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Despite the extensive media coverage associated with the diagnosis of chronic traumatic 
encephalopathy (CTE), our fundamental understanding of the disease pathophysiology 
remains in its infancy. Only recently have scientific laboratories and personnel begun 
to explore CTE pathophysiology through the use of preclinical models of neurotrauma. 
Some studies have shown the ability to recapitulate some aspects of CTE in rodent 
models, through the use of various neuropathological, biochemical, and/or behavioral 
assays. Many questions related to CTE development, however, remain unanswered. 
These include the role of impact severity, the time interval between impacts, the age at 
which impacts occur, and the total number of impacts sustained. Other important vari-
ables such as the location of impacts, character of impacts, and effect of environment/
lifestyle and genetics also warrant further study. In this work, we attempt to address 
some of these questions by exploring work previously completed using single- and 
repetitive-injury paradigms. Despite some models producing some deficits similar to CTE 
symptoms, it is clear that further studies are required to understand the development 
of neuropathological and neurobehavioral features consistent with CTE-like features in 
rodents. Specifically, acute and chronic studies are needed that characterize the devel-
opment of tau-based pathology.

Keywords: chronic traumatic encephalopathy, preclinical models, neurodegeneration, hyperphosphorylated tau, 
neurotrauma

iNTRODUCTiON

Corsellis described the original case series of chronic traumatic encephalopathy (CTE) in boxers (1). 
The disease consisted of brain atrophy, dilated ventricles, a cavum septum pellucidum, and pallor of 
the substantia nigra. CTE was reintroduced into the medical lexicon by Dr. Bennet Omalu in 2005 
(2). Omalu described a progressive tauopathy that was seen in the brains of deceased football players. 
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In recent years, McKee, Goldstein, and Stern have defined clinical 
and pathological features of the disease. These include behavioral 
disturbances such as impulsivity, depression, and lack of oversight 
(3). Pathological criteria include neurofibrillary tangles (NFTs) in 
a perivascular distribution and within superficial cortical areas 
with occasional amyloid and TDP-43 protein aggregations (4). 
Stern recently expanded the CTE criteria further by describing 
young versus old onset based on symptom manifestation (5). 
Interestingly, blast traumatic brain injury has been linked to CTE 
following a single exposure, where athletes develop the disease 
following repetitive head injury (6).

Chronic traumatic encephalopathy has been defined as a 
slowly progressive disease that takes years to decades to develop, 
often providing a significant latent period between when the 
neurotrauma occurs and when symptoms develop. A few cases 
involve athletes/soldiers as early as late teen’s to early 20s (7, 8). 
The reason for the discrepancies in age of presentation observed 
is currently unknown but is likely due to the age at which impacts 
were sustained and the severity of the injury. Prior studies have 
shown that children with TBI have inadequate development 
of social cognition (9) and that adolescents can develop post-
traumatic headaches. Very rarely, however, do either of these 
groups experience symptoms of CTE (10). Early behavioral 
symptoms of CTE usually do not appear until the mid-30s, and 
cognitive impairment does not begin until the early sixties (4). 
Recent evidence suggests that neurotrauma may be linked to 
other neurodegenerative diseases such as Alzheimer’s disease 
(AD) as well (11).

Chronic traumatic encephalopathy and AD, despite both 
being tauopathies, have generally been viewed as separate dis-
eases. Each disease has distinct clinical presentations and unique 
clinical risk values. This view has gradually been changing with 
some reports showing that CTE can develop within the context 
of AD. The relationship between these two conditions, however, 
is poorly understood. Prior studies have indicated that TBI is a 
risk factor for development of cognitive impairment and AD (12), 
but whether the conditions are additive or synergistic remains 
unclear (13). Recent evidence suggests that neurotrauma may 
both increase the likelihood of disease development and accel-
erate the development of AD (14). Notably, the wealth of AD 
pathology observed in preclinical neurotrauma models supports 
the idea of disease acceleration (15). In addition to AD, some 
groups have presented a possible link between CTE and a variant 
of amyotrophic lateral sclerosis that has been termed “chronic 
traumatic encephalomyelopathy” (CTEM) (16). Therefore, it is 
clear that neurotrauma may have many lasting deleterious conse-
quences, including the potential for increased risk and accelerated 
development of neurodegenerative diseases such as AD, CTE, 
and CTEM. While the data on these studies are preliminary in 
nature and not prospective, these findings demonstrate the need 
for further investigation with both preclinical models and clinical 
trials.

THe QUeST FOR THe iDeAL CTe MODeL

The search for ideal preclinical models to study CTE remains 
an area of ongoing investigation with a relative paucity of prior 

studies. Of those published previously, the majority of studies 
fail to recapitulate the extensive neuropathological and neurobe-
havioral aspects of injury (17, 18). Post-mortem identification of 
NFTs are a key diagnostic marker used clinically (19). Therefore, 
the development of hyperphosphorylated tau in animals fol-
lowing injury must be an important component in establishing 
a CTE model. Tau hyperphosphorylation appears to correlate 
with the emergence of neuropathological and neuropsychiatric 
deficits representative of neurotrauma-related neurodegenera-
tion (20). By modeling CTE in rodents, we can better understand 
disease development and discover potential therapeutic avenues. 
Similarly, little justification is given to injury severity, number of 
impacts, interval between impacts, and age at which the impacts 
occur. Few studies have also evaluated secondary mechanisms of 
injury. In the following sections, we discuss the advancements 
and shortcomings of prior research while highlighting areas in 
need of further investigation.

Proper Controls to Use when  
Studying CTe
One of the challenges in creating a preclinical model for CTE 
is the establishment of proper controls comparing sham to TBI 
animals (13). Specifically, sham animals must undergo the exact 
same procedure each day of the injury paradigm. They must be 
anesthetized for the same duration as injured animals. The age of 
the animal must also be considered. Control animals should be 
the same age as experimental animals at time of sacrifice. This 
is an important consideration in designing extended studies 
with behavioral assays. Biochemical time courses also require 
control animals for each time point. Numerous questions must 
be addressed in planning experiments while considering the 
implications of each decision in terms of experimental question 
addressed and potential complications (Figure 1).

Available Tools to Study CTe
One of the current weaknesses of clinical investigation of CTE 
is that the disease remains a neuropathological diagnosis. Some 
advancement has been made in ligand-based PET imaging. The 
imaging was used in a cohort of patients with an extensive history 
of neurotrauma, but the modality is not readily available (21). 
Consequently, clinical observations are largely retrospective in 
nature and it is nearly impossible to investigate disease onset and 
progression. These clinical shortcomings can be readily addressed 
through the use of adequately designed preclinical models.

The first step in creating a preclinical model of CTE is to 
choose a model that can be used to generate a combination of 
biochemical and behavioral changes post-injury consistent with 
the CTE-like phenotype. Specifically, tauopathy or a precursor 
of tauopathy (tau hyperphosphorylation), must be present. 
The changes in tau must be inducible in genetically unaltered 
animals and then must be verified with transgenic rodents. 
Behavioral changes must be induced by neurotrauma. These 
changes should persist or worsen at chronic time points post-
injury. Assessment of behavior should include tests capable of 
evaluating behavioral symptoms reported in clinical CTE cases. 
In particular, tests for cognition, depressive-like behavior, 
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and impulsive-like behavior should be used. Cognition can 
be measured using Morris water maze (MWM), whereas 
depressive-like behavior can be assessed with the forced swim 
test or tail suspension test. Impulsivity can be elucidated with 
the elevated-plus maze (EPM).

Once a model is established, biochemical, electrophysi-
ological, and advanced imaging techniques can be employed 
to assess neural injury. Biochemical mechanisms of potential 
interest include those related to cell survival/death, regulation 
of tau phosphorylation/dephosphorylation (kinases/phos-
phatases), bioenergetics, and propagation of tau-based changes. 
Electrophysiological studies can be performed to identify effects 
of injury and CTE development both on individual synapses 
and larger tracts such as the Schaffer collaterals within the hip-
pocampus. Imaging modalities, such as magnetic resonance 
imaging (MRI), functional MRI (fMRI), spectroscopy (MRS), 
and PET studies, have the unique advantage of being able to 
be performed longitudinally with multiple assessments of the 
same animal at different time points. Taken together, integra-
tion of biochemical, behavioral, electrophysiological, and 
imaging modalities may provide insight into the mechanisms 
and time course of CTE development. This approach will also 
allow for more definitive evidence to be gathered. This evidence 
will provide a stepping-stone in addressing key questions about 
the effect of inter-injury interval, injury severity, and number 
of cumulative injuries necessary for the development of CTE. 
The answers garnered from this potential work may then influ-
ence the design of clinical trials that dictate return-to-play 
decisions. Baseline monitoring may become required in sports 
arenas and battlefields with high incidences of neurotrauma. 
The monitoring may assist in detecting cumulative subthresh-
old injury levels and be used to decrease the overall level of 
concussions.

FiGURe 1 | Methodological challenges associated with repeat injury in comparison to single-injury paradigms include balancing equal age at time of 
exposure versus age at sacrifice. Two possibilities are shown depending on the variable the experimenter wants to control in future work.

iMPLiCATiONS FOR MODeLiNG CTe: 
ReSULTS FROM PRiOR CTe MODeLiNG 
STUDieS

Perhaps one of the most promising studies, with regards 
to demonstrating CTE-like disease in a rodent model, was 
performed by Luo et al. In this study, the authors developed a 
closed-head model of neurotrauma utilizing an electromagnetic 
stereotaxic impact device. The authors showed that enhanced 
force of injury or using repeat injury increased GFAP-tagged 
luciferase. Intriguingly, when this same repeat-injury paradigm 
was applied to wild-type mice, spatial learning, and memory 
deficits were observed 2–6 months after injury and were accom-
panied by increased hyperphosphorylated tau and astrogliosis 
(22). The gliosis response in human CTE has not been well 
characterized, but the findings by Luo and colleagues show that 
GFAP was increased near areas of tauopathy. Similar findings 
have been seen by Petraglia and colleagues who performed a 
rigorous investigation of the behavioral effects of both single 
and repetitive closed-head injury in wild-type mice (23). The 
authors found that a single injury, in un-anesthetized animals, 
produced notable short-term abnormalities in behavior similar 
to a post-concussive state. Repetitive injury (42 impacts total: 
6 impacts per day over 7 days) produced chronic deficits, par-
ticularly with regard to depressive-like and risk-taking behaviors 
as well as spatial learning and memory (23). This same group 
published a recent follow-up study demonstrating the presence 
of hyperphosphorylated tau, a precursor of NFT development, in 
repetitively injured animals (20). The model produces several of 
the same behavioral symptoms reported by patients suspected of 
having CTE. We have recently shown that endoplasmic reticulum 
stress contributes to tauopathy and CTE-like behavioral deficits 
following repeat blast injury (24).
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Other studies, conducted by Mouzon and colleagues report 
both behavioral and neuropathological changes following repeti-
tive neurotrauma in mice. Specifically, five injuries administered 
48 h apart, produced durable cognitive deficits, learning disabili-
ties, diminished rotarod performance, and changes in anxiety-like 
behavior on EPM. Notably, these behavioral changes occurred 
in conjunction with persistent neuroinflammatory changes and 
disruption of white matter integrity. No changes in Aβ and tau 
phosphorylation were seen at the chronic time points of 6 and 
12  months post-neurotrauma, likely because rodents do not 
naturally develop NFTs (25). Rodents do, however, demonstrate 
acute tau changes due to phosphorylation and cleavage following 
injury (26). Liu and colleagues found that tau hyperphosphoryla-
tion was increased in rats acutely post-injury and triggers caspase 
activation in rat cortices (27). The activation of cell death can lead 
to circuit dysfunction and behavioral deficits (28). Goldstein and 
colleagues show that tauopathy contributes to mitochondrial dys-
function and microtubule injury that ultimately leads to apoptosis. 
In this study, they found that tau modulation is a potential avenue 
for therapeutic intervention (29). We have recently reported that 
caspase activation is increased in human CTE brains near sites of 
NFT formation (30).

Other repeat-injury studies have investigated changes in tau 
and amyloid post-injury with the goal being to more clearly 
elucidate the relationship between TBI- and neurotrauma-related 
neurodegeneration. One report showed an increase in neuronal 
tau immunoreactivity (31) and another showed elevated amyloid 
precursor protein (APP) (13) at a variety of time points post-
injury. A final study by Zhang and colleagues showed that mono-
acylglycerol lipase can lead to behavioral deficits and tauopathy 
characteristic of a CTE-like phenotype (32). These findings were 
further verified in other studies using transgenic models of 
amyloidosis and tauopathy in which repetitive injury paradigms 
produced elevated amyloid and tau levels with increased deposi-
tion. Single injury, however, failed to produce changes above 
control levels (33, 34). Using a T44 tau Tg mouse line, Yoshiyama 
and colleagues sought to study dementia pugilistica (DP), a 
condition sharing many features with modern day CTE, but with 
several key differences. DP by definition occurs only in boxers 
and has more severe gross anatomical changes that are not always 
present in CTE. The Yoshiyama group found that four impacts 
per day given once a week for 4  weeks produced only modest 
neuropathology with only one mouse demonstrating CTE or DP 
characteristics out of a total of 18 Tg mice and 24 wild-type mice 
(13, 35). The affected mouse displayed neuropathological changes 
that included heightened tau burden, the presence of NFTs, and 
cognitive deficits (35). While it remains unclear why only one 
mouse developed such pathology, neuropathological findings 
from this one animal demonstrated that iron deposition was 
increased and associated with blood–brain barrier disruption. 
Iron deposition, associated with degradation of heme, activates 
oxidative stress-related pathways. Importantly, this oxidative 
stress is then associated with accelerated NFT formation in these 
perivascular locales (35).

Notably, even single-injury paradigms have been shown 
to produce tauopathy in a variety of injury models, including 
blast (17), fluid percussion (36), and controlled cortical impact, 

findings consistent with prior clinical reports (37, 38). Goldstein 
and colleagues demonstrated that tauopathy following single 
blast injury was associated with hippocampal-dependent learn-
ing and memory deficits at subacute and chronic time points. 
These changes were also associated with electrophysiological 
alterations in long-term potentiation (LTP) (17). Therefore, even 
a single mild to moderate injury may induce neurodegeneration 
and neurological deficits leading to impaired cognition and 
disrupted synaptic transmission (17). Single injury has also been 
shown to contribute to blood–brain barrier disruption (39). This 
is a significant finding considering the numerous concussive 
and subconcussive injuries occurring in athletics and on the 
battlefield. Other studies using single-injury models have also 
demonstrated activation of numerous pathological processes and 
behavioral changes associated with neurodegeneration. Modeling 
neurotrauma-related neurodegeneration is a key component in 
the search for a model of CTE (40–42). While the importance 
of repeat injury in CTE modeling cannot be overstated, some 
single-injury studies have led to advances in the ability to detect 
phospho-tau in serum at weeks to months post-injury. These 
advances indicate the potential role of biomarkers in monitoring 
and understanding disease pathophysiology (38). The develop-
ment of animal-based models that exhibit similar characteristics 
of CTE will afford researchers the opportunity to characterize 
the acute and chronic effects of injury on the phosphorylation of 
tau in controlled experimental conditions. In vitro models may 
even be beneficial in elucidating changes at the cellular level (43). 
Evaluating imaging modalities, potential biomarkers, such as 
phosphorylated tau, and proposed therapeutics in a controlled 
context will promote advancement toward clinical applications 
and could be instrumental for monitoring and understanding 
disease pathophysiology in the future.

iMPLiCATiONS FOR MODeLiNG CTe: 
LeARNiNG FROM PAST SHORTCOMiNGS 
wiTH TBi MODeLS

Despite these notable advancements in CTE modeling as outlined 
above, the vast majority of repeat-injury studies fail to address the 
role of injury severity, inter-injury interval, and the total number 
of impacts needed to reproduce a CTE-like state (44, 45). Most 
studies simply describe features of TBI without relating the find-
ings to neurodegeneration (46). Furthermore, because CTE is 
a neuropathological diagnosis, any study claiming to serve as a 
model of CTE must demonstrate the hallmark neuropathological 
changes (tau hyperphosphorylation and NFTs) and show that 
these changes persist at delayed time points and coexist with 
behavioral deficits. Few studies have looked at amyloid, tau, or 
TDP-43 accumulation following injury.

One of the most common omissions from repetitive injury 
paradigms is the lack of consideration for inter-injury interval. 
Work by Longhi and colleagues directly explored this issue, dem-
onstrating that in a mouse model of closed-head injury (CHI), 
mice had a period of vulnerability estimated between 3 and 5 days 
where the effect of injuries was additive and produced deficits 
in cognition. When the inter-injury interval was lengthened to 
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7 days, these deficits were not present (47). While the focus of 
that study was elucidating differences in the inter-injury interval, 
other groups employing a repeat-injury paradigm should consider 
how the inter-injury interval may relate to their findings. Inter-
interval design will be an important consideration in developing 
CTE models. Attempting to provide a clinical context for these 
decisions would be desirable, with the interval between severe 
concussive-type impacts ideally being longer than that between 
mild subconcussive-type impacts. This would expand scientific 
insight for “return-to-play” guidelines that require players to be 
asymptomatic following a diagnosed concussion prior to return-
ing to contact sports. These types of questions have generally not 
been considered in preclinical work, with most studies using brief 
inter-injury intervals, often ranging from minutes to 24 h with 
poor justification for timing (23, 48–52).

Another important limitation, related to interpretation of 
injury severity and neuropathological outcome, is the sensi-
tivity of detecting neuropathology using current scientific 
approaches. Shitaka and colleagues demonstrated previously 
that silver staining was more reliable for detecting axonal 
injury and pathology in comparison to routine histological 
analysis, assessment of neuronal cell loss, and APP immu-
nohistochemistry (49). It may be increasingly important, 
particularly in studies of repetitive subconcussive impacts, to 
utilize measures of high sensitivity for injury detection. Silver 
staining, which has been shown repeatedly to exhibit a higher 
degree of sensitivity in detecting axonal injury than many 
immunohistochemical techniques, electron microscopy, or 
other markers with these characteristics may prove promising 
(49). It has not yet been determined if NFTs accumulate around 
sites of axonal shearing.

KeY QUeSTiONS GOiNG FORwARD

Improving experimental models will enhance the quest for 
developing therapeutic agents that can be used to prevent and 
treat CTE. The search for a model of CTE raises a number of 
questions that are important clinically. These questions include 
issues such as length of the inter-injury interval, the number and 
severity of impacts, and the age at time of impacts, as well as the 
mechanism of impact, the gender of the patient, and what role 
genetic predisposition may play in the development of neurode-
generative disease following neurotrauma. Another important 
question that must be addressed is does a history of neurotrauma 
and potential presence of CTE accelerate the development of AD? 
Furthermore, how can the period of susceptibility following neu-
rotrauma be identified most readily? In the following sections, we 
attempt to address these questions based on available evidence. 
We also provide suggestions for handling shortcomings going 
forward. Studies on which these sections are based are referenced 
in Tables 1–7 for quick reference.

inter-injury interval
The effect of inter-injury interval on outcome following TBI has 
only recently been investigated. Studies have explored a variety 
of intervals ranging from 2 min apart (in vitro) to a few hours 
(in  vivo) to as long as 30  days apart (in  vivo). Using a novel 

approach assessing vasoreactivity in TBI, Fujita and colleagues 
demonstrated that administration of seemingly mild injuries at 
brief intervals (3 h apart) produced dramatic declines in vaso-
reactivity and axonal pathology. When the inter-injury interval 
was lengthened to 5  h, the magnitude of these changes was 
diminished substantially with complete dissolution of changes in 
both pathology and vasoreactivity at 10 h (53).

Other studies that have investigated longer inter-injury inter-
vals have identified periods of susceptibility following an initial 
impact at periods ranging from 24 h to a few weeks (54–57). Bolton 
and colleagues demonstrated with a CHI model that a single 
impact produced extensive gliosis bilaterally in the hippocampi 
and entorhinal cortices. Repeat injury after 24 h produced a more 
severe injury consisting of hemorrhage in the entorhinal cortices 
as well as heightened measures of neurodegeneration, gliosis, and 
neuroinflammation (56). When the experimental paradigm was 
changed such that impacts were given with a 48 h inter-injury 
interval, the histopathology resembled that of a single impact 
suggesting enhanced susceptibility when a second impact was 
administered within 24 h (56).

Mannix and colleagues performed one of the most rigorous 
investigations of the effect of inter-injury interval on outcomes 
associated with TBI. These studies included measures of both 
cognition and neuropathology related to the development of neu-
rodegenerative diseases such as CTE and AD. In this study, the 
investigators showed that animals that received daily or weekly 
injuries with weight-drop had persistent cognitive deficits up to 
1 year post-injury (55). This was in contrast to when animals were 
injured biweekly or monthly, which failed to produce deficits at 
such a chronic time point (55). Notably, the cognitive deficits seen 
in the daily- and weekly injured animals did not correlate with 
elevations in tau phosphorylation or amyloid-β when measured 
by ELISA nor brain volume loss when measured by MRI (55). This 
finding may indicate that in addition to inter-interval time, injury 
severity must be considered. Tauopathy is essential for modeling 
CTE therefore an appropriate inter-injury interval might be best 
characterized in transgenic animals. Weight drop produces vari-
able injury based on the height of the drop. A more severe TBI 
can produce cognitive deficits but may not be representative of 
the concussive and subconcussive injuries associated with CTE. 
A mild TBI with a transgenic animal will likely produce the most 
relevant deficits.

Meehan and colleagues performed a similar study with 
primarily behavioral assays. The investigators subjected mice 
to a CHI via weight-drop for a total of five impacts at various 
intervals. These intervals included daily, weekly, and monthly 
intervals. Mice receiving five impacts total at daily or weekly 
intervals were impaired in the MWM compared to sham ani-
mals (54). This was not the case when injuries were delivered at 
monthly intervals, as these animals exhibited no impairment in 
the MWM (54). Interestingly, at 1 month post-injury, the daily- or 
weekly injured animals still exhibited deficits in the MWM and 
this deficit persisted in daily-injured animals out to 1 year (54). 
This finding may represent why football lineman who experi-
ence daily subconcussive injuries appear more likely to develop 
CTE based on the clinical cases reported. It is still necessary to 
establish if tauopathy is the driving mechanism behind behavior. 
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The findings confirm and expand upon the inter-interval studies 
completed by Longhi and colleagues (47). Longhi reported that 
shorter inter-interval injuries produce worse outcomes, which is 
in agreement with the Mannix and Meehan findings. These stud-
ies were consistent with findings in higher phylogenetic species as 
well, specifically piglets. Friess and colleagues showed that a 24-h 
inter-injury interval produced more severe deficits and higher 
mortality rates than when the interval was extended to 7  days 
(58). Finally, Kanayama and colleagues demonstrated a graded 
response in locomotor activity. Both shorter inter-injury intervals 
and greater number of total injuries were associated with worse 
outcome (31).

Weil and colleagues explored the effect of altering the inter-
injury interval in relation to recovery from TBI. They used a clear 
clinical-minded approach and utilization of metabolic imaging 
(PET). This group showed that injuries separated by only 3 days 
were associated with worse neuropathology and an inability 
to mount the typical hypermetabolic response with regard to 
glucose utilization following TBI. This worse outcome was not 
seen following either a single injury or repeat injuries with an 
extended inter-injury interval of 20 days (57). Similarly, a brief 
inter-injury interval of 3 days was associated with elevated IL-1β 
and TNFα gene expression when compared with other experi-
mental groups (57).

The longest interval between injuries used in preclinical 
studies, to the best knowledge of the authors, was 30 days. The 
additional injury had no additive effect on anxiety (EPM), 
depression (FST), and cognitive function (MWM) when com-
pared to animals receiving only one injury (59). These findings 

TABLe 1 | Chronic traumatic encephalopathy TBi models.

Study Sex/species/age Model injuries interval Anesthesia Outcome measures

Liu  
et al. (27)

Male
S. Dawley rat
2–3 months

Metal CCI
Open head

Single Single Isoflurane Tauopathy; cell death; apoptosis

Goldstein 
et al. (17)

Male
C57BL6 mice
2–3 months

Blast
Closed head

Single Single Ketamine/
xylazine

Electrophysiology; tauopathy; axonal damage; 
motor; cognition; structural integrity; advanced 
imaging; human studies

Ojo et al. 
(18)

Male/female
C57BL6 mice, hTau Tg mice
18 months

Metal CCI
Closed head

Single
Repeat (5)

Single (48 h) Isoflurane Tauopathy; gliosis and degeneration; structural 
integrity; cell death

Mouzon 
et al. (25)

Male
C57BL6 mice
9–15 months

Metal CCI
Closed head

Single
Repeat (5)

Single (48 h) Isoflurane Motor; cognition; anxiety; inflammation; tauopathy; 
axonal damage

Huber  
et al. (26)

Male
C57BL6 mice
2–3 months

Blast
Closed head

Single Single Isoflurane Motor; oxidative stress; tauopathy

Luo et al. 
(22)

Male
C57BL6 mice,  
GFAPLuc mice
2–3 months

Rubber CCI
Closed head

Single
Repeat  
(2, 3, 5)

Single (24 h) Isoflurane Bioluminescence; motor; anxiety; cognition; fear 
conditioning; gliosis and degeneration; apoptosis

Glushakova 
et al. (39)

Male
S. Dawley rats
2–3 months

Metal CCI
Open head

Single Single Isoflurane Vascular and axonal damage; gliosis and 
degeneration

Zhang  
et al. (32)

Male
C57BL6 mice
2–3 months

Metal CCI
Closed head

Single
Repeat (3)

Single (24 h) Avertin Electrophysiology; neuroscore; inflammation; 
tauopathy; gliosis and degeneration; cognition

Kondo  
et al. (29)

Male
C57BL6 mice
2–3 months

Single 
blast and 
weightdrop
Closed head

Single
Repeat (7)

Single severe
Seven mild 
over 9 days

Isoflurane Electrophysiology; motor; cognition; anxiety; 
structural integrity; axonal damage; tauopathy; cell 
death; mitochondrial function; human studies

Lucke-Wold 
et al. (24, 
30)

Male
S. Dawley rats
2–3 months

Blast
Closed head

Single
Repeat (6)

Single
Six mild over 
10 days

Isoflurane Cognition; endoplasmic reticulum stress; tauopathy; 
human studies

TABLe 2 | Shock tube TBi models.

Study Sex/species/age Model injuries interval Anesthesia Outcome measures

Long  
et al. (74)

Male
S. Dawley rats
2–3 months

5.3-m metal 
tube

Single Single Isoflurane Cardiovascular; motor; cognition; structural integrity; 
vascular damage; degeneration

Budde  
et al. (75)

Unknown
S. Dawley rats
Unknown

3.3-m metal 
tube

Single mild  
and severe

Single Isoflurane Advanced imaging; anxiety; cognition; gliosis and 
degeneration; apoptosis

Genovese 
et al. (50)

Male
S. Dawley rats
2–3 months

5.3-m metal 
tube

Repeat (3) 24 h Isoflurane Fear conditioning

Wang et al. 
(52)

Male
C57BL6 mice
2–3 months

5.3-m metal 
tube

Repeat (3) 1 or 30 min Isoflurane Mitochondrial function; DNA fragmentation; righting 
reflex; apoptosis

Lucke-Wold  
et al. (6, 42)

Male
S. Dawley rats
2–3 months

0.3-m metal 
tube

Single Single Isoflurane Vascular damage; structural integrity; gliosis and 
degeneration

Logsdon et al. 
(41)

Male
S. Dawley rats
2–3 months

0.3-m metal 
tube

Single Single Isoflurane Vascular damage; endoplasmic reticulum stress; cell 
death; apoptosis; anxiety
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The findings confirm and expand upon the inter-interval studies 
completed by Longhi and colleagues (47). Longhi reported that 
shorter inter-interval injuries produce worse outcomes, which is 
in agreement with the Mannix and Meehan findings. These stud-
ies were consistent with findings in higher phylogenetic species as 
well, specifically piglets. Friess and colleagues showed that a 24-h 
inter-injury interval produced more severe deficits and higher 
mortality rates than when the interval was extended to 7  days 
(58). Finally, Kanayama and colleagues demonstrated a graded 
response in locomotor activity. Both shorter inter-injury intervals 
and greater number of total injuries were associated with worse 
outcome (31).

Weil and colleagues explored the effect of altering the inter-
injury interval in relation to recovery from TBI. They used a clear 
clinical-minded approach and utilization of metabolic imaging 
(PET). This group showed that injuries separated by only 3 days 
were associated with worse neuropathology and an inability 
to mount the typical hypermetabolic response with regard to 
glucose utilization following TBI. This worse outcome was not 
seen following either a single injury or repeat injuries with an 
extended inter-injury interval of 20 days (57). Similarly, a brief 
inter-injury interval of 3 days was associated with elevated IL-1β 
and TNFα gene expression when compared with other experi-
mental groups (57).

The longest interval between injuries used in preclinical 
studies, to the best knowledge of the authors, was 30 days. The 
additional injury had no additive effect on anxiety (EPM), 
depression (FST), and cognitive function (MWM) when com-
pared to animals receiving only one injury (59). These findings 

TABLe 1 | Chronic traumatic encephalopathy TBi models.

Study Sex/species/age Model injuries interval Anesthesia Outcome measures

Liu  
et al. (27)

Male
S. Dawley rat
2–3 months

Metal CCI
Open head

Single Single Isoflurane Tauopathy; cell death; apoptosis

Goldstein 
et al. (17)

Male
C57BL6 mice
2–3 months

Blast
Closed head

Single Single Ketamine/
xylazine

Electrophysiology; tauopathy; axonal damage; 
motor; cognition; structural integrity; advanced 
imaging; human studies

Ojo et al. 
(18)

Male/female
C57BL6 mice, hTau Tg mice
18 months

Metal CCI
Closed head

Single
Repeat (5)

Single (48 h) Isoflurane Tauopathy; gliosis and degeneration; structural 
integrity; cell death

Mouzon 
et al. (25)

Male
C57BL6 mice
9–15 months

Metal CCI
Closed head

Single
Repeat (5)

Single (48 h) Isoflurane Motor; cognition; anxiety; inflammation; tauopathy; 
axonal damage

Huber  
et al. (26)

Male
C57BL6 mice
2–3 months

Blast
Closed head

Single Single Isoflurane Motor; oxidative stress; tauopathy

Luo et al. 
(22)

Male
C57BL6 mice,  
GFAPLuc mice
2–3 months

Rubber CCI
Closed head

Single
Repeat  
(2, 3, 5)

Single (24 h) Isoflurane Bioluminescence; motor; anxiety; cognition; fear 
conditioning; gliosis and degeneration; apoptosis

Glushakova 
et al. (39)

Male
S. Dawley rats
2–3 months

Metal CCI
Open head

Single Single Isoflurane Vascular and axonal damage; gliosis and 
degeneration

Zhang  
et al. (32)

Male
C57BL6 mice
2–3 months

Metal CCI
Closed head

Single
Repeat (3)

Single (24 h) Avertin Electrophysiology; neuroscore; inflammation; 
tauopathy; gliosis and degeneration; cognition

Kondo  
et al. (29)

Male
C57BL6 mice
2–3 months

Single 
blast and 
weightdrop
Closed head

Single
Repeat (7)

Single severe
Seven mild 
over 9 days

Isoflurane Electrophysiology; motor; cognition; anxiety; 
structural integrity; axonal damage; tauopathy; cell 
death; mitochondrial function; human studies

Lucke-Wold 
et al. (24, 
30)

Male
S. Dawley rats
2–3 months

Blast
Closed head

Single
Repeat (6)

Single
Six mild over 
10 days

Isoflurane Cognition; endoplasmic reticulum stress; tauopathy; 
human studies

indicate that either the window of vulnerability following the first 
injury was avoided or that the response to the first injury may 
protect the animal from subsequent injuries, a concept known as 
preconditioning (59). The progression toward tauopathy was not 
well characterized in this work.

In  vitro studies have shown similar findings to the in  vivo 
studies described above. Shorter inter-injury intervals between 
mechanical stretching resulted in an elevation in S-100β pro-
tein release and increased cellular permeability identified with 
propidium iodide staining (13). Similarly, a “subthreshold” level 
of stretch did not produce any overt cellular damage or death 
when repeated at 1 h intervals but did cause neuronal loss and 
neuron-specific enolase (NSE) release when performed at incred-
ibly short intervals (every 2 min) (13, 60). Remarkably, this rapid 
and repetitive “subthreshold” stretch that produced changes in 
neurons, failed to produce an increase in S-100β protein release, 
indicating a differential response between neurons and glia to 
neurotrauma severity and interval (13, 60).

In contrast to the above studies, one group showed that repeat 
injury, when administered in different anatomical locations 
within the brain, failed to result in heightened damage when 
an inter-injury interval was 3 days. It did, however, increase tis-
sue vulnerability with a 7-day interval as evident by increased 
hemorrhage (61, 62). The authors of the study therefore argue 
that the period of susceptibility likely depends on not only the 
time interval between injuries but also the anatomic location of 
injury (61, 62). Importantly, this study utilized an open injury 
model (controlled cortical impact), a scenario that is only seen in 
a subset of clinical neurotraumas.

TABLe 3 | weight-drop TBi models.

Study Sex/species/age Model injuries interval Anesthesia Outcome measures

DeFord  
et al. (72)

Male
C57BL6 mice
2–3 months

Weight-drop
Closed head

Single
Repeat (4)

Single (24 h) Isoflurane
N2O and O2 (70:30)

Neuroscore; cell death; vascular 
damage; cardiovascular; cognition

Creeley  
et al. (48)

Male
C57BL6 mice
2–3 months

Weight-drop
Closed head

Repeat (3) 24 h Isoflurane Motor; cognition; righting reflex; 
cell death

Fujita  
et al. (53)

Male
S. Dawley rats
3–6 months

Weight-drop
Skull-exposed

Single
Repeat mild (2, 3)
Repeat medium (2)
Repeat severe (2)

Single
Two mild over 3 h
Three mild over 2 h
Two medium over 3 h
Two severe over 3 h
Two severe over 5 h
Two severe over 10 h

Pentobarbital Vascular reactivity to ACh; axonal 
damage

Meehan  
et al. (54)

Male
C57BL6 mice
2–3 months

Weight-drop
Closed head

Single
Repeat daily (3,10)
Repeat variable (5)

Single
Daily (3, 5, or 10)
Weekly (5)
Monthly (5)

Isoflurane 
N2O and O2 (70:30)

Edema; axonal and vascular 
damage; cell death; cognition

Mannix  
et al. (54)

Male
C57BL6 mice
2–3 months

Weight-drop
Closed head

Single
Repeat daily (5,7)
Repeat variable (5)

Single
Daily (5 or 7)
Weekly (5)
Biweekly (5)
Monthly (5)

Isoflurane
N2O and O2 (70:30)

Cognition; tauopathy; advanced 
imaging

Weil  
et al. (57)

Male
Swiss web. mice
2–3 months

Weight-drop
Skull-exposed

Single
Repeat (2)

Single 3 or 20 days Isoflurane Glucose metabolism; 
inflammation; gliosis and 
degeneration; cell death; cognition

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org


October 2015 | Volume 6 | Article 2238

Turner et al. Modeling CTE

Frontiers in Neurology | www.frontiersin.org

In summary, these studies demonstrate a period of vulner-
ability following initial injury in which sustaining a second 
brain injury may result in an additive effect. Additive injury is 
not clearly apparent when the brain is allowed a more extensive 
recovery period. Interestingly, this vulnerability may not solely 
be due to initial axonal pathology but may also be the result of 
cerebrovascular reactivity and the inability to utilize glucose 
effectively (53, 57). This concept of a varied cellular response to 
TBI is consistent with findings from in vitro studies that demon-
strate a varied response amongst glia and neurons (13, 60, 63).

Number of impacts
The prevailing theory for “mild” neurotrauma is that repetitive 
injuries are associated with more short- and long-term detrimen-
tal effects than a single injury alone (56, 64, 65). This concept 
has been applied regardless of injury severity (concussive versus 
subconcussive) with emerging evidence indicating that even sub-
threshold impacts are cumulatively detrimental (53, 66). In this 
section, we explore the effect of repeat injury through analysis of 
studies employing both repeat and single-injury paradigms.

One of these studies, conducted by Mouzon and colleagues, 
showed that when rodents are exposed to five total injuries with 
an interval of 48 h, these animals exhibit both impaired learning 
and memory at extended time points (25). These findings are 

in contrast to single-injured animals that display only learning 
deficits but no retention impairment at the same time points 
(25). This study closely parallels the clinical findings documented 
by Guskiewicz and colleagues in which former athletes with a 
history of repetitive concussions experience memory-related 
issues at a rate of five times higher than those without a history 
of concussion (12, 25).

Other work that investigated various iterations of impacts (0, 
1, 3, 5, and 10) demonstrated that while a single injury does not 
produce deficits in MWM performance in comparison to sham-
injured animals, repetitive injury does in fact produce deficits 
and these deficits may exhibit a dose-dependent relationship. 
When mice were given 10 concussive weight-drop injuries, those 
in which the weight was dropped from a height of 42″ performed 
worse than those injured from a height of 38″. Therefore, this 
work demonstrates the potential for both injury number and 
injury severity in contributing to neurological dysfunction (54). 
Luo and colleagues utilized a GFAP-driven luciferase mouse line 
and a repetitive closed-head injury model to investigate cumula-
tive decline. The investigators showed that there appeared to be 
a linear increase in GFAP luminescence from 1 to 3 injuries but 
that this response appeared to reach a plateau by five injuries 
(22). In addition to the increase in GFAP fluorescence with 
repetitive injuries, mice receiving three injuries demonstrated 

TABLe 4 | TBi models not using craniotomy.

Study Sex/species/age Model injuries interval Anesthesia Outcome measures

Mouzon  
et al. (65)

Male
C57BL6 mice
2–3 months

Metal CCI
Closed head

Single
Repeat (5)

Single (48 h) Isoflurane Motor; cognition; gliosis and degeneration; righting 
reflex; axonal damage

Yoshiyama 
et al. (35)

Male/Female
B6D2/F1 mice,  
Tau Tg mice
12 months

Silicone CCI
Skull-exposed

Repeat (16) Four per day
Every 20 min
Once a week for 
4 weeks

Isoflurane Neuroscore; cognition; gliosis and degeneration; 
tauopathy

Laurer  
et al. (64)

Male
C57BL6 mice
2–3 months

Rubber CCI
Skull-exposed

Single
Repeat (2)

Single (24 h) Pentobarbital Neuroscore; motor; cardiovascular; cognition; 
axonal and vascular damage; cell death; tauopathy

Bolton and 
Saatman (56)

Male
C57BL6 mice
2–3 months

Silicone CCI
Skull-exposed

Single
Repeat (5)

Single (24 or 48 h) Isoflurane Cardiovascular; righting reflex; axonal damage; 
gliosis and degeneration; tauopathy

Shitaka  
et al. (49)

Male
C57BL6 mice
2–3 months

Rubber CCI
Skull-exposed

Repeat (2) 24 h Isoflurane Cognition; structural integrity; gliosis and 
degeneration; axonal damage; electron microscopy

Klemenhagen 
et al. (51)

Male
C57BL6 mice
2–3 months

Rubber CCI
Skull-exposed

Repeat (2) 24 h Isoflurane Fear conditioning; cognition; social recognition; 
depression; anhedonia; gliosis; vascular damage

Uryu  
et al. (33)

Male/Female
B6D2/F1 mice,  
APP Tg mice
9–12 months

Rubber CCI
Skull-exposed

Single
Repeat (2)

Single (24 h) Pentobarbital Neuroscore; cognition; motor; vascular damage; 
gliosis and degeneration; tauopathy; oxidative 
stress

Longhi  
et al. (47)

Male
C57BL6 mice
2–3 months

Silicone CCI 
Skull-exposed

Single
Repeat (2)

Single (3, 5, or 
7 days)

Isoflurane Cognition; motor; righting reflex; gliosis and 
degeneration; axonal and cytoskeletal damage; cell 
death; edema

Conte 
 et al. (34)

Female
B6D2/F1 mice, APP 
Tg mice
9–12 months

Rubber CCI 
Skull-exposed

Repeat (2) 24 h Isoflurane Cognition; tauopathy; structural integrity; oxidative 
stress
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less freezing time than sham animals in both cued and contex-
tual fear conditioning (22). This was in contrast to single-injury 
animals that did not differ from sham-injured animals in cued or 
contextual memory (22). Consequently, these data demonstrate 

that an increase in injury number is associated with an increasing 
severity of injury markers (based on protein expression of GFAP) 
as well as functional deficits (fear conditioning). Others employ-
ing both single- and repeat-injury paradigms have shown that 

TABLe 5 | TBi models using craniotomy.

Study Sex/species/age Model injuries interval Anesthesia Outcome measures

Olsson  
et al. (68)

Rabbits
Unknown

Fluid percussion Single
Repeat (10)

Single (5 min) Pentobarbital Righting reflex; cardiovascular; 
vascular damage

Smith  
et al. (40)

Male
C57BL6 mice
2–3 months

Metal CCI
Open head

Single Single Pentobarbital Cognition; structural integrity; cell 
death; gliosis and degeneration; 
vascular damage

Kanayama  
et al. (31)

Male
Wister rats
2–3 months

Fluid percussion Single
Repeat (7)

Single (24 h) Pentobarbital Motor; social recognition; cytoskeletal 
damage; tauopathy

Allen  
et al. (158)

Male
S. Dawley rats
2–3 months

Weight-drop
Plexiglas piston

Single severe
Repeat mild (3)

Three mild over 
14 days ± severe 
3 days

Pentobarbital 
or ketamine/
rhompamine

Motor; gliosis and degeneration; 
structural integrity

DeRoss  
et al. (70)

Male
Long–Evans rats
2–3 months

Fluid percussion Single
Repeat (2,3)

Single (N/A) Isoflurane Cognition; motor

Manley  
et al. (73)

Male
Yorkshire pigs
Adult

Metal CCI
Open head

Single Single Pancuronium Cardiovascular; structural integrity; 
edema; vascular damage; cell death; 
gliosis and degeneration

Isoflurane

Donovan  
et al. (61)

Male
S. Dawley rats
2–3 months

Metal CCI
Open head

Single
Repeat (2)

Single 7 days  
each side

Isoflurane Advanced imaging; structural 
integrity; axonal damage

Hawkins  
et al. (61)

Male
S. Dawley Rats
6–8 months

Fluid percussion Single Single Isoflurane Extensive tauopathy assessment

Rubenstein  
et al. (38)

Male
S. Dawley rats and 
C57BL6 mice
2–3 months

Metal CCI
Open head

Single Single Isoflurane Extensive tauopathy assessment; 
human studies

Begum  
et al. (37)

Male
S. Dawley rats
2–3 months

Metal CCI
Open head

Single Single Isoflurane Motor; endoplasmic reticulum stress; 
tauopathy; axonal damage

Aungst  
et al. (67)

Male
S. Dawley rats
2–3 months

Fluid percussion Single
Repeat (3)

Single (48 h) Isoflurane Electrophysiology; neuroscore; 
cognition; social recognition; gliosis 
and degeneration; cell death

TABLe 6 | Other in vivo TBi models.

Study Sex/species/age Model injuries interval Anesthesia Outcome measures

Raghupathi 
et al. (69)

Male 
Farm pigs
3–5 days

Non-impact  
head rotation

Single
Repeat

Single (15 min) Isoflurane Cardiovascular; axonal and vascular damage; 
structural integrity; cell death

Friess et al. (58) Male 
Farm pigs
3–5 days

Non-impact  
head rotation

Single
Repeat (2)

Single (24 h or 
7 days

Isoflurane Motor; cognition; axonal damage

Roth et al. (77) Male
S. Dawley rats and 
C57BL6 mice
2–3 months

Skull thinning 
compression
Skull-exposed

Single Single Ketamine/xylazine/
acepromazine

Inflammation; gliosis and degeneration; oxidative 
stress; vascular damage; structural integrity; 
advanced imaging; human studies

Petraglia et al. 
(20, 23)

Male
C57BL6 mice
2–3 months

Rubber CCI
Helmet

Single
Repeat (42)

Six per day every 
2 h over 7 days

No Anesthesia Neuroscore; motor; cognition; anxiety; depression; 
sleep
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while single injury may not induce pathological findings, repeat 
injury, of the same severity, does. This was particularly notable in 
work by Uryu and colleagues in which repetitive injury produced 
an increase in Aβ deposition in Tg2576 animals, whereas no 
increase was observed in single-injury paradigms in these same 
animals (33). Likewise, Kanayama and colleagues demonstrated 
that repeat-injury paradigms induced tau hyperphosphoryla-
tion, a precursor to NFT formation, in conditions such as CTE 
and AD (31).

The observed findings in closed-head, repeat-injury models, 
were also consistent with those found in open-head injury using a 
craniectomy and controlled cortical impact. In work by Donovan 
and colleagues, the investigators showed that repeat injury 
induces progressive and evolving changes that are not observed 
in single-injury paradigms (62). The basis of many of the memory 
and cognitive changes following repeat TBI may be explained by 
electrophysiological alterations in synaptic transmission. In work 
by Aungst and colleagues, repetitive TBI was found to prevent 
the induction of LTP 28-days post-injury due to alterations in the 
NMDA receptor. This is in stark contrast to single-injury para-
digms that revealed the ability to induce LTP in both hemispheres, 
with the contralateral hemisphere exhibiting less LTP than the 
ipsilateral hemisphere. The impairments in excitatory neurotrans-
mission following repeat injury were accompanied by extensive 
neuroinflammation and neurodegeneration as well as behavioral/
functional impairments (67). Specifically, repeat injury produced 
deficits more severe than single injury when measured at 1-week 
intervals out to a month. Importantly, even single injury produced 
deficits at chronic time points post-injury when compared to 
sham animals, indicating long-term effects of TBI (67).

Povlishock and colleagues expanded the concept of sub-
threshold injury. In these studies, the investigators showed that 
administering a single weight-drop injury from 1.0  m resulted 
in neither axonal nor microvascular change. With repeat injury 
of short inter-injury intervals (hours), significant axonal and 
microvascular pathology was observed (53). This work was the 
first to assess microvascular reactivity to acetylcholine (ACh) 
following repetitive subthreshold brain injury. This work demon-
strates the clear danger of subthreshold impacts when sustained 

TABLe 7 | In vitro and ex vivo TBi models.

Study Model Cell Line injuries interval Severity Outcome measures

Zander  
et al. (43)

Primary blast PC12 neurons Single
Repeat (3)

Single
Three over 
20 min

Mild to 
moderate

Membrane permeability; cell viability; 
axonal damage

LaPlaca and  
Thibault (78)

Shear stress Neuronal culture Single Single Mild Membrane permeability; calcium influx; 
cell death

Morrison et al. (81) Membrane strain Organo-typic  
hippocampal slices

Single Single Mild to 
Severe

Cell death; apoptosis; membrane 
permeability

Mukhin et al. (79) Blade transection Neuron/glial culture Single Single Severe Cell death; excitotoxicity

Sieg et al. (80) Mechanical 
compression

Organo-typic cortical 
slices

Single Single Severe Cell death; apoptosis; axonal damage

Slemmer et al. (63) Cell stretch Neuronal culture Single
Repeat (6)

Single
Six over 24 h

Mild Cell viability; cell death

in a repeated and rapid fashion. It also illustrates the role of the 
microvasculature in neuronal injury, showing that the neurovas-
cular unit is essential for neuronal homeostasis.

Importantly, work regarding the number of impacts has been 
extended higher up the phylogenetic tree to rabbits and piglets 
(68, 69). In rabbits, repeated loading with loads of up to 1.5 atm 
failed to produce an additive concussive response over a single 
load. A multi-loading paradigm at higher loads, however, caused 
respiratory arrest (68). In piglets, multiple less severe injuries 
induced neuropathological findings similar to a severe load based 
on the density of injured axons as well as number and distribution 
of foci (69).

In vitro studies have reported similar findings to the in vivo 
studies. Weber and colleagues applied a mild stretch to hip-
pocampal neuronal cultures that produced low-grade injury 
when applied at a single time. When this injury was repeated, the 
cells exhibited cumulative damage with two injuries inducing an 
increase in NSE (13, 60, 63).

Notably, the group led by Mychasiuk and colleagues provides 
evidence contrary to the widely held belief that an increased 
number of impacts are associated with detrimental findings on 
behavioral or histological measures. With a 30-day inter-injury 
interval, rodents receiving multiple injuries performed similar 
to single-injury animals on measures of anxiety, depression, and 
cognitive ability. Therefore, they propose that receiving head 
injury at an early age may prime the brain to be less susceptible to 
the effects of a later neurotrauma, a theory known as “precondi-
tioning” (59). DeRoss et al. also showed that while one concussive 
impact resulted in diminished performance in 85% of animals, 
less deviation was seen with subsequent impacts. The number of 
impacts has an inverse relationship with animal performance in 
the water maze (70). Again, the mechanism behind these findings 
is not entirely clear as those animals sustaining multiple injuries 
also received additional exposure to the water maze, allowing 
for enhanced training/learning of the maze (70). Therefore, 
while repetitively injured animals did better than single-injured 
animals in the maze, this is likely a product of increased training 
rather than a protective response but this cannot be said with 
absolute certainty.
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Severity of impacts
The effect of injury severity on likelihood of neurodegenerative 
disease development is not entirely clear, although some clini-
cal reports indicate that more severe injury results in a greater 
predisposition for AD development (33, 71). What is known from 
preclinical studies using an array of animal models is that there is 
a dose-dependent increase in neural injury markers and cognitive 
deficits with more severe injury (22, 72–76). Similarly, repetitive 
“mild” injuries may produce a phenotype more consistent with a 
single more severe injury (72).

How “mild” TBI contributes to the likelihood of developing 
CTE remains unclear. Emerging evidence from preclinical stud-
ies raises concern about lasting effects of subthreshold injuries 
when sustained in a rapid and repetitive fashion. These repetitive 
injuries contribute to vascular reactivity and subsequent axonal 
degeneration in vivo (53). Some studies suggest that severity of 
injury may dictate the rest period required to minimize cumula-
tive cognitive deficits, although further studies are required to 
validate these findings (54).

Similarly, preclinical studies, even those in which only a 
mild force is imparted to a thinned cranium, indicate that a 
substantive inflammatory response is produced quickly after 
injury (77). This response is associated with heightened vas-
cular permeability, also seen clinically, as well as microglial 
response (77). It is these mechanisms, both primary and 
secondary, that may contribute to neurodegenerative disease 
post-neurotrauma.

In vitro studies may be of further use in addressing the role of 
injury severity, particularly in subconcussive/subthreshold-type 
studies, as levels of injury and subsequent cellular responses can 
be monitored rapidly and performed over a greater number of 
iterations at a lower cost in comparison to in  vivo studies. In 
fact, a number of injury paradigms and mechanisms have been 
investigated successfully in this manner, including fluid pulse-
induced shear stress, repetitive stretching, and other mechanical 
deformation procedures, both in vitro and ex vivo (60, 63, 78–81). 
The in vitro shearing studies found a significant amount of axonal 
beading and glial death (82).

Age at Time of impacts
Age is the biggest risk factor for the development of neurodegen-
erative disease and has been associated with poor outcomes fol-
lowing TBI in a variety of clinical and preclinical reports (83–91). 
Similarly, neurotrauma has been associated with an increased risk 
of neurodegenerative disease development with regard to AD (71, 
92–94), PD (95), and CTE (2, 5, 7, 16, 17, 96–103). One of the pri-
mary questions currently in the field is how the age at which the 
patient sustains the neurotrauma pertains to the development, or 
lack thereof, of CTE.

Similar findings have been observed in preclinical studies. 
Mychasiuk and colleagues showed that TBI during brain devel-
opment leads to worse outcomes than TBI affecting the mature 
brain (59). Preclinical work has also shown that young animals 
experience less edema than middle-aged animals following TBI 
(104). The increased edema is associated with an increase in lesion 
size in aged rodents experiencing TBI (105). TBI in aged rodents 
is also more likely to increase sensorimotor and cognitive decline 

(85). TBI in youth may ultimately be more detrimental for social 
development, whereas severe injury in the elderly results in rapid 
cognitive decline due to increased edema and therefore, lesion 
size. In regard to human TBI, it is unclear if the elderly would have 
a more progressive form of the disease similar to rodent studies 
or if the disease would develop in the normal manner. It is also 
important to consider that males <35 years old are the most likely 
to have repetitive TBIs, a group associated with heavy participation 
in sports and now the military (106). Future preclinical studies 
should therefore continue to investigate TBI secondary mecha-
nisms in both young and aged animals with particular attention 
paid to addressing repetitive injury paradigms and the develop-
ment of CTE-like features, both behaviorally and biochemically.

Mechanism of impact
Chronic traumatic encephalopathy has been diagnosed in athletes 
sustaining direct impacts as a result of participation in warfare, 
football, wrestling, and soccer (2, 5, 7, 16, 17, 96–103). The mecha-
nism of injury is different between blast and athletic concussions, 
but how these mechanisms relate to injury progression remains 
to be elucidated. For blast, primary to quaternary injury must be 
considered (107). Other important questions include what is the 
influence of linear versus rotational impacts? What is the effect 
of direct impacts such as a football tackle versus indirect impacts 
such as primary blast exposure? Furthermore, how can com-
parisons most accurately be made across these various impacts? 
Are accelerometers and recording systems (such as the HITS 
system) the best method for understanding and comparing these 
impacts? What role does high-speed videography and subsequent 
kinematic analysis play? Each of these questions remains to be 
answered and may provide further insight into understanding the 
role that impact type plays in CTE development.

Biochemical Mechanisms
Interestingly, glymphatic clearance has recently been shown to 
play a role in injury progression. Iliff and colleagues showed 
increased tauopathy accumulation in aquaporin knock-out mice 
following traumatic brain injury due to disrupted glymphatic 
clearance (108). It has yet to be determined how the primary 
injury mechanism causes the disruption to glymphatic channels. 
Cernak proposed an interesting theory about low-frequency 
stress waves transmitting kinetic energy through tissue (109). This 
mechanism may account for the dysfunction of the aquaporin 
channels. The energy transfer may also injure other cellular com-
ponents such as axons or vessels. Chodobski and colleagues have 
shown that kinetic transfer of energy can account for blood–brain 
barrier disruption (110). Blood–brain barrier disruption post-
injury can trigger increased neuroinflammation. Agoston and 
colleagues showed that blast traumatic brain injury, in particular, 
causes persistent neuroinflammation, which leads to behavioral 
deficits (111). The neuroinflammation can also contribute to 
post-traumatic epilepsy and tauopathy (112). Investigating how 
tauopathy spreads is a topic warranting further investigation 
(113). Furthermore, Kobeissy and colleagues highlight in their 
recent review that underlying neuronal damage can cause lasting 
neuropsychiatric deficits such as post-concussion syndrome and 
post-traumatic stress disorder (107).
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Role of Genetics
Genetics and lifestyle choices may play a role in likelihood of 
sustaining a TBI and also the outcome following a TBI. Little to 
no evidence currently exists regarding lifestyle choices associated 
with TBI and only recently has genetic contribution to CTE been 
addressed. Specifically, it is well known in the human literature 
that the APOϵ4 allele is associated with worse outcome following 
TBI (114). APOϵ4 and APOϵ3 have also been implicated in the 
development of both CTE and AD (13, 115). The mechanism by 
which APOϵ4 worsens outcome following TBI is poorly defined 
(55), but targeted replacement of the allele in mice has allowed 
focused research into cholesterol metabolism and may lead to 
insights in the field of traumatic brain injury and subsequent neu-
rodegeneration (116). Notably, a study by Maroon and colleagues 
recently demonstrated that there was no significant difference 
between ApoE4 carriers in a population of patients afflicted with 
CTE when compared to the general population, suggesting that 
perhaps ApoE may not represent a significant risk factor for CTE 
development, even in individuals exposed to neurotrauma (117).

Other genetic influences have also been observed but are 
currently limited to preclinical evidence. Rare genetic altera-
tions such as mutation of the CACNA1A calcium subunit gene 
have also been shown to lead to poor TBI outcomes in human 
patients (118). Recent preclinical studies have shed light on 
other potential genetic factors that may influence TBI outcomes. 
Decreases in micro RNA 23a and 27a increase apoptosis follow-
ing TBI in rodents (119). Deficient caveolin expression can exac-
erbate neuroinflammation post-TBI (120). The knock-in mouse 
APP696swe has accelerated deposition of Aβ following TBI (35). 
Emerging evidence also suggests dysfunctional mitochondrial 
genes following TBI such as Fas, Apaf1, and Chp. Interestingly, 
these genes become more dysfunctional and mutated with time 
after mild TBI (121). TBI can also induce DNA fragmentation 
leading to an upregulation of p53, a critical regulator of cell 
cycle (122). On the other hand, upregulation of insulin growth 
factor expression prior to TBI is associated with neuroprotection 
(123). Similarly, genetic regulation of aquaporin 4 channels can 
reduce edema formation following TBI in rodent models (124). 
Surprisingly, disruption or the PARP1 gene offers protection 
against TBI hypoxia (125). Studying genetic risk factors for TBI is 
an area of growing importance and requires further investigation. 
Understanding factors that lead to increased or decreased TBI 
severity may also allow the development of novel pharmaceutics 
for the prevention of neurodegenerative disease.

An emerging area is the role of epigenetic modulation following 
TBI. Epigenetic markers are now being used preliminarily to predict 
recovery following injury (126). VandeVord and colleagues show 
enhanced methylation of DNA in the rat hippocampus following 
blast traumatic brain injury (127). These epigenetic changes are 
mediated by HDACs and DNMTs (128). Interestingly, the methyla-
tion changes are cumulative with repetitive injury (129). HDAC has 
been shown to contribute to GSK3β activation, which is a known tau 
kinase. When HDAC is inhibited, white matter damage is reduced 
(130). Epigenetic regulation has been tied to the development of 
post-traumatic stress disorder clinically (131). Targeting epigenetic 
regulation may therefore be a viable target in preventing tauopathy 
and behavioral deficits following traumatic brain injury.

influence of Gender
The influence of gender on outcome after TBI remains controversial, 
particularly in light of the few cases of CTE diagnosed in women. 
Some studies claim that females have better outcomes following neu-
ral injury (132), while others report no change (133, 134), or worse 
outcome (135). Estrogen treatment has shown improved outcomes 
in rodent models of neural injury (136–139), including TBI (140, 
141). Female rodents exhibit better outcomes after neural injury as 
evidenced by increased neurotrophin production (140), decreased 
neuroinflammation (142), and better performance on motor tasks 
(143). Clinical evidence shows that female patients exhibit lower oxi-
dative damage after TBI (144), which could be the result of a higher 
estrogen circulation following injury. Gender differences should be 
considered when conducting clinical trials for TBI therapy.

Interestingly, Dixon and colleagues found that TBI in female 
humans reduces estradiol in the CSF (145). The reduction of estra-
diol may have unique long-term effects because it is not yet known 
if this is transient or permanent. The limited amount of data about 
women with TBI has restricted the comparisons of injury between 
genders (146). The majority of traumatic brain injuries in women 
are subdural hematomas from falls. Elderly women with subdural 
hematomas tend to fair worse than the general TBI population as a 
whole (147). Menopause may therefore dampen the neuroprotec-
tive physiological properties mediated by estrogen post-injury. 
TBI in elderly women is also linked with earlier onset AD (148). 
Hormonal changes may also be a contributing factor to CTE, but 
this has yet to be verified. It is clearly based on the limited pre-
clinical and clinical data that further investigation into the gender 
differences surrounding TBI outcome is warranted.

effect of environment
Another area of investigation required for elucidation of factors 
influencing the likelihood and/or severity of CTE development 
following neurotrauma includes the effect of environment. Areas 
of particular interest include social support, diet, use of supple-
ments, and use of drugs or anabolic steroids.

Good social support has been shown to decrease the likeli-
hood of developing a postconcussional disorder following acute 
head injury (149). Strong family support is linked to better out-
comes (150). Another important feature of environment is diet. 
While the effect of diet is well understood with regard to general 
health, there are limited studies relating diet and mental health, 
particularly in the context of traumatic brain injury. A preclinical 
study conducted by Mychasiuk and colleagues showed that high-
fat diet in conjunction with TBI resulted in cumulative deficits 
on assessments of motor function, short-term working memory, 
and produced depressive-like effects compared to animals with 
normal diet and TBI (59). Similarly, administration of dietary 
supplements such as Vitamin E and DHA has been shown to 
improve outcomes from TBI in numerous studies (34, 151–154). 
The suggestion has been made previously, based on evidence that 
some cases of diagnosed CTE occurred in former athletes with a 
history of anabolic steroid use, that anabolic steroid use may pre-
dispose these athletes to CTE development. While this question 
has not been completely resolved in terms of studying markers of 
CTE, preliminary studies found no difference in APP expression 
post-TBI regardless of when anabolic steroids were used (155).
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Preconditioning
Any neural injury model has the potential to be complicated 
by the concept of preconditioning. Preconditioning at the most 
basic levels refers to neuroprotection for a given injury induced 
by a prior stimulus/injury. The concept of preconditioning has 
been well documented in a variety of neural injury models rang-
ing from ischemic stroke to TBI (13). Initial stimuli that serve a 
protective effect in a subsequent injury include but are not limited 
to brief periods of ischemia, chronic exposure to moderate heat 
or heat acclimation, and subthreshold or mild injury (13). The 
proposed mechanism is that neuronal antioxidant machinery is 
upregulated with subthreshold injury thereby increasing the cells 
ability to respond to free radical production during subsequent 
injuries (156). Whether preconditioning serves a protective phe-
nomenon in the development of CTE is unclear, but the general 
clinical consensus is that any brain injury no matter how small 
may be detrimental long term, minimizing any potential benefit 
of the preconditioning phenomenon (66, 157). This is in contrast 
to preclinical literature demonstrating that sustaining repetitive 
mild injury prior to a single severe injury protects the animal 
from the most deleterious effects of the severe injury (158). In 
other words, animals receiving repetitive mild injury prior to 
a severe injury do better than animals receiving a single severe 
injury (158). Similar findings have been observed in vitro in which 
subthreshold stretch prevented more deleterious injury when a 
threshold stimulus was given (60). The concept of precondition-
ing versus additive injury is captured pictorially in Figure 2.

SUMMARY

In conclusion, understanding CTE as a disease remains in its 
infancy and current studies remain largely speculative in nature 
without prospective clinical investigation. The required clinical 

studies to advance the field mandate extensive financial resources 
and time. Preclinical studies represent the most promising 
mechanism for studying many of the basic biologic questions 
about CTE, as discussed above. While these studies are continu-
ing to evolve, numerous groups have reported exciting findings. 
Better modeling has allowed more extensive biochemical and 
behavioral characteristics to be defined. Now that our laboratory 
and others have established CTE models, options for translational 
investigation of CTE pathophysiology abound. In this work, we 
discussed numerous avenues for addressing translational ques-
tions, namely the role of (1) inter-injury interval, (2) number 
of impacts, (3) impact severity, (4) age at time of impacts, (5) 
mechanism of impact, (6) genetics, (7) gender, and (8) effect of 
environment on the development of CTE. We also highlighted 
some of the challenges of CTE modeling and specific require-
ments for successful models. By improving our understanding 
about CTE mechanisms, we believe that significant strides can 
be made not only in understanding CTE but also potentially 
developing prevention and therapeutic-related approaches. A 
companion manuscript describes our collective experience in 
modeling CTE, both neuropathologically and behaviorally.
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