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Chronic neurodegeneration following a history of neurotrauma is frequently associated
with neuropsychiatric and cognitive symptoms. In order to enhance understanding about
the underlying pathophysiology linking neurotrauma to neurodegeneration, a multi-model
preclinical approach must be established to account for the different injury paradigms
and pathophysiologic mechanisms. We investigated the development of tau pathology
and behavioral changes using a multi-model and multi-institutional approach, comparing
the preclinical results to tauopathy patterns seen in post-mortem human samples from
athletes diagnosed with chronic traumatic encephalopathy (CTE). We utilized a scaled
and validated blast-induced traumatic brain injury model in rats and a modified pneu-
matic closed-head impact model in mice. Tau hyperphosphorylation was evaluated by
western blot and immunohistochemistry. Elevated-plus maze and Morris water maze
were employed to measure impulsive-like behavior and cognitive deficits respectively.
Animals exposed to single blast (~50 PSI reflected peak overpressure) exhibited elevated
AT8 immunoreactivity in the contralateral hippocampus at 1 month compared to controls
(q = 3.96, p < 0.05). Animals exposed to repeat blast (six blasts over 2 weeks) had
increased AT8 (q = 8.12, p < 0.001) and AT270 (q = 4.03, p < 0.05) in the contralateral
hippocampus at 1 month post-injury compared to controls. In the modified controlled
closed-head impact mouse model, no significant difference in AT8 was seen at 7 days,
however a significant elevation was detected at 1 month following injury in the ipsilat-
eral hippocampus compared to control (q = 4.34, p < 0.05). Elevated-plus maze data
revealed that rats exposed to single blast (q = 3.53, p < 0.05) and repeat blast (q = 4.21,
p < 0.05) spent more time in seconds exploring the open arms compared to controls.
Morris water maze testing revealed a significant difference between groups in acquisition
times on days 22–27. During the probe trial, single blast (t = 6.44, p < 0.05) and repeat
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inTrODUcTiOn

Current limitations in understanding CTE pathophysiology are 
unlikely to be addressed in a clinical population in the near future 
due to the challenges associated with establishing long-term, pro-
spective cohort studies in such a population. Preclinical rodent 
models serve to fill this gap in knowledge for various disorders 
and could allow for further investigation of the molecular mecha-
nisms responsible for CTE, as well as testing the potential of 
diagnostic and therapeutic approaches under development. Few 
preclinical models of CTE have been proposed that sufficiently 
demonstrate both the requisite tauopathy and behavioral changes 
attributed to CTE (1–25).

The purpose of this paper is to present two preclinical mod-
els that successfully reproduce some neuropathological and 
behavioral changes consistent with CTE-like phenotypes, and 
discuss future directions for CTE animal modeling. Brody and 
colleagues (25) present several unanswered questions that we 
expand upon in our accompanying review such as the role of (1) 
inter-injury interval, (2) number of impacts, (3) impact severity, 
(4) age at time of impacts, (5) mechanism of impact, (6) genetics, 
(7) gender, and (8) effect of environment on the likelihood and/
or progression of CTE development. We recently reported that 
endoplasmic reticulum stress might be a contributing factor link-
ing acute neurotrauma to behavioral deficits (26). The quest for 
elucidating CTE pathophysiology development is ongoing with 
the goal of targeting specific injurious cascades a key priority in 
order to prevent the emergence of clinical symptoms.

In this work, we present novel models of neurotrauma-induced 
neurodegeneration in both mice and rats following exposure 
to single or repetitive brain injury, respectively. These models 
replicate both the tauopathy and some of the behavioral changes 
implicated in CTE in the clinical population. We believe the blast 
model is particularly relevant clinically due to utilization of a 
scaled, short-duration blast exposure. This is a striking contrast 
to long-duration blasts utilized in numerous studies that may 
more closely approximate an atomic blast than a blast from an 
improvised explosive device (27–30). Park and colleagues show 
that by having the animal outside of the tube, the wave is directed 
toward the skull causing neurologic injury without extensive 
lung injury (31). Extended duration waves are generated when 
the tube has disproportionate length and volume ratios for the 
driven and driver sections. When the animals are placed within 
a tube that has not been scaled, the impulse exposure to the 
skull might not be representative of human exposure (32). The 
modified closed-head injury in unanesthetized animals described 
previously by Petraglia and colleagues offers the benefit of injur-
ing awake animals, more closely replicating the clinical picture 

seen in athletes than most other TBI models (23, 24). Further 
studies are required to address injury paradigms that do or do not 
contribute to CTE development but utilization of these models 
appears promising in not only modeling CTE but also identifying 
therapeutic targets based upon other recently published work by 
our groups (26, 33).

MaTerials anD MeThODs

animals and human samples
All experiments involving animals were approved by either the 
Institutional Animal Care and Use Committee of West Virginia 
University or that of the University of Rochester and were 
performed based upon principles of the Guide for the Care and 
Use of Laboratory Animals. Fifty six (56) young-adult male rats 
(300–350 g) were acquired from Hilltop Laboratories (Scottdale, 
PA, USA). All blast procedures were performed at West Virginia 
University. Twelve (12) young-adult male C57BL/6J mice were 
acquired from Jackson Laboratories (Bar Harbor, ME, USA) and 
used for modified controlled cortical impact at the University of 
Rochester. All animals were allowed to acclimate upon arrival for 
1 week prior to any experimentation. At all times animals were 
provided food and water ad  libitum and maintained on a 12-h 
light-dark cycle. Human samples were from deceased professional 
athletes that were previously diagnosed with chronic traumatic 
encephalopathy (CTE) (34). The tissue was collected from the 
entorhinal cortices.

experimental groups
Fifty six (n = 56) rats were divided into three primary experimental 
groups for behavior – anesthetized controls (n = 24), a single blast 
injury (n = 16), and repeat blast injuries (n = 16). Each of these 
groups was sacrificed at 1 month following the final blast or sham-
injury and after undergoing functional assessment. Elevated-plus 
maze was done at 7 days post-blast (n = 24; eight controls, eight 
single blast, and eight repeat blast) and the Morris water maze 
started at 21 days post-blast (n = 32; 16 controls, 8 single blast, and 
8 repeat blast). Following behavioral analysis, rats from the EPM 
group were divided into two separate groups with one utilized for 
immunohistochemistry (n = 10; four controls, three single blast, 
and three repeat blast) and the other for western blotting (n = 14; 
four controls, five single blast, and five repeat blast). Twelve (12) 
mice were divided into three primary experimental groups – anes-
thetized controls (n =  4), single injury with sacrifice at 1  week 
(n = 4), and single injury with sacrifice at 1 month (n = 4). All mice 
were utilized for western blotting techniques at time of sacrifice. 
An experimental schematic can be seen in Figure 1.

blast (t = 8.00, p < 0.05) rats spent less time in seconds exploring where the platform 
had been located compared to controls. This study provides a multi-model example of 
replicating tau and behavioral changes in animals and provides a foundation for future 
investigation of CTE disease pathophysiology and therapeutic development.

Keywords: chronic traumatic encephalopathy, tauopathy, animal models, cognitive performance, perivascular 
pathology
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FigUre 2 | schematic representation of the two injury models utilized within this work. (a) Experimental setup utilized at West Virginia University for the 
study of blast-induced neurotrauma. The shock tube consists of a high-pressure driver section (nitrogen gas filled) and a low-pressure driven section (ambient air 
filled). When the membrane dividing the chambers ruptures, the blast wave is formed and released, encountering the rat from the right side of the cranium. (B) 
Depiction of the model utilized at the University of Rochester in unanesthetized mice. An electromagnetic impactor used in CCI was modified with a rubber tip and a 
specially designed helmet was placed on the mouse as previously described.

October 2015 | Volume 6 | Article 2223

Turner et al. The quest to model CTE

Frontiers in Neurology | www.frontiersin.org

Traumatic Brain injury
Briefly, all blast injuries administered to rats as part of this work 
were of moderate intensity (~50 PSI peak reflected overpressure) 
as determined previously and completed under isoflurane-based 
anesthesia (26, 29, 33). Blast exposure occurred on the right 
side of the animal and was only administered to the head and 
neck region. The rat was outside of the blast tube and a rigid 
barrier protected the remainder of the animal. Blast waves were 
of a short-duration (~2 ms) to ensure clinical relevance based on 

elucidated scaling parameters (Figure 2A). The scaling param-
eters are based on impulse dynamic measurements, which are 
more representative of human blast than closed models based 
on duration (35).

Mice were utilized in a manner previously described (23, 
24). Briefly, mice were placed, unanesthetized, into a rodent 
restraint bag/cone and immobilized on top of a foam bed of 
known spring constant. A helmet was secured to the head using 
an elastic band, allowing for administration of a diffuse impact 

FigUre 1 | schematic showing experimental design and behavioral experiments. Time of sacrifice for biochemical experiments is also shown.
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FigUre 3 | Blast and closed-head injury models both induced tau hyperphosphorylation. (a) Immunoblots show no significant difference in tau 
phosphorylation at serine sites 199/202 and threonine site 205 (AT8) at 1 month after single and repeat blast exposures in the ipsilateral rat hippocampus. (B) A 
significant increase in AT8 expression was measured after single (*p < 0.05 vs. CTRL) and repeat blast exposure (***p < 0.001 vs. CTRL) in the contralateral rat 
hippocampus. (c) AT8 expression was significantly increased at 1 month after closed-head injury in the ipsilateral mouse hippocampus (*p < 0.05 vs. CTRL). (D) No 
significant differences were observed in AT8 expression in the contralateral mouse hippocampus. (e) Immunoblots show no significant difference in tau 
phosphorylation at threonine site 181 (AT270) at 1 month after single and repeat blast exposure in the ipsilateral rat hippocampus. (F) A significant increase in AT270 
expression was measured at 1 month after repeat blast exposure (*p < 0.05 vs. CTRL) in the contralateral rat hippocampus. (g) No significant differences were 
observed in AT270 expression in the ipsilateral mouse hippocampus, (h) or the contralateral mouse hippocampus after closed-head injury. One-way ANOVA Tukey’s 
post hoc analysis (values represent mean ± SEM; normalized to β-actin) (n = 3–5).
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through force distribution. The helmet is made of stainless steel 
and measures 3 mm in thickness and 6 mm in diameter. Impacts 
were delivered using a modified controlled cortical impact device 
that was adjusted to include an altered tip of vulcanized rubber 
(Figure 2B). The impact was zeroed so that it was directly per-
pendicular to the helmet surface and orthogonal to the skull. The 
tip was driven 1 cm past zero point with a 100 ms impact.

Western Blot
Animals were anesthetized and sacrificed by rapid decapitation. 
Brains were extracted and immediately placed in a lysate buffer 
with protease and phosphatase inhibitors as described elsewhere 
(26). Brains were dissected and tissue flash frozen and stored 
at −80°C prior to blotting. Hippocampal protein samples were 
dissolved in 0.5  mL of 1% sodium dodecyl sulfate (SDS) prior 
to sonication and protein assay. Pre-cast 10% 12-well gels (Life 
Technologies, Carlsbad, CA, USA) were loaded with 30 μg of pro-
tein per well and run with 2× Lammeli buffer. Wet transfer was 
performed using nitrocellulose membranes (Bio-Rad, Contra 

Costa, CA, USA) at 60 V for 2.5 h. Primary antibodies against 
AT8 (Pierce; Rockford, IL, USA), AT270 (Pierce; Rockford, IL, 
USA), CP13 (kindly supplied by Dr. Peter Davies), and PHF-1 
(kindly supplied by Dr. Peter Davies) were utilized and detected 
utilizing the corresponding secondary. Membranes were imaged 
using a LI-COR fluorescent scanner (LI-COR; Lincoln, NE, USA) 
and images converted to gray scale. Analysis was performed using 
background subtraction (Odyssey Processing Software, LI-COR) 
and values normalized to β-actin levels, resulting in a normalized 
intensity value.

immunohistochemistry
For immunohistochemistry preparation, animals were anesthe-
tized using isoflurane and transcardially perfused with ice-cold 
physiologic saline followed by 10% formalin for a total of 10 min. 
Brains were extracted and placed in fresh 10% formalin for 
a minimum of 24  h prior to blocking and subsequent paraffin 
embedding. Sections were prepared in 6-μm thickness using 
a Leica RM2235 microtome (Leica Microsystems, Wetzlar, 
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FigUre 4 | Tau hyperphosphorylation is seen in microfoci throughout the contralateral superficial cortex. AT8 was significantly increased at 1 month 
post repetitive blast (t = 4.455, p < 0.001). AT270 was also significantly increased following repetitive blast (t = 11.47, p < 0.001). AT270 was increased in a circular 
distribution. Tau hyperphosphorylation is an indicator of progressive pathology. Values were calculated using a student’s t-test comparing the mean difference 
between groups.
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Germany). Staining was performed using standard protocols 
used within the field and previously by our laboratory, using the 
antibodies described above as well as thioflavin for detecting 
neurofibrillary tangles (NFTs) (10, 36, 37).

Behavioral assessments
Learning and memory was assessed using the Morris water maze. 
Spatial acquisition trials began at day 21 after the final blast 
exposure (in both single and repeat injury paradigms). The pool 
utilized was ~180 cm in diameter and filled with water at ambient 
temperatures (18–21°C). A platform (10 cm × 10 cm) was sub-
merged 2.5 cm below the surface of the water. A series of objects 
was placed in the environment around the pool to provide visual 
cues for the animal during trials. The training paradigm (spatial 
acquisition) consisted of 6 days with a total of four trials occur-
ring each day per animal. Animals were placed into the maze 
from four different locations each day (four trials) with a total of 
2 min (maximum) allowed per trial. Upon finding the platform, 
animals were allowed 15 s for acquisition to occur. If unsuccessful 
in finding the platform, animals were placed on the platform at 
the conclusion of 2 min by the investigator. On the probe trial day 
(platform removed), animals were placed in the maze at a novel 
location and allowed to explore the maze for 1 min. Data were 
acquired using AnyMaze™ video tracking software (Stoelting 
Co., Wood Dale, IL, USA) throughout all studies which allows 
for acquisition of latency, distance, and speed data to be analyzed 
across maze regions/quadrants.

Impulsivity was determined, at 7 days after the final blast, as 
previously described using an elevated-plus maze and measuring 

exploratory behavior (26, 38, 39). The apparatus was placed at a 
height of 60 cm from the floor and consisted of two open and two 
closed arms, with open arms opposing one another and intersect-
ing perpendicularly with the opposed closed arms. Each arm was 
50 cm long by 10 cm wide. Open arms were surrounded by clear 
plastic edging ~1.5 cm high. Closed arms were encased with black 
walls 30 cm tall, creating a three-sided and comforting enclosure 
for the rodent. At the start of each 5-min trial, animals were 
placed in the middle of the intersecting arms facing an open arm 
prior to release. Animals were allowed to explore the apparatus 
for the duration of the trial. AnyMaze™ software was utilized to 
record the animals’ position, distance traveled, and entry pattern 
into various arms throughout the trial. An increased percentage 
of time spent in the open arms was considered a sign of impulsive 
behavior (26, 38, 39).

statistical analysis
An observer blinded to experimental condition performed all data 
acquisition. One-way Analysis of Variance (ANOVA) was used 
for statistical analysis of all tests except spatial acquisition trials of 
the Morris water maze and immunohistochemical comparisons 
in which a two-way, repeated measures ANOVA and students 
t-test were utilized, respectively. Bonferroni post hoc comparison 
was used to determine differences between experimental groups 
on two-way ANOVA with repeated measures for spatial acquisi-
tion. For all other comparison’s, a Tukey’s post hoc was utilized. 
Analysis was completed using GraphPad Prism 5.0 (GraphPad 
Software, Inc., La Jolla, CA, USA). A p <  0.05 was considered 
statistically significant for all data analyzed.
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FigUre 5 | Blast and closed-head injury models both induce conformational changes in tau proteins. (a) Immunoblots show no significant difference in 
markers of tau conformational change at serine site 396/404 (PHF) at 1 month after single and repeat blast exposure in the ipsilateral rat hippocampus. (B) A 
significant increase in PHF expression was measured after single (*p < 0.05 vs. CTRL) and repeat blast exposure (*p < 0.05 vs. CTRL) in the contralateral rat 
hippocampus. (c) PHF expression was significantly increased at 1 month after closed-head injury in the ipsilateral mouse hippocampus. (D) No significant 
differences were observed in PHF expression in the contralateral mouse hippocampus. (e) Immunoblots show no significant difference in markers of tau 
conformational change at serine site 202 (CP13) at 1 month after single and repeat blast exposure in the ipsilateral rat hippocampus. (F) A significant increase in 
CP13 expression was measured at 1 month after repeat blast exposure (*p < 0.05 vs. CTRL) in the contralateral rat hippocampus. (g) A significant increase in CP13 
expression was measured at 1 month after closed-head injury in the ipsilateral mouse hippocampus (***p < 0.001 vs. CTRL). (h) No significant differences were 
observed in CP13 expression in the contralateral mouse hippocampus after closed-head injury. One-way ANOVA Tukey’s post hoc analysis (values represent 
mean ± SEM; normalized to β-actin) (n = 3–5).
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resUlTs

neurotrauma induces tau 
hyperphosphorylation in Both Blast and 
closed-head injury Models
To elucidate the effect of neurotrauma on the development of 
CTE-like neuropathology, animals were exposed to sham-injury, 
single-injury (either blast or modified closed-head), or repeat-
injury (blast). Animals were first assessed for tau phosphoryla-
tion, using AT8 and AT270 antibodies, believed to be the initial 
precursor of NFT development. AT8 forms a single band in 
rats and a double band in mice (14). Conversely, AT270 forms 
a double band in rats, but only a single band in mice (40). The 
number of bands is indicative of calpain-dependent phospho-
rylation, which is regulated uniquely between rats and mice 
(41). Increased phosphorylation of tau was observed after blast 
exposure and modified closed-head injury but the location of the 
increase was model-dependent. Specifically, tau phosphorylation 
was observed in the contralateral hemisphere in rats exposed to 

repeat blast injury but only in the ipsilateral hemisphere, and 
only with the AT8 antibody, in mice receiving a single modified 
closed-head injury.

In rats exposed to blast, no significant difference in tau phos-
phorylation was observed in the ipsilateral hippocampus after 
blast injury for AT8 (Figure 3A) or AT270 (Figure 3E). A signifi-
cant difference was observed in AT8 (F2,11 = 16.64, p < 0.001) and 
AT270 (F2,9 = 4.37, p < 0.05) levels in the contralateral hippocam-
pus of rats exposed to blast injury. At 1 month following a single 
blast, a significant increase in tau phosphorylation recognized 
by AT8 increase was measured compared to control (q = 3.96, 
p < 0.05) (Figure 3B). A significant increase in phosphorylation 
detected by AT8 was also observed after repeat blast (q = 8.12, 
p < 0.001) (Figure 3B).

In the modified closed-head injury model utilized on the mice, 
a significant difference was observed in tau phosphorylation AT8 
(F2,9 = 4.93, p < 0.05) in the ipsilateral hippocampus. At 1-month 
following injury, AT8 expression was elevated in comparison 
to sham-injury (q = 4.34, p < 0.05) (Figure 3C). No significant 
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FigUre 6 | Tau conformational markers were increased throughout the contralateral superficial cortex. PHF was significantly increased at 1-month post 
repetitive blast (t = 6.055, p < 0.001). CP-13 staining was also significantly increased following repetitive blast (t = 3.883, p < 0.01). CP-13 was increased in a 
perivascular distribution. Tau conformational change is required for the formation of neurofibrillary tangles. Values were calculated using a student’s t-test comparing 
the mean difference between groups.

October 2015 | Volume 6 | Article 2227

Turner et al. The quest to model CTE

Frontiers in Neurology | www.frontiersin.org

difference was observed at 7-days post-injury on the ipsilateral 
side or between any groups or time points on the contralateral 
side (Figure 3D).

At 1-month following repetitive blast exposure, a significant 
increase in phosphorylation recognized by the AT270 antibody 
was measured in the contralateral hippocampus of rats compared 
to anesthetized control animals (q = 4.03, p < 0.05) (Figure 3F). 
No significant differences were observed in tau phosphorylation 
recognized by AT270 in either ipsilateral (Figure  3G) or con-
tralateral (Figure 3H) hippocampus of mice receiving modified 
closed-head injury.

hyperphosphorylation of tau Following 
neurotrauma Occurs in Perivascular Brain 
regions
Clinical case series documenting patients with CTE have 
demonstrated the deposition of NFTs, an end product of tau 
hyperphosphorylation, in perivascular regions, which is a 
distinct difference from other tauopathies such as Alzheimer’s 
disease (AD). Possible mechanisms leading to NFTs in perivas-
cular regions include the disruption of the blood–brain barrier 
(BBB), leading to punctate microhemorrhages, red blood cell 
breakdown, oxidative stress, and finally, persistent neuroinflam-
mation. We observed a significant difference in tau hyperphos-
phorylation within perivascular regions of the contralateral 
hippocampus in rats exposed to repeat blast in comparison to 
control when identified with both AT8 (t = 4.46, p < 0.001) and 
AT270 (t = 11.47, p < 0.001) at 1-month post-injury (Figure 4). 
These findings were consistent with prior reports of CTE in 

humans and from our collection of post-mortem human sam-
ples with documented CTE.

neurotrauma is associated with 
conformational changes in tau that are 
recognized Precursors of neurofibrillary 
Tangle Formation
Following hyperphosphorylation, tau is purported to undergo 
conformational changes associated with subsequent insolubility 
and deposition/precipitation in the form of NFTs. Following 
neurotrauma in rats and mice, we found an elevation in markers 
of conformational change of the tau molecule based on immu-
noblotting with PHF-1 and CP13. After blast exposure, markers 
of tau conformational change were observed in the contralateral 
hemisphere of rats, while after the impact procedure in mice, the 
markers were found ipsilaterally. No significant differences in 
markers of tau conformation change were observed in the ipsilat-
eral hippocampus after blast injury for neurofibrillary precursor 
PHF-1 (Figure 5A) or CP13 (Figure 5E).

A significant difference was observed in PHF-1 [F(2,11) = 7.92, 
p < 0.01] and CP13 [F(2,9) = 6.03, p < 0.05] levels in the contralat-
eral hippocampus of rats exposed to blast injury. At 1 month fol-
lowing a single blast, a significant increase in PHF expression was 
measured compared to control (q = 4.76, p < 0.05) (Figure 5B).

A significant difference was observed in PHF-1 [F(2,9) = 7.18, 
p < 0.05] levels in the ipsilateral hippocampus of mice exposed 
to injury. At 1  month following modified impact, a significant 
increase in PHF-1 expression was measured compared to control 
(q = 5.17, p < 0.05) (Figure 5C). No significant differences were 
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FigUre 7 | Tauopathy is seen in a perivascular distribution. PHF and AT8 were increased adjacent to longitudinal microvessels in human patients diagnosed 
with chronic traumatic encephalopathy. A neurofibrillary tangle stained with thioflavin was seen adjacent to a cut vessel lumen in the brain of a retired professional 
football player. Similarly, CP-13 was increased next to a cut vessel lumen in the contralateral cortex 1 month following repeat blast in the rat. Arrows indicate 
tauopathy while arrow heads point out vessels.
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observed in PHF-1 expression in the contralateral hippocampus 
of mice exposed to cortical impact (Figure 5D).

At 1  month after repetitive blast exposure, a significant 
increase in CP13 expression was measured in the contralateral 
hippocampus of rats compared to control (q =  4.73, p <  0.05) 
(Figure  5F). A significant difference was observed in CP13 
[F(2,9) = 21.70, p < 0.001] levels in the ipsilateral hippocampus of 
mice exposed to injury. At 1 month following impact, a significant 
increase in CP13 expression was measured compared to control 
(q = 9.28, p < 0.001) (Figure 5G). No significant differences were 
observed in CP13 expression in the contralateral hippocampus of 
mice exposed to cortical impact (Figure 5H).

Similar findings were seen using immunohistochemistry 
when comparing repeat-injured animals to sham-injured animals 
at 1 month post-injury. Specifically, a significant difference was 
seen on PHF-1 staining (t = 6.06, p < 0.001) and CP-13 staining 
(t  =  3.88, p  <  0.01) (Figure  6). Again, the distribution of the 
staining was notable for being perivascular in nature, a finding 
shared across the clinical specimens diagnosed with CTE as seen 
in Figure  7. We show that PHF, AT8, and a thioflavin-stained 
NFT are increased perivascularly in human CTE specimens. 
CP-13 is increased in a perivascular distribution following repeat 
blast in a rat.

neurotrauma Produces cognitive 
impairments
Cognitive deficits have long been associated with the neuropatho-
logical diagnosis of CTE in the clinical population, particularly 
amongst the population diagnosed with CTE at a later age in life. 
Similarly, cognitive impairments in both learning and memory 

have been associated with neurotrauma but have not been pre-
sented in the context of a corresponding tauopathy in both a single 
and repeat blast injury paradigm. In cohorts of animals subjected 
to either sham-, single-, or repetitive-injury, spatial acquisition 
(learning) was assessed 3 weeks after the injury in single-injury 
animals and the final injury in repeat-injury paradigms (days 
21–27 post-injury). Blast injury exposure was associated with 
worsened performance in the Morris water maze as evident by 
latency to find the platform in seconds when analyzed using a two-
way repeated measures ANOVA. Post hoc tests revealed signifi-
cant differences between anesthetized controls and single-injured 
animals during spatial acquisition on days 22–24, and day 26 (day 
21: t = 1.38, p > 0.05; day 22: t = 3.70, p < 0.01; day 23: t = 4.12, 
p < 0.001; day 24: t = 4.38, p < 0.001; day 25: t = 2.17, p > 0.05; 
day 26: t = 3.20, p < 0.01). Similarly, post hoc tests demonstrated 
a significant impairment in acquisition between anesthetized 
controls and repetitively injured animals on days 22–26 (day 21: 
t = 0.66, p > 0.05; day 22: t = 5.01, p < 0.001; day 23: t = 4.16, 
p < 0.001; day 24: t = 4.72, p < 0.001; day 25: t = 3.69, p < 0.01; day 
26: t = 3.76, p < 0.01). Notably, no differences were seen between 
single- and repeat-injured animals during the course of acquisi-
tion trials, despite the notable difference in tau pathology at this 
time presented earlier (Figure  8). The differences in latency to 
platform between blast-injured animals and anesthetized control 
animals is apparent as well based on visualization of the track plots 
recorded during data acquisition (Figure  9). Clearly different 
swimming patterns emerge with blast-injured animals exhibiting 
what appears to be more thigmotaxis (circling around the outer 
edge of the pool) than anesthetized control animals that reached 
statistical significance between controls and repeat-injured 
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FigUre 8 | Blast-induced brain injury produces deficits in learning and memory in rats. (a) Spatial acquisition trials conducted on days 21–26 post-injury 
revealed deficits in learning in single-injured animals on days 22–24 and 26 in comparison to control. Repeat-injury was associated with deficits on days 22–26 in 
comparison to control. No differences were seen between single- and repeat-injury paradigms. (B) The probe test on day 27 revealed a statistically significant 
difference in time spent near the prior platform location between injured animals (single or repeat) and control animals. No difference was seen between single- and 
repetitively injured rats. (c) Animals exposed to neurotrauma exhibited a trend toward increased thigmotaxis during spatial acquisition procedures but this finding did 
not reach statistical significance.

October 2015 | Volume 6 | Article 2229

Turner et al. The quest to model CTE

Frontiers in Neurology | www.frontiersin.org

animals on day 23 (q = 3.58, p < 0.05), although this data point 
did not reach significance on days 21 and 26 based on automated 
measurements generated using AnyMaze™ (Figure 8).

Memory, as measured during the probe test (time spent in 
area surrounding the now-removed platform) conducted on day 
27, again demonstrated deficits in animals subjected to blast-
induced neurotrauma when analyzed using a one-way ANOVA 
(F2,29 = 20.01, p < 0.0001). Post hoc tests showed significant differ-
ences between sham and single injury animals (t = 6.44, p < 0.05) 
as well as between sham and repetitively injured animals (t = 8.00, 
p < 0.05) but no difference between single injury and repeat injury 
paradigms (Figure  8). These findings were confirmed visually 
using track plots generated during data acquisition (Figure 9). 
Anesthetized control animals exhibit a greater preponderance of 
pool crossings and swimming behavior within the region near the 
platform in contrast to blast-injured animals (Figure 9).

impulsivity is increased Following 
neurotrauma
Clinically, impulsive behavior has been described extensively in 
those with a history of repetitive neurotrauma and the context 
of CTE. To make an analogous comparison between our animal 
model of blast-induced traumatic brain injury and clinically 
reported symptoms, the elevated-plus maze was utilized to 

measure impulsive-like behaviors based upon the percentage of 
time spent in the open arms of the maze. Significant differences 
between groups were observed when analyzed using a one-way 
ANOVA (F2,32 = 5.03, p < 0.05). Post hoc tests revealed a significant 
difference between sham and single injury animals (q  =  3.53, 
p  <  0.05) as well as between sham and repetitively injured 
animals (q = 4.21, p < 0.05). No difference was seen between 
single and repeat injury paradigms with regards to percentage of 
time spent in the open arms of the apparatus (Figure 10). While 
not statistically significant, a trend toward a greater distance 
traveled in the open arms was observed with increasing levels 
of neurotrauma, evidence consistent with the percentage of 
time spent in the open arms (Figure  10). Conversely, a trend 
was also present regarding distance traveled in the closed arms 
with animals subjected to neurotrauma traveling less distance 
(Figure  10). Post  hoc tests revealed no statistical significance 
when comparing sham to single injury groups but significance 
was reached when comparing sham to repetitively injured ani-
mals (F2,33 = 3.06; q = 3.47, p < 0.05).

DiscUssiOn

While the clinical literature has been inundated with reports 
of CTE in athletes and soldiers alike, few experimental tools 
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exist for investigating disease pathophysiology, establishing 
diagnostic criteria, and discovering preventative or therapeu-
tic agents. For these reasons, preclinical models of CTE are 
highly desirable. In this work, we demonstrate two preclinical 
models capable of generating some biochemical and behavio-
ral hallmarks of CTE, namely tauopathy and impulsive-like 
behavior. Furthermore, this work illustrates the utility of two 
distinct models and injury paradigms, namely blast exposure 
vs. a more traditional modified closed-head injury, and repeat 
vs. single injury paradigms respectively. Likewise, the fact that 
this work was completed in two different species and builds 
upon prior work by both West Virginia University and the 
University of Rochester laboratories validates the use of both 
mice and rats in the preclinical modeling of neurotrauma-
related neurodegeneration (23, 24, 26). The modified closed-
head injury represents a helmeted design with controlled 
placement of the impact likely accounting for ipsilateral 
deficit. The tauopathy development period following modi-
fied controlled impact was not previously elucidated therefore 
warranting the 7-day time point. Petraglia and colleagues 
show that astrocyte activation and cell death occurs at 7 days 
post modified controlled impact (24). We previously reported 
that tauopathy following blast in rats does not develop until 
weeks after injury and is on the contralateral side due to coup/
contra-coup injuries (42).

The potential utility of these, as well as other preclinical 
models of neurotrauma-related neurodegeneration, is highly 
promising for investigation of disease pathophysiology, par-
ticularly as related to biochemical endpoints associated with 
CTE. To fully develop a CTE model, transgenic rodents will 
be needed that include amyloid, tau, and TDP43 pathology. 
The quest for elucidating the underlying mechanisms behind 
CTE development is ongoing. In previous work, we have shown 
blast causes substantial blood brain barrier disruption (33), 
endoplasmic reticulum stress activation (26), and oxidative 
stress (43). We show in this work the induction of hyper-
phosphorylated tau, conformational changes in tau, and more 
advanced precursors of NFT formation with the usage of CP13 
and PHF-1 antibodies. AT8 binds to serine 199 and 202 as well 
as threonine 205. AT270 binds to threonine 181, PHF binds to 
serine 396 and 404, and CP13 binds to serine 202. Serine 396 
and 202 are only exposed after tau undergoes conformational 
change (20). These changes are the ultimate result of tau hyper-
phosphorylation and protein misfolding/aggregation, and are 
likely related to dysregulation of the tau kinase/phosphatase 
system (20). Peclinical modeling of neurotrauma-related 
neurodegeneration will allow for the elucidation of how and 
when these kinases and phosphatases become dysregulated, 
and will allow for increased understanding of the disease pro-
cess. Additionally, these studies will provide targets for direct 

FigUre 9 | Track plots acquired across spatial acquisition and probe testing in rats. (a–D) Track plots generated from anesthetized control animals on 
days 21, 23, 26, and during the probe test. (e–h) Track plots generated from single-injured animals on days 21, 23, 26, and during the probe test post-injury. (i–l) 
Track plots generated from repetitively injured animals on days 21, 23, 26, and during the probe test post-injury. Injured animals appear to spend more time 
exhibiting thigmotaxis behaviors (circling edge of pool) on later days and in the probe trial fail to spend as much time as the anesthetized control animals within the 
probe region and the direct area surrounding the probe region.
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FigUre 10 | Blast-induced brain injury in rats produces an increase in impulsive behavior based on the elevated-plus maze. (a) A significant difference 
(p < 0.05 vs. CTRL) was seen between anesthetized control animals and both single and repeat blasts with regards to the percentage of time spent in the open arm 
of the elevated-plus maze. No difference was measured between single and repeat-injury paradigms. (B) While not reaching statistical significance, a trend toward 
greater distance traveled in open arms was seen with neurotrauma, a finding consistent with the documented increase in time spent in the open arms. (c) Animals 
subjected to neurotrauma appeared to travel less distance in the closed arms of the maze, although this finding did not reach statistical significance. (D) Track plot 
showing little exploration of the open arm by control animals. (e) Track plot showing increased exploration of the open arms of the elevated-plus maze by 
single-injured animals. (F) Track plot showing increased exploration of the open arms of the elevated-plus maze by repetitively injured animals.

or indirect therapeutic development. Similarly, preclinical 
models may prove instrumental in identification of diagnostic 
and prognostic tests for establishing a diagnosis of CTE and 
tracking disease progression. There is a clinical need for a 
rapid, cheap, and reliable diagnostic test to predict severity of 
CTE. Currently neuropathological examination remains the 
gold standard for diagnosis with some studies purporting the 
use of PET-based imaging for diagnosis (44–46). It is possible 
that development and validation of these techniques, and oth-
ers such as diffusion tensor imaging and magnetic resonance 
spectroscopy may be accelerated through the application to 
preclinical models. The current limitation is that advanced 
imaging is expensive, cumbersome, and requires expertise 
from subspecialty radiologists.

Despite this work illustrating what we believe represents a 
clear step forward in the study of neurotrauma-related neurode-
generation, it is clear that further study is warranted. Preclinical 
models must be utilized to more fully characterize behavioral, 
biochemical, imaging, and electrophysiological/functional 
changes associated with the development of CTE. Future stud-
ies will likely address the development of behavioral/functional 

deficits in relation to biochemical changes temporally and 
assess the chronicity of changes based on the number, severity, 
and inter-injury interval of neurotrauma-related events. The 
development of better transgenic models is critical as the field 
moves forward. Performing studies such as these will allow for 
the questions raised in our accompanying review be addressed. 
Specifically, what is the role of the (1) inter-injury interval, (2) 
number of impacts, (3) impact severity, (4) age at time of impacts, 
(5) mechanism of impact, (6) genetics, (7) gender, and (8) effect 
of environment on the likelihood and/or progression of CTE 
development.
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