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A commentary on

Effects of (−)epicatechin on the pathology of APP/PS1 transgenic mice
by Zeng Y-Q, Wang Y-J, Zhou X-F. (2014). Front Neurol 5:69. doi:10.3389/fneur.2014.00069

One conundrum in Alzheimer’s disease (AD) research using transgenic mouse models is the high
amount of successful memory-enhancing drugs. By contrast, very few drugs and of limited efficacy
are available for humans having this pathology. As previously discussed (1), the advance in this field,
i.e., to fulfill the translational facet of anti-AD research, requires deciphering why so many different
drugs (or therapeutic interventions, such as exercise or training) havememory-enhancing properties
in transgenic models of the disease. Transgenic animals do not accurately reflect the human disease,
as they overexpress proteins with mutations that appear only in a reduced percentage of patients
(2). The majority of patients have late-onset clinical symptoms due to multiple factors many of
which may be circumstantial. On waiting for the development of novel animals models that may,
eventually, shorten the distance between the lab bench and the bedside (3), we should take advantage
of the huge amount of data showing promise of different drugs in transgenic models. A way to do
it is by designing medium-to-high throughput experiments to compare anti-AD effects of closely
related drugs. In this commentary, we focus on small drugs with the same chemical formula, but
with different 3-D structure.

A significant number of drugs approved for human consumption for fairly different illnesses
have a special structural characteristic called stereoisomerism (see Figure 1). Examples of small
molecules with alternative stereoisomer variants (enantiomers) that are alreadymarketed for human
consumption include verapamil, ibuprofen, citalopram, and thalidomide. Due to the difficulties in
isolating the two enantiomer species and other operational reasons, mixtures of the two species are
approved for human consumption.

Verapamil

Verapamil, the calcium channel blocker indicated in a variety of cardiovascular ailments, is
themixture of two enantiomers: (±)-2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl]-
(methyl)amino}-2-prop-2-ylpentanenitrile. Despite the higher efficacy of the levo isomer, already
reported in 1985 for atrioventricular conduction (4), the drug is still marketed as a mixture
of levo and dextro species. The potential of verapamil in AD was assayed 18 years ago under
the strategy of discovering new uses for drugs already approved for human consumption.
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FIGURE 1 | (A) Stereoisomers have the same formula and the same bonds, but different 3-D structure. Two of the most common are as follows: R/S (D/L,± )
enantiomers or cis/trans isomers, depending on configuration around, respectively, an asymmetric carbon (top) or a double C=C bond (bottom). Substituents are
indicated by 1, 2, 3, or 4. In each case, two different compounds may exist; more if there is a combination of asymmetric carbons and/or double C=C bonds.
(B) Structure of the four possible catechin/epicatechin stereoisomers resulting from substituent configuration around two contiguous asymmetric carbons [within the
ellipsoid in (+)-epicatechin structure]. It should be noted that the structures of these four compounds are dissimilar in different databases (not only in Wikipedia but
also in those targeting more expert audience, e.g., chemistry-related or commercial vendor databases).

As verapamil ameliorates cognitive and non-cognitive deficits
(5), we propose to test separately the levo and dextro verapamil
molecules in AD models.

Ibuprofen

Controversy surrounds the usefulness of anti-inflammatory drugs
in AD and one example is provided by ibuprofen, which
suppresses plaque pathology in the Tg2576 AD model (6),
while not improving deficits in the 5XFAD AD model (7). To
our knowledge, the two components of ibuprofen [(±)2-(4-
Isobutylphenyl)propanoic acid] have not been tested separately.

Thalidomide

Thalidomide, the leprostatic and sedative drug with cognition-
enhancement and anti-amyloid β (Aβ) properties in mice mod-
els (8, 9), is constituted of two enantiomers [(±)-2-(2,6-dioxo-
3-piperidinyl)-1H-isoindole-1,3(2H)-dione] that have not been
individually tested in AD models.

Would it be convenient to test the different stereoisomers indi-
vidually in AD models? Indeed, living animals are asymmetric
at the macroscopic and at the molecular level (e.g., mammalian
proteins are built up of -, but not -amino acids), and, therefore,
it is predictable that one stereoisomer may be more efficacious
than the other(s).

Two enantiomers will likely have differential pharmacokinetics,
differential metabolism, and differential mode of action (see
Ref. (10) for recent review). Therefore, it is improbable that two
enantiomers have similar – beneficial – effects in AD models,

otherwise their action would be a general chemical one (for
instance anti-oxidant, as discussed below) and not due to a specific
mode of action. If the mode of action of a given asymmetric
drug is specific, i.e., via inhibiting an enzyme or interacting
with a receptor, chances of stereoisomers having similar in vivo
potency are scarce. In that sense, one enantiomer may be the
negative control of the other. One further concern in validating
data from transgenic AD models is the usual finding of multiple
beneficial effects of a given drug (e.g., improving spatial memory,
decreasing Aβ burden, reducing tau hyperphosphorylation).
A compound having many benefits should be the exception
and not the rule. Accordingly, scientists may consider which
property is under study (behavioral, biochemical, etc.) and select
the appropriate experimental model. It would also be desirable
to determine the pharmacokinetics of the promising drugs to
establish whether the individual enantiomers reach the brain at
physiologically relevant concentrations or not

Citalopram

Escitalopram is one of the few examples of single stereoiso-
mers that have reached the market. Citalopram (sold in dif-
ferent countries as: Celexa, Seropram, Talpram, Prisdal, Zen-
tius, Cipramil, or generic citalopram) is one of the best-seller
CNS drugs. Citalopram contains the racemic mixture of R/S
(or ±) 1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-3H-2-
benzofuran-5-carbonitrile, but the S-enantiomer is better in
inhibiting serotonin uptake and providing anxiolytic and anti-
depressant effects. Isolation of the Smolecule led to the approval of
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escitalopram for clinical use (sold as Lexapro, Cipralex, or generic
escitalopram). The difference between enantiomers is not a trivial
one, as health and socio-economic benefits of escitalopram versus
citalopram have been substantiated (11–14). Citalopram has been
used in the Citalopram for Agitation in Alzheimer Disease Study
(CitAD) randomized clinical with promising results (15). Thus, it
would be reasonable to undertake another clinical trial to compare
the effects of citalopram versus escitalopram in AD patients.
Complementarily, it would be convenient to compare in animal
AD models the efficacy of the two stereoisomers of citalopram in
a variety of cognitive and molecular read-outs.

Catechins

Recently, substances with anti-oxidant properties have been
found to be neuro-protective, indicating them as potential tools
to combat AD. Polyphenols derived from plants and used in
human nutrition may have anti-oxidant properties and neuro-
protective potential. Let us consider close plant-derived com-
pounds, tested in different experimental systems: (+)-catechin
and (−)-epicatechin.One recent report has shownpromise of (−)-
epicatechin in transgenic AD models (16). However, in vitro, (+)-
catechin and (−)-epicatechin are equally efficacious in inhibiting
formation of Aβ fibrils from the precursor peptides (Aβ1–40 or
Aβ1–42) (17). Is the anti-oxidant property of these compounds

also responsible for the anti-AD effects of (−)-epicatechin in
transgenic animals? Otherwise, how may the two stereoisomers
have similar efficacy? A good negative control is needed that
should be as similar as possible in all experimental set-ups. As
commented earlier, one good possibility is taking advantage of
enantiomers/stereoisomers. Catechin and epicatechin have iden-
tical formula, C15H14O6, with four structural possibilities, namely
four diastereoisomers. If all four of them act as anti-oxidants,
all should display similar efficacy. If they are, however, acting
by a specific mechanism, they should have significantly differ-
ent efficacies. Catechin has a trans configuration and epicate-
chin has a cis configuration, and each of them has a (+) enan-
tiomer and a (−) enantiomer (Figure 1). We find the possi-
bility of testing these four molecules in equal AD models, at
the same time and by the same experimenter and in a blind
way (ideally double blind) of high added value. By providing
robust modes of action, the differential effect of stereoisomers
in AD models should help in accelerating translational anti-AD
research.
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