous system may activate
descending inhibitory circuits reducing hyperalgesia (88, 89). In

animal models, low and high-frequency TENS reduce dorsal horn
neuronal activity (90–93). High-frequency TENS also reduces
central neuronal sensitization and release of glutamate and sub-
stance P in the spinal chord dorsal horn in preclinical models
of inflammation (94, 95). In MS, TENS has been reported to
reduce spasticity, pain, and muscle spasms (96, 97). Recently, a
TMS study investigated the effects of a 3-week TENS treatment
on cortical map representation (98). TENS, applied on themedian
nerve region (thenar eminence) of the most impaired hand 1 h
a day for 3weeks, was associated with decreased cortical map
area of hand muscle representation, without modifying RMT or
MEP amplitude. These findings were interpreted as reflecting
reorganization in the cortical motor representation rather than
a temporary decline in corticospinal excitability, suggesting that
TENS can induce cortical plastic changes in MS.

Conclusion

A variety of neurophysiology tools can significantly help in the
investigation and reinforcement of neuroplasticity in MS. Impor-
tantly, the development of NIBS techniques is bringing new
possibilities for add-on treatment strategies. Thus, the combina-
tion of these tools could help personalize treatments for people
with MS.
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