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Hypoxia–ischemia before or around the time of birth occurs in approximately 2/1000 
live births and is associated with a high risk of death or lifelong disability. Therapeutic 
hypothermia is now well established as standard treatment for infants with moderate to 
severe hypoxic–ischemic encephalopathy but is only partially effective. There is com-
pelling preclinical and clinical evidence that hypothermia is most protective when it is 
started as early as possible after hypoxia–ischemia. Further improvements in outcome 
from therapeutic hypothermia are very likely to arise from strategies to reduce the delay 
before starting treatment of affected infants. In this review, we examine evidence that 
current protocols are reasonably close to the optimal depth and duration of cooling, but 
that the optimal rate of rewarming after hypothermia is unclear. The potential for combi-
nation treatments to augment hypothermic neuroprotection has considerable promise, 
particularly with endogenous targets such as melatonin and erythropoietin, and noble 
gases such as xenon. We dissect the critical importance of preclinical studies using 
realistic delays in treatment and clinically relevant cooling protocols when examining
combination treatment, and that for many strategies overlapping mechanisms of action 
can substantially attenuate any effects.
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introduction

There is now compelling clinical evidence that mild induced hypothermia significantly improves 
survival and disability, including cerebral palsy and neurocognitive outcomes, in full-term infants 
with moderate to severe hypoxic–ischemic encephalopathy (HIE) (1), which persists into middle 
childhood (2, 3). The development of therapeutic hypothermia is a leading example of how sound 
physiological understanding combined with robust large animal models can support the develop-
ment of effective clinical treatments. The use of highly translatable animal research should be at the 
forefront of our efforts to optimize hypothermia protocols, test potential combination therapies and 
ensure the safety and efficacy of potential treatments before human clinical trials.

Current hypothermia protocols have consistently involved starting treatment within the first 6 h 
of life, with systemic cooling to either 34.5 ± 0.5°C for head cooling, or 33.5 ± 0.5°C for whole-body 
cooling and continuing treatment for 48–72 h, as recently reviewed (1). These protocols significantly 
improve outcomes, but are only partially effective, with a number needed to treat of eight (1). That is 
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to say, many infants still suffer severe brain damage and disability, 
even when treated with hypothermia. New ways to further reduce 
the burden of injury are still needed.

The evolution of injury

The critical observation from experimental studies in  vivo and 
in vitro, and clinical observations that enabled the development 
of therapeutic hypothermia, is that HIE is not a single “event” 
but rather an evolving process leading to delayed cell death 
(Figure 1). During the immediate period of HI (the “primary” 
phase of the injury), high energy metabolites are depleted, lead-
ing to progressive depolarization of cells, severe cytotoxic edema 
(cell swelling) (4), and extracellular accumulation of excitatory 
amino acids due to failure of reuptake by astrocytes and exces-
sive depolarization mediated release (5). Although neurons 
may die during a sufficiently prolonged period of ischemia or 
asphyxia, many neurons initially recover, at least partially, from 
the insult in a so called “latent” phase, only to develop progressive 
dysfunction and die many hours, or even days later. Magnetic 
resonance spectroscopy showed that many infants with evidence 

of moderate to severe asphyxia have initial, transient recovery of 
cerebral oxidative metabolism after birth, followed by secondary 
deterioration with cerebral energy failure from 6 to 15  h after 
birth (6). The severity of the secondary deterioration was closely 
correlated with neurodevelopmental outcome at 1 and 4 years of 
age (7), and infants with encephalopathy who did not show initial 
recovery of cerebral oxidative metabolism had extremely poor 
outcomes (6). An identical pattern of initial recovery of cerebral 
oxidative metabolism followed by delayed (“secondary”) energy 
failure is also seen after HI in the piglet, rat, and fetal sheep, and 
is closely correlated to the severity of neuronal injury (8–10). 
The timing of energy failure after HI is tightly coupled with the 
appearance of histologic brain damage (11), implying that it is 
primarily a function of evolving cell death.

After the bulk cell death during the secondary phase, there is 
a tertiary phase of repair and reorganization. During this period, 
new cell development and “rewiring” of surviving neuronal 
circuits is stimulated. At the same time, there is evidence that in 
some settings physiological apoptosis may be upregulated, which 
can impair new cell production and survival, leading to ongoing 
cell loss over many months (12–17). The precise mechanisms for 
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this prolonged injury are not wholly clear, but may reflect in part 
persistent inflammation and epigenetic changes (18).

These concepts, that an acute, global insult can trigger evolv-
ing injury and that characteristic events are seen at different times 
after the insult, are central to understanding the causes of neo-
natal encephalopathy and how treatments, such as hypothermia, 
attenuate the evolution of injury.

The Pharmacodynamics of Therapeutic 
Hypothermia

when to Cool
The partial protection with current hypothermia protocols found 
in clinical studies is likely at least in part related to the formidable 
clinical difficulties involved in starting hypothermia within the 
optimal window of opportunity (19). Preclinical studies in the 
near-term fetal sheep have shown that when hypothermia is 
started within the latent phase, at 90  min or 3 h after the end 
of ischemia, neuronal and oligodendrocyte cell death is dramati-
cally reduced and brain activity recovers to near baseline levels (4, 
20). In marked contrast, when treatment was delayed until late in 
the latent phase, 5.5 h after ischemia, only partial improvement 
in neuronal survival and recovery of EEG power was seen, with 
no improvement in oligodendrocyte survival (21, 22). When 
hypothermia was delayed until 8.5 h after the end of ischemia, 
after the onset of seizure activity in this paradigm, hypothermia 
was no longer associated with an improvement in cell survival 
or recovery of EEG activity (23). It is clear from these preclinical 
studies that hypothermia must be started during the latent phase, 
ideally within the first 3  h after ischemia, to achieve the best 
possible neuroprotective effect. This is consistent with clinical 
data from a recent cohort study that suggested that asphyxiated 
infants who were able to be cooled within 3 h of birth had better 
motor outcomes than when hypothermia was started between 3 
and 6 h (24). However, in a typical randomized, controlled trial, 
hypothermia was only able to be started in 12% of infants within 
4 h of birth (25).

Many infants with encephalopathy will have been exposed to 
HI well before birth and therefore there is an unavoidable, and 
often unknown, delay before clinical diagnosis. Characteristic 
features of neonatal encephalopathy include depression of the 
level of consciousness, respiratory depression, abnormal muscle 
tone and power, disturbance of cranial nerve function, and 
delayed seizures (26). However, as described above, the onset of 
seizures is associated with the phase of secondary deterioration, 
with a corresponding reduction in the efficacy of hypothermia 
(23). Thus, the most effective known way to improve outcomes 
after therapeutic hypothermia is through early diagnosis and 
initiation of treatment (27).

Given that many infants are born in small hospitals without 
neonatal intensive care units or access to therapeutic hypothermia, 
the neonatal transport team plays a key role in establishing and 
maintaining therapeutic hypothermia during transport to larger 
treatment centers. Establishing the optimal protocol for treating 
infants with hypothermia during transport is an ongoing area 
of research. Options include passive cooling by stopping active 

warming, and active cooling with ice packs or a servo-controlled 
blanket, as recently reviewed (28). For example, in a recent clini-
cal trial, active cooling to a target temperature of 33.5°C, with a 
blanket servo-controlled to rectal or esophageal temperature 
probes, was associated with significantly more infants reaching 
target temperature during transport than during passive cool-
ing (29). Moreover, active cooling reduced the average time to 
target temperature by approximately an hour. Further studies are 
important to determine whether this strategy can also improve 
neurological outcomes.

Duration and Depth of Treatment
Preclinical studies suggest that to some extent the loss of efficacy 
associated with delayed onset of hypothermia can be salvaged by 
more prolonged cooling. For example, in adult gerbils, 12 h of 
hypothermia initiated 1 h after global ischemia effectively reduced 
hippocampal injury after 3, but not 5  min, of global ischemia 
(30). However, if the duration of hypothermia was extended to 
24 h, near total preservation of CA1 neurons was achieved after 
5 min of global ischemia (30). In adult rats, systemic hypothermia 
induced for either 12 and 24 h or 48 h (plus rewarming at a rate of 
1°C/h) started 1 h after middle cerebral artery occlusion was asso-
ciated with a significant reduction in neurological deficits with all 
treatment durations, however, motor deficits were only improved 
after cooling for 24 or 48 h (31). Similarly, selective brain cooling 
for 48 h plus rewarming at a rate of 1°C/h significantly reduced 
injury and behavioral impairment, whereas cooling for 12 h did 
not (32). These studies suggest that there is a complex relation-
ship between the severity of insult, delay in treatment, duration 
of hypothermia, and method of inducing hypothermia, which all 
contribute to the effectiveness of treatment.

A recent study in the near-term fetal sheep found that extend-
ing the duration of delayed cerebral cooling, starting 3  h after 
cerebral ischemia, from 3  days until 5  days was not associated 
with any additional improvement in the recovery of EEG power 
or spectral edge frequency. Indeed, there was an apparent small 
but significant reduction in neuronal survival in the cortex and 
dentate gyrus (20). By contrast, in adult rats 2, 4, or 7  days of 
hypothermia had similar effects on neuronal survival in the 
CA1 of the hippocampus and more prolonged cooling was not 
associated with any adverse effects on markers of brain plasticity 
(33). Furthermore, 21 days of mild focal hypothermia was not 
associated with any adverse effects on behavior or cell death in 
healthy adult rats (34). Although it is reassuring that even such a 
prolonged period of hypothermia did not have adverse effects in 
the healthy brain, it is important to reflect that we cannot neces-
sarily assume that extended durations of hypothermia will not 
impair recovery from HI.

The depth of cooling is also important. In near-term fetal 
sheep, brain cooling has been shown to be associated with a steep, 
sigmoidal relationship between brain temperature and protection, 
with neuroprotection achieved below a brain temperature of 34°C 
but no further improvement with greater cooling (4). Similarly, 
in term piglets, whole-body cooling with a 3.5°C reduction in 
core temperature (from control values of 38.5 to 35°C) prevented 
secondary failure of oxidative metabolism and reduced neuronal 
cell death (35). Broadly similar improvements in neuronal loss 
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were achieved with a reduction in core temperature by 3.5 or 5°C 
from 2 to 26 h after HI (36). Of concern, deeper cooling to 8.5°C 
below control values was associated with markedly reduced neu-
roprotection (36), and increased risk of hypotension and cardiac 
arrest (37).

Consistent with this preclinical evidence, a large randomized 
controlled trial of 72 h of hypothermia to 33.5°C compared with 
either prolonged hypothermia for 120 h or deeper cooling to 32°C, 
was stopped early because longer duration, lower temperature 
and the combination of longer duration and lower temperature 
were associated with a trend toward a higher risk of death in the 
neonatal period (38). It will be of considerable interest to know 
whether these interventions were associated with any effect on 
neurological outcomes in surviving infants, even though the trial 
was stopped half way because it was considered improbable that 
there could be a net effect on death or disability.

Rate of Rewarming
The published clinical trials of therapeutic hypothermia have 
consistently aimed to rewarm neonates after hypothermia at a rate 
of 0.5°C/h (39, 40). However, it is notable that this is not based 
on strong evidence. In near-term fetal sheep, rapid, spontaneous 
rewarming over approximately 30 min, after 72 h of head cool-
ing, was associated with increased electrographic seizures in 5/9 
animals in the ischemia–hypothermia group compared to 1/13 
animals in the ischemia–normothermia group (41). However, 
the absolute effect was modest and it is notable that this protocol 
markedly improved EEG recovery and neuronal survival despite 
these transient EEG changes (4). In neonatal piglets, rapid 
rewarming (4°C/h) after post-HI hypothermia was associated 
with increased cortical apoptosis compared with slow rewarming 
(0.5°C/h) (42). However, the initial period of hypothermia was 
only 18  h. Thus, it is not clear from this study whether it was 
slower rewarming per  se that improved outcome or whether it 
was the extended duration of mild hypothermia compared to the 
rapidly rewarmed group.

In adult rats, speed of rewarming had no effect on biochemical 
or behavioral recovery after 20  min of hypothermia, but rapid 
rewarming was associated with a greater earlier change in cardiac 
output and heart rate in the rapidly rewarmed group compared 
to the slowly rewarmed group (43). Similarly, in adult gerbils, 
rapid rewarming over 30  min after 2  h of hypothermia was 
associated with transient uncoupling of cerebral circulation and 
metabolism, with a transient increase in extracellular glutamate 
and lactate (44). Furthermore, after traumatic brain injury in 
adult rats rapid rewarming over 15 min, after 1 h of hypothermia, 
exacerbated traumatic axonal injury and impaired cerebrovascu-
lar responsiveness compared to rewarming over 90 min (45, 46). 
However, these studies examined rewarming after very short, 
subtherapeutic periods of hypothermia.

These data suggest that rapid rewarming after short intervals 
of hypothermia can have undesirable physiologic and neuronal 
effects but it is not yet known how the speed of rewarming affects 
the development of injury and long-term outcome. Further 
investigation, using clinically established hypothermia protocols 
are needed to establish whether the speed of rewarming after HI 
is important or not for optimal neuroprotection.

Can Combination Treatment Augment 
Hypothermic Neuroprotection?

Given the evidence discussed above that current clinical hypo-
thermia protocols are reasonably close to optimal (27), the other 
key strategy to improve neonatal neuroprotection would be to 
combine known effective hypothermia protocols with other 
putative neuroprotective agents. Given that mild hypothermia is 
now standard of care, it is essential to test potential treatments in 
combination with hypothermia. This is particularly important as 
overlap with the wide array of reported mechanisms of action of 
hypothermia (47) may attenuate any additive effects, as discussed 
below (48–50). There are of course very large numbers of poten-
tial strategies; in this review we examine some leading examples, 
as summarized in Table 1.

erythropoietin
Erythropoietin (EPO) has a central role in erythropoiesis and is 
now routinely used as a treatment for anemia in the premature 
infant (62). In addition, there is increasing clinical and experi-
mental evidence that recombinant human EPO (rhEPO) may 
be neuroprotective after HIE, by binding to the EPO receptor 
(EPOR) on neurons and glia. In both the adult and neonatal 
brain, EPO can promote expression of anti-apoptotic relative to 
pro-apoptotic genes, inhibit caspase activation, attenuate oxygen 
free radicals, and the inflammatory response to HI, and increase 
neurogenesis (63). rhEPO treatment after HI and stroke in 
normothermic neonatal rodents improved recovery of sensori-
motor function, and behavioral and cognitive performance and 
histological integrity (63).

Moreover, there is reasonable clinical evidence of the safety 
of rhEPO. A recent meta-analysis of five studies involving 233 
patients, including very low birth weight infants and premature 
infants, suggested that rhEPO administration improved neu-
rodevelopmental outcome and was not associated with adverse 
effects (64). In full-term neonates with HIE, two studies have also 
shown that rhEPO treatment was safe. Low-dose rhEPO (300 or 
500  U/kg) was associated with a reduced risk of death or dis-
ability in term infants with moderate, but not severe, HIE (65). 
Furthermore, high-dose rhEPO (2,500 U/kg) started within the 
first 48 h of life improved neurodevelopmental outcome in term 
neonates with mild/moderate HIE and was also associated with a 
significant reduction in seizure activity, improved abnormal EEG 
background at 2 weeks, and decreased neurologic abnormalities 
at 6 months (66).

Despite this very encouraging evidence for safety and inde-
pendent neuroprotection, there is relatively limited evidence 
that giving EPO can augment hypothermic neuroprotection. 
Moreover, it is plausible that hypothermia may reduce metabo-
lism of rhEPO or attenuate activation of intracellular pathways 
triggered by EPO. After HI in P7 neonatal rats, investigators 
have variably reported both no significant neuroprotection with 
combined EPO with hypothermia (52), and a borderline additive 
effect of rhEPO plus hypothermia on sensory-motor function but 
not on brain histology (53). More encouragingly, in non-human 
primates after umbilical cord occlusion immediately before birth, 
early treatment with hypothermia and EPO improved motor and 
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TABLe 1 | Summary of the evidence for additive neuroprotective effects with hypothermia and potential combination treatments.

Combination  
treatment

Species Age Additive effects Hypothermia  
started

Other intervention 
started

Comment

Anti-inflammatory/neuroregenerative

Erythropoietin Non-human  
primates (51)

Full term Yes (survival, motor, cognitive responses, cerebellar 
growth, and MRI)

Immediately 30 min Hypothermia for 72 h

Neonatal rat (52) P7 No (sensorimotor, histopathology) 1 h Immediately  Hypothermia for 8 h
Neonatal rat (53) P7 Borderline (sensorimotor, histopathology) Immediately Immediately Hypothermia for 3 h

Stem cells Neonatal rat (54) P7 Yes (histology, MRI, functional) 6 h 6 h Hypothermia: 32°C for 24 h

Anti-oxidative/anti-inflammatory

Melatonin Newborn piglet (55) Full-term Yes (MRS, histology) 2 h 10 min Hypothermia for 26 h

Anti-apoptotic

IGF-I Fetal sheep (49, 56) 0.85 gestation (term 
equivalent)

No (EEG and histology) 5.5 h 4.5 h Hypothermia for 72 h

Anticonvulsant agents

Xenon Neonatal rats (57) P7 Yes (histology, functional) 4 h 4 h Hypothermia for 90 min
Newborn piglet (58) Term Yes (neuropathology, clinical neurology) <40 min 30 min Hypothermia for 12–24 h
Newborn piglet (59) Term No (trend, MRS, histology) 2 h 2 h Hypothermia for 24 h
Humans (60) Term Yes (seizures only) <12 h <12 h Reduced seizures

Phenobarbital Neonatal rats (61) P7 Yes (histology, MRI, functional) 1–3 h 15 min Hypothermia: 30°C for 3 h

Dizocilpine Fetal sheep (50) 0.7 gestation No (EEG and histology) 5.5 h 15 min  Hypothermia for 72 h

Connexinhemichannel blockade

Cx43 mimetic  
proteins

Fetal sheep (48) 0.85 gestation (term 
equivalent)

No (EEG and histology) 3 h 3 h Hypothermia for 72 h

Cx43, connexin 43; EEG, electroencephalography; IGF-I, insulin-like growth factor I; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; functional, neurobehavioral tests.
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cognitive responses, cerebellar growth, and reduced death or 
disability (51). However, it is important to note that treatment 
was begun much earlier than has been possible in any human 
randomized controlled trials of neuroprotection, with EPO given 
30 min after birth, and passive cooling begun immediately after 
birth, followed by active cooling after resuscitation, and always 
before 3 h after birth.

Two RCT phase I/II trials investigating combined cooling 
with rhEPO in infants with HIE (the DANCE and NEATO trials, 
NCT01471015/NCT01913340) are listed on ClinicalTrials.gov. 
These ongoing studies are examining safety, pharmacokinetics, 
and efficacy of combined treatment.

Melatonin
Melatonin (N-acetyl-5-methoxytryptamine) is a naturally occur-
ring indolamine secreted by the pineal gland to regulate circadian 
rhythm that also has anti-oxidant properties (63). It has clinical 
potential as a prophylactic treatment for fetuses at high risk of 
perinatal hypoxia as it readily crosses the placenta  (63). When 
given before or immediately after HI, melatonin is neuropro-
tective in postnatal rodents, as previously reviewed (63). In 
term-equivalent fetal sheep, maternal prophylactic melatonin 
(1 mg total) given before 10 min umbilical cord occlusion was 
associated with reduced brain lipid peroxidation, neuronal death, 
microglial activation, and astrogliosis (67). In preterm fetal sheep 
at 0.7 gestation, maternal low-dose melatonin infusion was asso-
ciated with faster fetal EEG recovery, delayed onset of seizures, 
improved survival of mature oligodendrocytes, and reduced 
microglial activation in the periventricular white matter (68).

There is emerging evidence for neuroprotection with post-
insult treatment with melatonin. In preterm fetal sheep at 0.6 
gestation, fetal infusion of high-dose (20 mg/kg) melatonin for 6 h 
from shortly after umbilical cord occlusion was associated with 
reduced apoptosis and microglia in the white matter, although 
cell survival was not quantified (69). High-dose melatonin (5 mg/
kg/h over 6  h) given shortly after HI in postnatal term piglets 
strikingly augmented protection from subsequent therapeutic 
hypothermia on both MR spectroscopy markers of anaerobic 
stress, and histopathology (55). However, melatonin was given 
10 min after asphyxia, which is not clinically realistic, whereas the 
start of hypothermia was delayed until 2 h and was only continued 
until 26 h. Thus, again this is much earlier initiation of treatment 
than has been achieved in human randomized controlled trials 
to date.

An important potential limitation of these studies is that 
melatonin is a hydrophobic molecule and therefore ethanol 
is frequently used as a diluent, which may adversely affect the 
developing brain. Postnatally, in term piglets, very high-dose 
melatonin (10 mg/kg) dissolved in ethanol was associated with 
hypotension and increased inotrope requirements after HI 
(55); it is unknown whether the melatonin or ethanol or the 
combination mediated this adverse effect. Furthermore, in a 
recent study of prophylactic maternal melatonin before severe 
asphyxia in preterm fetal sheep (68), there was evidence that 
although melatonin was associated with faster recovery of the 
fetal EEG and improved white matter recovery compared to the 
2% ethanol vehicle, both melatonin and ethanol vehicle were 

associated with similar overall improvement in neuronal sur-
vival in the striatum and reduced post-asphyxial seizures (68). 
By contrast, ethanol was also associated with greater neuronal 
loss in the CA3 and CA4 regions of the hippocampus and 
reduced white matter proliferation, with greater induction of 
amoeboid microglia. These findings strongly suggest that even 
small amounts of ethanol may partly confound the neuropro-
tective effects of melatonin and, thus, that it is essential to test 
alternate diluents.

“Stem” Cells
Over the past decade, there has been increasing interest in the 
use of stem or progenitor cells to improve recovery from neonatal 
HIE and even for older children with established cerebral palsy. 
The media has reported a handful of cases showing apparent 
recovery, leading to inflated expectations and pressure from par-
ents of children with cerebral palsy to use stem cells as a routine 
treatment strategy, despite a lack of rigorous evidence (70). In 
preclinical studies in rat and mouse models, the effects of a wide 
range of different stem/progenitor cell preparations given after 
neonatal HIE have been highly variable, as reviewed (70), likely 
reflecting considerable differences in type, dose, and timing of 
infusion of the stem cells after injury.

There is increasing evidence that functional improvements can 
occur without significant functional engraftment (70), suggesting 
that the effects of stem/progenitor cells are likely mediated through 
neurotrophic and immunomodulatory mechanisms. Consistent 
with this, in rabbits exposed to intrauterine HI at 70% gestation, 
subsequent infusion of human umbilical cord blood cells at birth 
was associated with a dose-dependent improvement in the motor 
problems despite little penetration of the stem cells into the brain 
(71). Promisingly, combined treatment with mesenchymal stem 
cell therapy and 24 h of hypothermia, started 6 h after the end of 
HI in the P7 rat, showed greater improvement with combined 
treatment than either treatment alone (54), as measured at P42 
by MRI and functional behavioral tests.

There are currently 12 clinical trials of stem cell therapy 
for neonatal HI or cerebral palsy listed on Clinicaltrials.gov as 
recruiting, underway or completed. One small double-blind 
randomized, placebo-controlled trial in 96 children with cer-
ebral palsy receiving rehabilitation therapy found that treatment 
with a combination of umbilical cord blood and rhEPO amelio-
rated motor and cognitive dysfunction after 6 months of treat-
ment more than rehabilitation therapy with or without rhEPO 
(72). Thus, stem cell therapy shows promise as a treatment for 
HIE, whether given alone or in combination with therapeutic 
hypothermia (71). In order to optimize the potential of this 
treatment, systematic preclinical studies of the mechanisms of 
action, optimal dosing and timing, and type of stem cells are 
now needed.

The Noble Gases: Xenon
Xenon is an inert noble gas used for its anesthetic properties, 
mediated via competitive binding at the glycine binding site of 
the N-methyl-d-aspartate glutamate receptor (73). In addition 
to potentially attenuating excitotoxicity, xenon may also activate 
pro-survival kinases, such as p-Akt and the anti-apoptotic factor 
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Bcl-2, and potentially inhibit opening of the mitochondrial per-
meability pore (74).

There is evidence of additive protection from combined xenon 
and hypothermia treatment. Xenon and hypothermia administered 
together either immediately or as late as 4 h after HI in neonatal 
rats significantly reduced apoptotic cell death and loss of brain 
matter while improving long-term neurological motor function 
and coordination (57, 63). In the newborn piglet, the combina-
tion of xenon with whole-body cooling was associated with a 75% 
reduction in global neuropathology after perinatal asphyxia (58). 
However, hypothermia was only continued for either 12 or 24 h in 
this study. In a similar paradigm, xenon-augmented hypothermia 
reduced cerebral MRS abnormalities and cell death markers in 
some brain regions compared with no treatment, although the 
effect was not significant compared to hypothermia alone (59). In a 
small clinical study, 5/14 full-term neonates with HIE treated with 
72 h of hypothermia developed seizures, which was suppressed 
during xenon ventilation, recurred on withdrawal of xenon and 
then again suppressed on reintroduction of xenon (60).

The limited natural availability of xenon, and thus high price, 
means that it needs to be used with a recirculating ventilator (75), 
and thus even if it is effective, it is unlikely to ever be available 
outside of tertiary units. The feasibility of combined treatment 
with xenon and hypothermia is being evaluated in phase 2 trials 
(TOBYXeNCT00934700 and CoolXenon2-NCT01545271) (74). 
Encouragingly, in P7 rat pups, the relatively inexpensive noble 
gas, Argon, provided highly comparable neuroprotection after HI 
to xenon (76).

Anticonvulsants
Although seizures in infants suffering HIE are associated with 
adverse outcomes (77, 78), it remains very unclear whether these 
seizures are the cause of injury or simply reflect the evolution 
of pre-existing injury. Thus, it is unknown whether blocking 
seizure activity reduces the development of brain injury (79). 
Mild hypothermia does seem to reduce the overall burden of sei-
zures after moderate HIE (80), but they remain common during 
cooling and highly associated with adverse outcomes (81). There 
is considerable interest as to whether anticonvulsant therapy 
can augment hypothermic neuroprotection. In neonatal rats, 
phenobarbital treatment from 15  min after HI in combination 
with hypothermia started either 1 or 3 h after HI was associated 
with a significant improvement in sensorimotor performance 
and reduced brain damage (61). However, hypothermia was only 
administered for 3  h and was markedly delayed compared to 
injection of phenobarbital.

In near-term fetal sheep, infusion of the N-methyl-d-aspartate 
receptor antagonist, dizocilpine, 6  h after the end of HI, com-
pletely suppressed seizure activity, but only reduced neuronal cell 
death in the less susceptible lateral cortex (temporal lobe) and 
hippocampus, but not in the highly susceptible parasagittal cortex 
(82). Potentially, this may indicate that to achieve neuroprotec-
tion, treatment with anticonvulsants would need to be initiated 
before seizures start. Consistent with this concept, in preterm fetal 
sheep, dizocilpine infusion started shortly after severe asphyxia 
was associated with selective neuroprotection of the striatum 
(83), but neuroprotection was not additive with delayed mild 

hypothermia (50). These findings suggest that hypothermia may 
in part be acting by suppressing neural injury related to excessive 
glutamatergic activity.

Clinically, in a retrospective study of infants administered 
phenobarbital before treatment with hypothermia for HIE, 
combined treatment did not improve the composite outcome of 
neonatal death or the presence of an abnormal post-treatment 
brain MRI (84). Thus, at present this strategy requires further 
robust preclinical testing before formal controlled trials can be 
considered.

Anti-Apoptotic Factors: insulin-like Growth 
Factor-1
Insulin-like growth factor-1 (IGF-I) is one of the large array 
of growth factors that contributes to regulating brain growth. 
IGF-I is potently anti-apoptotic, as well as promoting neural 
stem cell proliferation, differentiation, maturation, myelination, 
neurite outgrowth, and synaptogenesis (85). There is consistent 
evidence that post-ischemic administration of exogenous IGF-I 
can attenuate the severe delayed, post-ischemic neuronal and 
oligodendrocyte cell loss and associated demyelination after HI 
in the rat and cerebral ischemia in near-term fetal sheep (85). 
For example, in term-equivalent fetal sheep, IGF-I given as a 1 h 
intracerebroventricular infusion 90 min after cerebral ischemia 
was associated with reduced loss of oligodendrocytes in the 
intragyral white matter, reduced demyelination, reduced tissue 
swelling, but upregulation of astrocytes and microglia (56). By 
contrast, delayed co-treatment with IGF-I started 4.5  h after 
ischemia plus mild hypothermia in the near-term fetal sheep did 
not improve white matter damage or reduce caspase-3 activa-
tion compared to hypothermia alone. This suggests that their 
mechanisms of neuroprotection are overlapping, likely through  
the anti-apoptotic effects of hypothermia (49, 86).

Blockade of Connexin Hemichannels
One of the most striking features of HI brain injury is that 
injury consistently spreads over time from severely affected 
regions to areas that were originally intact (87). This pattern 
is consistent with the long-standing hypothesis that cell to 
cell communication might contribute to spreading injury. 
The gap junctions that link adjacent cells to allow transport 
of small molecules, ions and second messengers (88), are 
formed by docking of hexamer hemichannels (connexons) 
from the adjacent cells. There is increasing evidence that 
these connexin hemichannels are not just passively waiting 
to dock, but are themselves active under normal physiologi-
cal conditions, for example, through purinergic signaling 
by regulated release of ATP (88). Critically, pathological 
conditions such as ischemia may cause unregulated opening, 
compromising the resting membrane potential, and allowing 
transmitters such ATP or glutamate to be released into the 
extracellular space (88).

An elegant study from Orellana et al. showed that Connexin43 
hemichannels can open after hypoxia in cultured astrocytes (89), 
as shown by increased dye uptake in Connexin43-containing 
astrocytes, but not Connexin43-deficient astrocytes, and that 
blockers of Connexin43 hemichannels prevented dye uptake 
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and death of astrocytes. In fetal sheep, intracerebroventricular 
infusion of a mimetic peptide at a dose concentration that 
blocks Connexin43 hemichannels (90) started 90  min after 
either cerebral ischemia or profound asphyxia and continued 
for 25  h improved EEG recovery and reduced white and gray 
matter damage (91, 92). In the term-equivalent fetal sheep, this 
mimetic peptide infusion was associated with striking reduction 
in status epilepticus after ischemia, consistent with the hypothesis 
that connexin hemichannels play a key role in propagating these 
intense seizures (91).

By contrast, when the start of connexin hemichannel blockade 
was delayed until 3 h after ischemia, there was no improvement 
in cell survival or recovery of brain activity, despite attenuated 
seizure activity and secondary cell swelling (48). When connexin 
hemichannel blockade was combined with hypothermia from 
3 h after ischemia, no additive neuroprotective effects were seen, 
again suggesting that the mechanisms of action of hypothermia 
likely overlap with those of connexin hemichannel blockade.

Conclusion

Therapeutic hypothermia is now well established as standard care 
for infants with moderate to severe HIE. Recent preclinical studies 
and a large clinical randomized trial suggest that current treatment 
protocols are reasonably close to optimal. Further improvements 
in outcome are highly likely to arise from improved identification 
of affected infants that would allow earlier initiation of treatment 
after resuscitation. An important remaining pragmatic question 
is whether slower rewarming after therapeutic hypothermia 
may improve outcomes. Further research to systematically test 

proposed new neuroprotective treatments with hypothermia 
is now critical. An important limitation is that many potential 
interventions appear to work through mechanisms of action 
that overlap with hypothermia. Thus, it will be important to 
target strategies that act through complimentary mechanisms 
to hypothermia. It is very encouraging that both stem cells and 
rhEPO have actions that extend into the tertiary phase, with 
known effects on restoration, migration, maturation, and trophic 
support (63, 70). This strongly suggests that these are promising 
candidates for treatment in combination with, or even after, early 
mild cooling.

Finally, effective translation will require that the effects of 
such therapeutic strategies are characterized in translatable large 
animal models, using clinically realistic administration protocols, 
including a realistic delay in treatment, and tested in combination 
with clinically established hypothermia protocols that are not 
impaired by overly short duration of treatment.
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