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Rationale: Individuals with Parkinson’s disease (PD) often have deficits in kinesthesia.
There is a need for rehabilitation interventions that improve these kinesthetic deficits.
Forced (tandem) cycling at a high cadence improves motor function. However, tandem
cycling is difficult to implement in a rehabilitation setting.

Objective: To construct an instrumented, motored cycle and to examine if high cadence
dynamic cycling promotes improvements in motor function.

Method: This motored cycle had two different modes: dynamic and static cycling. In
dynamic mode, the motor maintained 75-85rpm. In static mode, the rider determined
the pedaling cadence. UPDRS Motor Il and Timed Up and Go (TUG) were used to assess
changes in motor function after three cycling sessions.

Results: Individuals in the static group showed a lower cadence but a higher power,
torque and heart rate than the dynamic group. UPDRS score showed a significant 13.9%
improvement in the dynamic group and only a 0.9% improvement in the static group.
There was also a 16.5% improvement in TUG time in the dynamic group but only an 8%
improvement in the static group.

Conclusion: These findings show that dynamic cycling can improve PD motor function
and that activation of proprioceptors with a high cadence but variable pattern may be
important for motor improvements in PD.

Keywords: movement disorders, exercise, rehabilitation, neuroplasticity, bradykinesia, motor function

Introduction

Approximately 630,000 people in the US were diagnosed with Parkinson’s disease (PD) in 2010 and
it is estimated that PD prevalence will double by 2040 (1). As PD progresses, the combined motor
and non-motor symptoms often lead to decreased independence and quality of life. The economic
impact of PD, including treatment, social security payments, and lost income from inability to work,
exceeded $14.4 billion in 2010 (1). The degenerative nature of PD results in progressive deterioration
of motor skills along with reduced sensory and cognitive function. The current treatment for PD
is medication (levodopa, dopamine agonists) and surgical intervention (deep brain stimulation).
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These treatments only partially treat the symptoms and do not
slow progression of the disease. Furthermore, they often have
undesirable side effects, such as dyskinesia (2). In light of pro-
jections of increased prevalence of PD, there is a need for inno-
vative new treatments to improve symptoms and delay disease
progression.

Our studies, and those of several others, have presented strong
evidence that certain exercise interventions promote changes in
neural drive in PD (3-9). Although the exact mechanisms are still
unknown, it has been suggested that increases in sensory input
or feedback resulting from these interventions may play a role in
this motor improvement. Individuals with PD often have deficits
in kinesthesia (conscious awareness of limb and body position in
space) (10, 11). Sensorimotor integration may be dysfunctional
in PD and has been implicated in the etiology for bradykinesia
and atypical movement in PD. Kinesthesia is likely to be the
key modality affecting this dysfunction (12). However, levodopa
does not appear to improve kinesthetic deficits in PD (13, 14)
and has been associated with suppression of sensitivity to joint
position (15). Therefore, there is a great need for rehabilitation
interventions that improve proprioceptive deficits in PD.

Animal model studies have shown that high-intensity exer-
cise can promote neural plasticity and neuroprotection against
dopaminergic cell loss (16). Several reports in humans have shown
that high-intensity treadmill training (17, 18) and high-cadence
cycling (3, 6, 9, 19, 20) promote functional improvement in PD
but there are still several unanswered questions: (1) How does
motor function change immediately after high-intensity exercise,
(2) What features of exercise (speed, intensity) optimize motor
function, and (3) What are potential mechanisms of function
improvements after high-intensity exercise?

To begin to address these questions, we have developed a
novel rehabilitation approach called dynamic cycling. This work
builds upon our original “forced exercise” paradigm that used
a stationary tandem bicycle and an able-bodied trainer to assist
individuals to pedal with a rapid cadence (80 rpm) (6). High-
cadence tandem cycling resulted in a 35% reduction in PD motor
symptoms (UPDRS scores), whereas individuals who cycled at a
self-selected cadence (60 rpm) showed no improvement. Despite
these remarkable results, large-scale use of the tandem cycling
paradigm is not feasible in a rehabilitation or home setting.
Furthermore, it has proven difficult to reproduce the dynamics
of tandem cycling using currently available motorized cycles.
The dynamic cycling paradigm that we developed uses a motor-
ized stationary cycle to assist individuals with PD to pedal at
a cadence faster than they can (or would) pedal on their own.
In addition, this rehabilitation paradigm is unique because the
motor rotates the pedals at a high speed with a slight, but pre-
scribed, variation. These dynamic changes in cadence appear
to be an important component of tandem cycling (21). There-
fore, we hypothesize that dynamic cycling will promote greater
improvements in PD symptoms and motor function than cycling
at a lower cadence (static cycling). Findings from this study
will provide important data to support future research examin-
ing long-term rehabilitation benefits as well as role of afferent
input during dynamic cycling in the reduction of PD motor
symptoms.

Materials and Methods

Participants

Inclusion criteria were as follows: 50-79 years of age, diagnosis
of idiopathic PD, and no contraindications to exercise, including
uncontrolled cardiovascular disease or stroke. Exclusion criteria
included history of heart attack, any surgical procedure for treat-
ment of PD, including deep brain stimulation, pallidotomy, or
thalamotomy. All potential study subjects were pre-screened over
the telephone with the American Heart Association/American
College of Sports Medicine exercise pre-participation question-
naire (22). Individuals with greater than or equal to two risk
factors for coronary artery disease (moderate risk) were required
to obtain physician clearance prior to exercise. Fifty individuals
with idiopathic PD qualified and agreed to participate in this
study. This study was carried out in accordance with the rec-
ommendations of the Kent State University Institutional Review
Board with written informed consent from all subjects.

Study Design

This study was a randomized two group pretest—posttest design.
Each participant visited the lab for four sessions. Individuals
were randomized into either: (1) dynamic cycling or (2) static
cycling. During the first session (Friday), baseline motor function
was assessed and individuals completed the first cycling session.
During the next two sessions (Monday/Wednesday), each par-
ticipant exercised for 40 min on the instrumented bike. During
the last session (Friday), post-intervention motor function was
assessed. There was at least 48 h between the last exercise session
and the post-intervention assessments. Each cycling bout began
with 5min of warm up (low resistance pedaling at 40-50 rpm).
Participants then completed 30 min of dynamic or static cycling
and ended with 5 min of cycling at 40-50 rpm. Rating of perceived
exertion (RPE) and heart rate (HR) was monitored by a research
assistant during each session. Participants were encouraged to
maintain their HR within 50-80% of their estimated HR reserve.
Data from the cycle were collected continuously during each ses-
sion. All exercise sessions were completed while individuals were
“on” anti-Parkinson’s medications. Participants served as their
own controls from pre-cycling to post-cycling testing to account
for performance variability that is often present in PD.

Intervention

During dynamic cycling, motor output speed varied between 75
and 85 rpm. Motor torque was adjusted to accommodate changes
in the rider force exerted on the pedals. The motor did the majority
of the work to turn the pedals but individuals were encouraged to
push on the pedals and to not be passive. During static cycling,
individuals cycled on the instrumented bike, at a self-selected
speed, without the motor assist. Speed was not controlled but
the rider experienced an inertia load on the pedals, similar to
what they would experience on a typical stationary bike. Individ-
uals were directed to choose their own pedaling speed. HR was
collected with a Polar Wearlink+™ Coded Transmitter worn on
the chest, which transmitted to a HR monitor interface board.
The control platform was a commercially available programmable
logic controller (PLC). The PLC determined the appropriate
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motor speed and load (torque) values, and sent motor control
information to the motor drive. The motor drive implemented
a high-speed inner loop controller that provided the appropriate
voltage and current to the motor. Motor feedback was used as
feedback for the drive to maintain motor speed and torque. Data
from the controller box were downloaded and archived onto a
laptop computer. Additional details on the design of the control
program and the cycle can be found in the paper by Mohammadi
Abdar (23).

Outcome Measures

All assessments were completed while the individuals were “on”
anti-Parkinson’s medication. The primary outcome measure was
the UPDRS Part III Motor Exam. UPDRS Motor III was admin-
istered by a blinded movement disorders specialist prior (pre-
intervention) to the three cycling sessions and 2 days following the
last exercise session (post-intervention). The UPDRS Motor III
has universal acceptance as a rating scale for PD patients and it has
been shown to be reliable and valid (24, 25). The total score, scores
for each primary symptom (i.e., tremor, bradykinesia) and scores
for upper and lower extremity were analyzed. The secondary
outcome measure was the Timed Up and Go (TUG). This test
is used primarily as a measure of mobility but is also useful as
a measure of bradykinesia during walking (26). To complete the
TUG, participants were asked to stand up from a standard chair
and walk a distance of 3 m, turn around and walk back to the chair
and sit down again. The time to complete the task was recorded
with a stop watch. Each participant performed three trials and the
average was calculated.

Statistics

Demographic variables between the two groups were compared
using an independent samples ¢-test. Comparison of pre-cycling
and post-cycling changes in UPDRS motor scores and TUG
time were performed using paired-samples ¢-test in each group
(dynamic, static) independently. All statistical analysis was com-
pleted using SPSS V. 22 and the alpha level was set to 0.05.

Results

A detailed description of the design and controller parameters for
the motorized cycle was described in a previous paper (23). In
summary, the bike chassis used for this study consisted of a com-
mercial exercise bike frame (Motomed Viva 2, Reck, Germany)
that was modified to include additional sensors to monitor bike
operation and rider condition (cadence, torque, power, HR). In
addition, a high performance servomotor and variable speed drive
were coupled to the pedals and a programmable controller with
custom control algorithms, data acquisition, network capability,
real-time display with operator controls, and data archiving were
provided (Figure 1A). The electronic components integrated on
the bike chassis were the operator display, emergency stop button,
HR monitor interface board, TTL to serial level converter board
for the HR monitor. All other electronic components, such as
the drive, programmable controller, network adapter, and power
supplies, were mounted in an enclosure that was external to the
bike but connected via cables for motor power, display power,
motor feedback, and communications (Figure 1B).

Heart Rate Cadence Power

- ant
m -m Accel Factol s

89

Toriue
Drive Fault * V,my Factor

— Main Menu
Reset E:st0p - |

FIGURE 1 | Dynamic/static motorized cycle design (A) A motorized
stationary movement trainer (Motomed Viva 2, Reck, LLC) provided
the mechanical chassis for the bike. This device was modified by
replacing the motor and by adding a controller box. Details of the design of
the controller are described in the text. (B) A touch screen (PanelView™ Plus
graphic display) was also added to allow for visual feedback for the subjects
and the research assistants.

Fifty individuals were randomized to either the dynamic or
static cycling group (Figure 2). Seven females and 16 males
with mean age 67.3+0.9 years completed three 40-min static
cycling sessions and 11 females and 13 males with mean
age 67.2+ 1.6 years completed three dynamic cycling sessions
(Figure 2). Two individuals from the static group and one person
from the dynamic did not complete the intervention due to the
reasons outlined in Figure 2. There were no significant differences
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FIGURE 2 | Consort diagram. Fifty individuals who qualified for the study (out of 94 assessed, 53%) were randomized to either the dynamic or static cycling
group. Two individuals from the static group did not complete the intervention due to DBS (not reported in prescreening) and a diagnosis of a non-Parkinson’s
movement disorder (PSP). One person from the dynamic did not complete the protocol due to hip pain during the cycling. Data from 23 individuals in the static

group and 24 individuals in the dynamic group were analyzed.

TABLE 1 | Demographic variables.

TABLE 2 | Cycling and physiological variables.

Variable Static (n=23) Dynamic (n = 24) p-Value Variable Static (n=23) Dynamic (n = 24) p-Value
Ages (years) 67.34+0.9 67.2+1.6 0.962 Cadence (rpm) 66.0+3.2 78.6+1.1 0.000
Male/female 16/7 13/11 - Power 31.2+41 8.0£4.3 0.000
H&Y (Hoehn and Yahr) 1.84+0.1 21402 0.151 Torque 202+29 0.24+3.9 0.000
Height (cm) 67.7+0.7 68.1+0.8 0.681 Heart rate (bpm) 103.3+3.1 91.1+25 0.004
Weight (Ibs) 165.2£6.0 175.1+£841 0.336 RPE (6-20 scale) 13.6+0.4 127+£11 0.417
BMI 25.1+0.7 26.6+£0.9 0.186

PD duration (months) 77.7+97 83.5+11.2 0.702 rom, revolutions per minute; bpm, beats per minute; RPE, rating of perceived exertion.
Levodopa equivalent dose 153.34+23.9 178.84+29.4 0.507 Mean + SD, independent t-test was used to compare the two groups.

Mean + SD, independent t-test was used to compare the two groups.

in any of the demographic variables (age, H&Y, height, weight,
body mass index, disease duration, and levodopa equivalent dose)
between the dynamic and static cycling groups (Table 1).

Dynamic and static cycling modes resulted in similar individ-
ual assessments of RPE but there were significant differences in
cadence, power, torque, and HR between the two groups (Table 2).
Specifically, individuals in the dynamic cycling group showed a
higher cadence (78.6 £ 1.1 versus 66.0 &= 3.2 rpm, p < 0.001) but a
lower power, torque, and HR than the static cycling group.

The overall UPDRS III score (Figure 3A) showed a sig-
nificant 13.9% (4.0 pts) improvement in the dynamic group
(t=2.676, df =23, p=0.013) and only a small 0.9% (0.2 pts)
change in the static group (+=0.189, df=22, p=0.85) after
just three cycling sessions. Analysis of the individual UPDRS
IIT components showed that lower extremity (t=3.8, df=23,
p=0.001) and rigidity scores (t=2.6, df=23, p=0.013) also

improved significantly in the dynamic group but there were no
significant changes in the static group in any of the UPDRS Motor
III scores. Interestingly, UPDRS scores in the upper extremity
(Figure 3B) showed a significant 18% (2.6 pts) improvement after
dynamic cycling (t =2.54, df=23, p=0.018) compared with a
7% (0.9 pts) improvement in the static group (¢ =1.32, df =22,
p=0.19).

In addition, there was a 16.5% improvement (2.1s, t=1.7,
df=23, p=0.10) in Timed Up and Go test (TUG) time in the
dynamic group but only an 8% improvement (0.87s, t=1.3,
df=21, p=0.19) in the static group (Figure 3C). Although
this change was not statistically significant due to variability in
responses among individuals, it is interesting that the dynamic
group showed a twofold improvement in the TUG compared to
the static group.

Although the baseline mean scores of UPDRS between the
two groups were not the same, the majority of individuals in the
dynamic group (15/24, 62%, Figure 4A) showed improvements
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FIGURE 3 | Changes in motor function after the intervention. (A) Total
UPDRS Motor Il scores and upper extremity (UE) only (B) showed significant
improvements after dynamic cycling. (C) TUG time to completion did not
show a significant change but improvements were greater in the dynamic
group by two-fold. Error bars represent SD. *p < 0.05.

in motor symptoms and a much smaller percentage of the static
group showed a positive change (9/23, 39%, Figure 4B).

Discussion

Dynamic high-cadence cycling for only three sessions resulted in
a 4-point reduction in motor symptoms of PD as measured with
the UPDRS Motor III test. These findings were similar to a 1-
month high-intensity treadmill training program (body weight
supported treadmill training, BWSTT) which resulted in a 3-point
improvement in UPDRS Motor III (18) and an 8-week high-
intensity BWSTT intervention which showed a 2.8-point improve-
ment. In addition, an intensive 4-week LSVT®BIG intervention
reported a 5-point change in UPDRS Motor III (27). By contrast,

Dynamic Cycling
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R —
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FIGURE 4 | Individual UPDRS Motor lll Scores before and after the
intervention. (A) Dynamic cycling group. (B) Static cycling group. Individual
subject values are illustrated with open circles, group mean values are noted
as black squares.

our UPDRS improvements were less than that reported after a
single session of forced cycling (as evaluated “off” medication) (3).
However, a 4-point change is well within the minimum clinically
important difference (CID) of 2.3-2.7 points (28), suggesting that
this difference is recognized and valuable to individuals with
PD. UPDRS Motor III scores were evaluated while individuals
were “on” medication in this study (see Discussion below), so we
expect that future studies with a longer intervention and with “off”
medication evaluations would yield even greater improvements.
The significant changes seen in upper extremity UPDRS scores
after dynamic cycling (2.6 points) are in agreement with previous
high-cadence cycling papers (3, 6). The enhanced function of
the upper extremity with a lower extremity intervention further
supports the view that dynamic cycling could promotes changes
in neural drive in PD.

Timed up and go is a widely used measure of mobility, bal-
ance, and fall risk in PD. Time to completion in the TUG test
improved by 2.1s after dynamic cycling but variability among
subjects resulted in a non-significant difference. The minimal
detectable change (MDC), difference in scores which reflect true
change and not error, for PD is reported as 3.5s (29). However,
Latt and colleagues (30) reported that individuals who complete
the TUG in >12s have an increased fall risk. Individuals in the
dynamic group had a baseline TUG of 12.7+ 11.6s that was
decreased to 10.5 & 7.1 s after only three dynamic cycling sessions.
Furthermore, it is likely that a longer-term intervention would
promote greater improvements in balance and mobility.
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Dynamic Cycling Versus High-Intensity Exercise
Dynamic cycling promoted similar improvements in motor func-
tion to that reported in other high-intensity (or vigorous) exercise
interventions (5, 18, 27), but the HR (91.1 4 2.5 bpm) and ratings
of perceived exertion (12.7 + 1.1) values recorded during dynamic
cycling sessions are defined as light to moderate intensity (22, 31).
During dynamic cycling, the motor does the majority of the work
to turn the pedals and less effort is required by the individual. The
significant decrease in power in the dynamic group (31.2+4.1),
compared to the static group (8.0 & 4.3), reflects this effort. The
value of this rehabilitation paradigm is that it promotes significant
improvement in PD symptoms with a reduced the risk of injury,
excessive fatigue, and non-compliance. All of the individuals
in the dynamic group were able to successfully complete three
sessions without any unusual fatigue or injuries.

Possible Mechanisms

The improvement in Parkinson’s motor symptoms in the dynamic
group was intriguing because individuals in the static group were
working harder (higher HR and power) but showed no improve-
ment in symptoms. These results suggest that motor improvement
after dynamic cycling is not driven by purely cardiovascular or
metabolic mechanisms (3). We propose that complex and variable
sensory input during dynamic cycling increases sensory feedback
from the periphery and subsequent activation of the basal ganglia
circuits. Activation of these circuits could enhance central motor
processing. Accurate voluntary movement requires somatosen-
sory input from the periphery. Peripheral receptors, such as joint
receptors, golgi tendon organs, muscle spindles, and cutaneous
receptors, send information from the limbs to the cortex. Several
studies have identified proprioceptive impairment in PD, specifi-
cally in muscle spindle responses, load sensitivity, and kinesthesia
(12, 32-35). This suggests that deficits in peripheral afferent input
or sensorimotor integration likely contribute to abnormal motor
output in individuals with PD.

During dynamic cycling, proprioceptors measuring joint
angles, muscle length and force, and cutaneous receptors on the
bottom of the foot (36) would be activated. Improvements in
motor function and mobility after bouts of cycling in individuals
with PD could be due to increases in afferent input to the cortex.
Several EEG studies in healthy individuals have shown that sig-
nificant sensorimotor processing is present during active pedaling
(37) and that high-cadence training promotes neural efficiency as
defined with EEG spectral power analysis (38). This indicates that
activation of proprioceptors with a high frequency but variable
pattern may be important for symptom improvements in PD.

Bradykinesia, one of the most central cardinal symptoms of
PD, may have significant origins in the alteration of scale per-
ception as it relates to movement and may point to a possi-
ble underlying dysfunction in sensorimotor integration (12, 39).
Our data with dynamic cycling suggest that the combination of
(1) high-cadence cycling and (2) the introduction of variable
cadence improve symptoms in PD, most notably rigidity and
bradykinesia. The idea that dynamic cycling could invoke the
retuning and integration of kinesthesia, as it relates to motor
programing, is compelling. Naito has shown that kinesthetic input
illusion activates primary motor cortex, as well as other related

motor areas, including cingulate motor area and supplementary
motor area (40), in healthy individuals. They also suggested that
sensorimotor integration could occur directly in these motor
regions. Thus, exploration of this mechanism by studying sensory
changes in individuals with PD through the course of the adaptive
dynamic cycling intervention has a high likelihood of yielding
illuminating results regarding mechanisms of improved motor
function.

Several studies have shown that bradykinesia and gait in PD
can be improved with dynamic sensory cues (41-43). The the-
ory of paradoxical kinesia, which suggests that motor action
triggered by sensory stimuli circumvents damaged basal gan-
glia pathways (41, 44, 45), has been proposed as a mechanism
for these improvements. In addition, research investigating the
benefits of dancing in PD has suggested that the strong musical
rhythms and asymmetrical movements in tango provide impor-
tant sensory feedback cues that promote improvements in bal-
ance and gait (46-48). However, additional research examining
the changes in proprioceptive sensitivity after dynamic cycling is
necessary.

Limitations

There are a few limitations to this study. We chose to exercise
and test individuals in the “on” medication state in an effort
to examine a true functional state. Individuals with PD would
not exercise while “off” medication on their own. In addition,
there is an increased risk of fall, injury, or discomfort during
the “off” medication state. However, a recent exercise study by
Prodoehl et al. (49) suggested that testing while “on” medication
is adequate, as long as the timing of the last dose of medication
relative to testing is controlled. In this study, we completed the
pre-intervention and post-intervention testing at the same time
of day and recorded when the last medication dose was taken in
an attempt to minimize this variable. A second limitation of this
study is a small sample size, which led to significant variability
in responses within the groups. We did not want to limit our
pool of participants by narrowing the inclusion criteria and, as a
result, we had a wide range of disease severity and symptoms in
our study. The pre-intervention UPDRS Motor III scores ranged
from 11-40 in the static group (out of 108 possible) to 4-55
in the static group. Although participants were randomized into
either dynamic or static cycling, the baseline UPDRS scores were
different between the two groups. However, our statistics analyzed
the baseline and post-intervention scores in each group indepen-
dently to minimize the effect of this difference. Lastly, despite our
hypothesized sensory-based mechanism of improvement, we did
not measure sensory function directly in this study. Future studies
will measure changes in proprioceptive sensitivity using a passive
joint repositioning test (50).

Conclusion

We believe that dynamic cycling provides variable sensory input to
the basal ganglia that promotes improvements in motor speed and
quality. The dynamic nature of this paradigm will allow for opti-
mization of the therapy per individual through adaptive control
mechanisms and over time. Due to the variation in responses to
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this therapy, additional work is needed to determine how dynamic
cycling can be individualized for people with varying degrees
and severity of symptoms. Future studies will test this theory
by examining both motor and sensory function throughout the
long-term dynamic cycling intervention.
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