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In acute stroke, the major factor for recovery is the early use of thrombolysis aimed at 
arterial recanalization and reperfusion of ischemic brain tissue. Subsequently, neurore-
habilitative training critically improves clinical recovery due to augmention of postlesional 
plasticity. Neuroimaging and electrophysiology studies have revealed that the location 
and volume of the stroke lesion, the affection of nerve fiber tracts, as well as functional 
and structural changes in the perilesional tissue and in large-scale bihemispheric net-
works are relevant biomarkers of post-stroke recovery. However, associated disorders, 
such as mood disorders, epilepsy, and neurodegenerative diseases, may induce sec-
ondary cerebral changes or aggravate the functional deficits and, thereby, compromise 
the potential for recovery.

Keywords: cerebral ischemia, infarct location, thrombolysis, recovery, perilesional plasticity, network 
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iNTRODUCTiON

Stroke is one of the leading causes of persistent disability in Western countries (1). It induces acute 
deficits of motion, sensation, cognition, and emotion. In the majority of patients, stroke results from 
an interruption of cerebral blood supply and subsequent ischemic brain damage, while >25% of 
patients suffer from intracranial hemorrhage (2, 3). Recovery from stroke is a multifaceted process 
depending on different mechanisms that become operational at different phases after the acute insult 
ranging from hours to many months (4). Importantly, intravenous and intra-arterial thrombolyses 
have opened new avenues to substantially reverse the amount of brain damage and the neurological 
deficit after stroke (5–8). Furthermore, neuroscience-based strategies in neurorehabilitation 
have improved the fate of stroke patients. Specifically, training approaches including very early 
mobilization, antigravity support for walking, basic arm training, and arm ability training can be 
tailored to the neurological deficits to optimally engage the residual capacities of the patients (9–11). 
From a technical point of view, neuroimaging and neurophysiological methods have offered means 
to investigate the recovery potential of stroke patients already in the acute stage of stroke (12–14). 
In particular, these non-invasive neuroscientific measures substantiate clinical observations and 
have opened new insights into the neuroscientific basis of recovery mechanisms from stroke. More 
recently, the recovery potential after stroke has been studied by using multivariate analyses in which 
epidemiological factors have also been taken into account (15). We address here the mechanisms of 
post-stroke recovery including postlesional plasticity and disease-related limitations of the recovery 
potential in acute ischemic stroke. 
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MeCHANiSMS OF POST-STROKe 
ReCOveRY

Dynamics of Cerebral ischemia
A sudden interruption of arterial blood supply leads to distur-
bances of neural function and the clinical appearance of neuro-
logical or neuropsychological deficits. In the most severe cases, 
ischemia is so severe that structural brain damage and the forma-
tion of ischemic brain infarction occur (Figure 1). The cessation 
of cerebral blood circulation induces an immediate suppression 
of cerebral electrical activity with peri-infarct depolarization 
leading to repeated episodes of metabolic stress (16, 17). There is 
good evidence from animal experiments that ischemic damage of 
neurons and brain tissue occurs in proportion to the reduction of 
regional cerebral blood flow (rCBF) (16). Thus, the acute occlu-
sion of a cerebral artery, the thereby caused local depression of 
rCBF, and its subsequent electrical, metabolic, and ionic changes 
are critical factors determining the extent of a cerebral ischemic 
infarct (18). Imaging and neurophysiological studies in humans 
have shown that, similar to animal experiments, spreading 
depression occurs in severe ischemic stroke leading to progres-
sive infarct expansion (19, 20).

After occlusion of a cerebral artery, an area of impaired perfu-
sion surrounds an area with a complete cessation of perfusion 
whose extent is determined by the compensatory recruitment of 
arterial collaterals. In the area of misery perfusion, the so-called 
penumbra, the extraction of oxygen from blood into brain tissue 
is enhanced as was shown in stroke patients by multiparametric 
imaging with positron emission tomography (21, 22). The 
advent of magnetic resonance imaging (MRI) has allowed a 
spatial dimension to be introduced. It has been shown that the 
area of impaired perfusion typically exceeds the area of reduced 
extracellular water diffusion, thus signifying virtually reversible 
brain tissue damage due to ischemia (23–25). In fact, there is a 
good correspondence between the area with enhanced oxygen 
extraction and the perfusion–diffusion mismatch area in acute 
stroke (26, 27).

The area of reduced brain perfusion undergoes a dynamic 
lesion transformation within the first 24 h after onset of ischemia 

FiGURe 1 | Successful thrombolysis. (Left) Severe perfusion deficit in the 
precentral gyrus (red) as assessed in a time-to-peak map before 
thrombolysis. (Middle) Point-like abnormality in diffusion-weighted imaging at 
the same time signifying the perfusion–diffusion mismatch. (Right) Two small 
lesions in diffusion-weighted imaging 24 h after intravenous thrombolysis 
accompanied by complete recovery from hemiparesis.

(28–30). In a persisting arterial occlusion, the infarct lesion 
expands up to 24 h (31, 32). Beyond the acute time window of 
about 24  h, secondary changes including an early phase with 
vasogenic edema and a later phase with inflammatory infiltration 
evolve (33–35). Lymphocytes and macrophages have been shown 
to accumulate in the perivascular vicinity ~6 days after a cerebral 
infarction and are heterogeneously distributed within the infarct 
area (36). Due to their immunological competence, these cells 
are suited to augment the infarct lesion raising the interesting 
notion that immunosuppression may have a beneficial affect in 
acute stroke (37).

Reversal of Cerebral ischemia
In acute ischemic stroke, intravenous thrombolysis is targeted 
toward the rescue of brain tissue by early recanalization of the 
occluded cerebral artery. It has been shown to be effective up to 
4.5 h with maximal efficacy within the first 90 min after symptom 
onset (5, 6, 38). The beneficial role of early recanalization was 
demonstrated by functional brain imaging (39–42) and monitor-
ing with transcranial Doppler sonography (43, 44). More recently, 
neuroradiological interventions with intra-arterial thrombolysis 
and/or thrombectomy have been shown to be at least as effective 
as intravenous thrombolysis even in distal carotid or proximal 
middle cerebral artery (MCA) occlusion (8). By multiparametric 
MRI, it became evident that brain tissue at the risk of ischemic dam-
age can be salvaged by tissue reperfusion (Figure 1). Important 
factors determining the extent of a brain infarct are the severity 
and duration of ischemia, the dimension and composition of the 
causal arterial emboli, the anatomy and the vascular changes of 
the cerebral arteries, and the presence of diabetic hyperglycemia 
(29, 41, 45–47). In failed reperfusion, severe edema formation 
will develop that can hardly be limited pharmacologically. Thus, 
to rescue patients from malignant brain swelling after stroke 
craniectomy has been advocated as a symptomatic therapy which 
is a life-saving action but does not reduce the neurological deficit 
in patients older than 60 years (48).

Brain infarcts may result from cardiac or artery to artery 
embolism, from thrombotic occlusion of the small penetrating 
arteries complicating vessel hyalinosis or microatheroma (49, 
50). While infarcts in the territory of the posterior cerebral artery 
(PCA) are typically embolic in origin affecting the entire supply 
area of the PCA (51), infarcts in the anterior cerebral artery (ACA) 
territory are usually of atherosclerotic origin and more variable 
in lesion pattern and neurological deficit (52). The situation is 
most complex in the MCA territory because of the arborization 
of the MCA, the large territory supplied by the artery, and the 
widespread anastomoses of the leptomeningeal arterial branches 
fed from the ACA or PCA. The poorer these collaterals are due 
to arterosclerotic changes in the intracranial arteries, the more 
severe is the initial ischemic event and the resulting stroke lesion 
(41, 53, 54).

The location and the volume of the cerebral infarct deter-
mine the neurological deficit in an individual patient as shown 
for sensorimotor as well as cognitive and emotional functions 
(55–61). Large brain infarcts involving subcortical white 
matter may affect multiple brain systems which may result 
in complex neurological syndromes, such as apraxia, neglect, 
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TABLe 1 | Classification of ischemic brain infarcts.

Type infarct location Pathogenesis Response to 
thrombolysis

i Territorial Occlusion of cerebral 
artery branch

I.1 Cortical Distal branch Early

I.2 Cortico-subcortical Proximal branch Limited

ii Striatocapsular Occlusion of MCA stem

II.1 ±Insula Infarct core Early

II.2 +Periventricular  
white matter

Large lesion Limited

iii Lacunar hyalinosis of 
arterioles

Limited

III.1 Fiber tracts

III.2 Internal capsule 
(anterior choroidal 
artery)

III.3 Basal ganglia, lateral 
thalamus

III.4 Medial and anterior 
thalamus (perforating 
branches of posterior 
cerebral artery)

iv Chronic hemodynamic 
deficit + downstream 
emboli

IV.1 Cortico-subcortical Extracranial artery 
occlusion ± intracranial 
large artery 
occlusion ± accompanied by 
reactive vasodilation

Limited

IV.2 Arterial borderzone Extracranial artery occlusion

Adapted from Seitz and Donnan (75).
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and Gerstman’s syndrome (62–64). In such patients, measures 
of fiber tract damage or cortical activations have been found to 
predict the degree of recovery (55, 65–68). Similar observations 
have also been made for language, somatosensory and visual 
functions (69–72).

Residual Brain infarct Lesions After 
Thrombolysis
The successful recanalizing therapy is of fundamental importance 
for the topography and volume of the resulting ischemic infarct 
lesion (73, 74). This was taken into consideration in developing a 
refined classification of ischemic brain infarcts (75). It should be 
stated, however, that the functional prognosis of ischemic stroke 
is worse than that in cerebral hemorrhage in stroke survivors 
(76). This most likely reflects the structural damage of brain 
tissue in ischemic stroke, while in cerebral hemorrhage recovery 
can occur largely upon absorption of the hematoma. Accordingly, 
territorial Type I infarcts depend on the size of the emboli and the 
location of the arterial occlusion (Table 1). Distal arterial branch 
occlusion gives rise to small infarcts entirely limited to the cer-
ebral cortex, while proximal arterial branch occlusions result in 
larger infarcts involving the cerebral cortex and the underlying 

white matter (77, 78). In MCA stroke, these territorial infarcts do 
not destroy the entire motor and somatosensory representation 
areas, nor the complete descending motor cortical output or 
afferent sensory input tracts (55, 79, 80). This allows sufficient 
recovery potential associated with perilesional reorganization in 
the adjacent cerebral tissue in response to various neurorehabili-
tative approaches.

Ischemic lesions of large parts of or the entire striatocapsular 
region typically result from an embolic occlusion of the MCA 
stem (81) (Table 1). If reperfusion is achieved early, only the deep 
perforating arteries and the arteries that supply the insular cortex 
may remain obstructed causing infarcts of the lentiform nucleus 
and insula (82). However, when collaterals are insufficient due to 
arteriosclerotic changes in multiple cerebral arteries (41, 53, 54), 
the infarct lesions become larger involving to a larger extent also 
the hemispheric white matter. This causes hemispatial neglect 
and conduction aphasia due to cortico-cortical and cortico-
subcortical disconnections (62, 83, 84).

Small-sized, lacunar-type, infarcts (Type III infarcts) result 
from an occlusion of the small penetrating cerebral arteries or 
even arterioles. They typically occur in the anterior choroidal 
artery, the deep perforating lenticular MCA branches, the 
thalamic branches of the PCA, or in brainstem structures and 
the pons (85, 86). In spite of their small spatial dimension, but 
due to their strategic location, they cause well-defined neuro-
logical syndromes, such as pure motor and pure sensory stroke 
(Table  1). These infarcts have a limited recovery potential as 
predicted by a loss of motor-evoked potentials and asymmetry 
of water diffusivity on MR imaging (55, 87, 88). The crucial role 
of the white matter for functional outcome becomes apparent 
from the observation that small infarcts in the precentral gyrus 
allow for profound motor recovery, whereas infarcts of similar 
volume in the periventricular white matter or the internal cap-
sule may induce a severe and persistent hemiparesis (89, 90). 
Interestingly, white matter damage in stroke was found in a large 
genome-wide association study to be related to a mutation in 
chromosome 17 (91).

Patients with a chronic occlusion of extracranial cerebral 
arteries resulting from dissection or long-standing cerebro-
vascular disease constitute Type IV infarcts (Table  1). These 
patients may become symptomatic with transient ischemic 
attacks due to small embolic or hemodynamically induced 
watershed infarcts in cerebral white matter (92, 93). In these 
patients, blood flow depression induces a reactive vasodilatation 
of the intracranial blood vessels resulting in a severe delay in 
cerebral brain perfusion in the presence of an enhanced cerebral 
blood volume (94, 95).

Perilesional Plasticity
Ischemia and reperfusion evoke a large number of biochemical, 
metabolic, and immunological processes that evolve sequentially 
as identified in animal experiments (96). In addition, there are 
rapid changes in the expression of genes, neurotransmitters, 
such as glutamate and GABA, as well as neurotrophic media-
tors implicated as molecular substrates related to perilesional 
reorganization (21, 97–101). These biochemical changes are 
accompanied on the microscopical level by the growing of axons 
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TABLe 2 | Techniques, actions, and effects of non-invasive stimulation of the human brain.

Transcranial magnetic stimulation (TMS) Transcranial electrical stimulation

Neuromodulatory effects

Single pulse TMS Paired-pulse TMS Repetitive TMS Patterned rTMS Direct current stimulation 
tDCS

Alternating current 
stimulation

Random noise 
stimulation

Intracortical (single 
coil)

1 Hz TMS 
(inhibitory)

Continuous theta-burst 
stimulation (inhibitory)

Cathodal tDCS

Cortico-cortical (two 
coils)

>4 Hz TMS 
(excitatory)

Intermittent theta-burst 
stimulation (excitatory)

Anodal tDCS

After Liew et al. (119).

November 2015 | Volume 6 | Article 2384

Seitz and Donnan Stroke Recovery

Frontiers in Neurology | www.frontiersin.org

and formation of new synapses in the perilesional vicinity and in 
remote locations in functionally related areas in the affected and 
contralesional “non-affected” hemisphere (102, 103). In particu-
lar, they occur when animals recover in an enriched environment 
or are subjected to dedicated training (104, 105).

Non-invasive brain stimulation techniques have provided 
means to explore changes of cortical excitability following stroke 
in humans. There are different technical approaches that allow to 
enhance or to suppress brain activity (106). By these methods, 
diagnostic and therapeutic goals were aimed for as summarized in 
Table 2. For example, using paired-pulse TMS, it was found that 
within the first 7 days after a brain infarct, there is an enhanced 
cortical excitability in the cortex adjacent to the brain lesion 
(107–109). In fact, the sites of residual motor representation move 
into the region of maximal cortical disinhibition (110). Also, 
fMRI activation areas related to finger movements were found to 
remap to spared more dorsal locations of the motor cortex (111, 
112). Notably, an enhanced excitability was propagated to the 
contralesional hemisphere (14, 107–109, 113). It decreased in the 
patients who showed a good recovery within the 90 days, while it 
persisted in those patients with poor recovery (114). In keeping 
with these observations, functional MRI performed ~2 days after 
stroke revealed an area in the ipsilesional postcentral gyrus and 
posterior cingulate gyrus that correlated with motor recovery 
~3 months after stroke (115). Conversely, recovery of hand func-
tion was associated with progressively lateralized activation of the 
affected sensorimotor cortex (116–118).

Non-invasive electrical anodal stimulation of the affected 
motor cortex was found to augment motor skill acquisition due 
to improved consolidation but not due to long-term retention of 
the task (120). In contrast, application of 1-Hz repetitive TMS 
(rTMS) that downregulates the contralesional motor cortex 
improved the kinematics of finger and grasp movements in the 
affected hand (121). This was accompanied by an overactivity in 
the contralesional motor and premotor cortical areas predicting 
improvement in movement kinematics. One may wonder if long-
term retention of the induced effects can be achieved by longer 
lasting stimulation or by the combination of voluntary action 
and direct brain stimulation preferentially in the acute phase 
after stroke. The combination of electrical stimulation of finger 
extensor muscles and training over 2–3 weeks did not result in a 
greater improvement of dexterity of the affected hand as assessed 
with the Jebson test than each intervention alone (122). Subjects 
with an intact motor cortex showed a greater improvement than 

those who had damage of the motor cortex. Similarly, in chronic 
stroke-induced aphasia rTMS over the left inferior frontal gyrus 
resulted in an increase of reaction time or error rate in a semantic 
task suggesting restoration of a perilesional tissue in the left 
hemisphere after stroke (123, 124). Given the human postlesional 
changes of cortical excitability it may be intriguing to rebalance 
the interhemispheric rivalry by direct cortical stimulation or 
peripheral stimulation (125–128). An even greater effect was 
observed when bihemispheric direct cortical stimulation was 
used to activate the affected motor cortex and to inhibit the 
contralesional motor cortex (129). Cortical stimulation in asso-
ciation with motor training also improved motor performance 
(128, 130–132). Along the same line, combining peripheral 
nerve stimulation to the affected hand with anodal direct cur-
rent stimulation of the affected motor cortex in chronic stroke 
facilitates motor performance beyond levels reached with either 
intervention alone (133).

infarct induced Damage to Cortico-
Cortical and Cortico-Subcortical 
Connections
Corticospinal fibers are key factors for the recovery of motor 
function after stroke as demonstrated with different imaging 
modalities as well as electrophysiological measures (55, 87, 
134–136). In non-human primates, the cortico-reticulo-spinal 
and cortico-rubro-spinal tracts are known to mediate motor 
functions in case of corticospinal tract lesions (137, 138), since 
these tracts have been described as functionally redundant in 
healthy animals (139). In humans, however the corticospinal 
tract is of key relevance for motor recovery (Figure 2). In fact, 
the integrity of the corticospinal tract determines the movement 
related motor cortex activation (65, 87). When there are no motor 
evoked potentials and there is poor recovery in chronic patients, 
the fractional anisotropy of the posterior part of the internal 
capsule as assessed by diffusion tensor imaging was altered in the 
affected hemisphere (68, 87). Notably, these patients had bilateral 
fMRI activations in relation to finger movements, while in the 
patients with a lower asymmetry, there was an activation lateral-
ized to the affected hemisphere.

There are not only changes in the efferent motor fiber tracts but 
also in the cortico-cortical and probably also cortico-subcortical 
fiber tract systems during recovery. In fact, the intracortical excit-
ability as assessed with TMS was increased in motor cortex of 
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FiGURe 2 | Striatocapsular stroke (Type ii.1) in a patient with 
persistent hemiplegia. Note the small but complete destruction of the 
posterior limb of the internal capsule (arrow). Color bar: green fronto-occipital 
diffusion, red right-left diffusion, blue dorso-ventral diffusion. By permission of 
Oxford University Press (URL www.oup.com), Free permission Author reusing 
own material, p. 82 fig: 6.4 (left part) from “Stroke Rehabilitation” edited by 
Carey and Leeanne (140).
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both hemispheres both in subcortical and cortical infarcts (108, 
114, 141, 142). Conversely, ipsilesional MEPs were more easily 
elicited from proximal muscles in stroke patients than in healthy 
subjects (143–145). Moreover, motor cortical connectivity was 
shown by diffusion tensor imaging to be enhanced after stroke 
(146). Additionally, orientation uncertainty and greater white 
matter complexity correlated with functional outcome and were 
possibly triggered by functional demands (146, 147). In addition, 
it was found recently that the pyramidal tract splits up in the pons 
forming a ventral and a dorsal tract. When both tracts are affected, 
patients have a poor recovery, while continuity of the projections 
in the dorsal portion was characterized by good recovery (136). 
In addition, in chronic stroke patients, DTI-derived measures 
of transcallosal motor fibers as well as ipsilesional corticospinal 
tracts pyramidal tract and alternate fiber tract determine the 
therapeutic response to rehabilitation. The more the diffusivity 
profiles resembled those observed in healthy subjects, the greater 
a patient’s potential for functional recovery (88). These findings 
accord with the evidence from functional imaging suggesting that 
the concerted action of both cerebral hemispheres is required 
for recovery. This corresponds well to the observation that even 
patients with an excellent recovery may show a bilateral activa-
tion pattern (148, 149). This abnormal activity involved premotor 
cortical areas and was largely reminiscent of activity patterns in 
learning but are essentially transient in nature (84, 115, 149). 
Notably, tiny activation areas in contralesional motor cortex were 
related to mirror movements that frequently occur initially after 
stroke (150).

Network types of neuroimging data analysis have revealed 
that there is a pathological interhemispheric interaction between 
the ipsi- and contralesional motor cortex as well as between the 
ipsilesional supplementary motor area (SMA) and contralesional 
motor cortex in patients with a single infarct lesion (151, 152). In 
unilateral movements of the affected hand, there was an inhibitory 
influence from the contralesional to the ipsilesional motor cortex 
which correlated with the degree of motor impairment (152). In 
bimanual movements, the interaction of the ipsilesional SMA and 
the contralesional motor cortex was reduced, and this correlated 
with impaired bimanual performance. This can be related to the 
observation that there was less activation in contralesional motor 
cortex when the motor task did not require working memory 
demands and no change when the task required online visual 
feedback monitoring (153). Furthermore, connectivity strength 
of the prefrontal cortex to the premotor cortex was enhanced in 
relation to motor imagery highlighting its role for higher order 
planning of movement (154).

DiSeASe-ReLATeD LiMiTATiONS OF THe 
ReCOveRY POTeNTiAL

Associated Diseases
It has been known for 30  years that patients with acute stroke 
may develop cognitive impairment and mood disorders which 
may aggravate their clinical conditions (155, 156). However, only 
recently it was shown in a large database of stroke patients sub-
jected to systemic thrombolysis that the pre-existing functional 
impairment may reduce the patients’ response to thrombolysis 
and the survival rate (157). In a prospective, open label study of 
192 patients (68 ± 13 years, 50% males) subjected to intravenous 
thrombolysis the patients was found to improve (P  <  0.0001), 
while 18% deceased within 100 days (158). This was predicted 
by older age (76 ± 10 years, P < 0.05) and more severe affection 
on admission (P < 0.0001). Also, these patients more frequently 
had atrial fibrillation (P  <  0.03) than the surviving patients. 
Furthermore, it was found that stroke patients with a severe pre-
stroke disability have a virtually 50% risk of deceasing. It seems 
that women are particularly liable of depression after stroke and 
that this is related to a greater stroke severity (159). Of note are 
patients with migraine that to a large proportion suffer from small 
vessel disease (160) or hemorraghic stroke (161). This is of great 
functional relevance since white matter disease due to small ves-
sel disease enhances the risk of depression, physical disability, and 
a reduction of quality of life (162). Furthermore, there is evidence 
from a huge meta-analysis that ischemic stroke is associated with 
the presence and subsequent development of dementia, particu-
larly in recurring ischemic stroke (163). In addition, dementia was 
found to be associated with increased letality (164). Interestingly, 
small vessel disease is the most frequent vascular abnormality 
in patients with Parkinson’s disease (165, 166). These vascular 
changes seem to predispose patients with Parkinson’s disease to 
cerebrovascular accidents (167). Arteriosclerosis was found to be 
of particular relevance for Parkinsonian gait, while macroscopi-
cal infarcts seem to result in rigidity (168). Moreover, infarcts 
induce epileptic seizures (169), which may mimic stroke as in 
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FiGURe 3 | Severely reduced spontaneous movement activity in the affected left arm in right hemispheric brain infarct. Shown is the recording time 
between 4 p.m. until 10 a.m. the following day. The intermittent slow wave activity in electroencephalographic recordings predicted poor motor recovery. Dotted 
lines indicate seconds. From Ruan and Seitz (174).
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Todd’s paresis and impair recovery due to reduced consciousness. 
Beyond that stroke may induce changes of affect including alex-
ithymia (58) or depression (170). The latter was found to be most 
severe in chronic obstructive pulmonary disease, smoking, and 
in patients with poor socioeconomic status. Also the increasing 
lesion load with recurrent strokes in the elderly may predispose 
to depression (171) and death (172). Thus, there is an intimate 
interaction of stroke and comorbities the latter of which impair 
the recovery potential of stroke patients. Deeper insight into the 
pathophysiology of these interactions is required to counteract 
these detrimental effects and to enhance the recovery potential 
of the multimorbid stroke patients.

Functional Deficits in Brain infarcts
The neurological deficit has two expressions. There is the impair-
ment to perform actions on command which is usually assessed 
in clinical examinations. And there is the decrease in spontaneous 
motor activity which may be functionally relevant (Figure 3). In a 
prospective study of 25 patients (63 ± 10 years) with acute MCA 
stroke and seven control patients without neurological disease 
(61 ± 14 years), movement activity was measured continuously 

for 4 days in both arms using Actiwatches (Cambridge Research 
Instruments, UK). Stroke patients with an initial decline in arm 
movement activity showed no increase in movement activity in 
either arm over 4 days after stroke, while other patients improved 
steadily after admission. The impairment continued to be different 
among the two groups 3 months after stroke (173). Stroke sever-
ity, location and treatment, as well as arterial blood pressure and 
body temperature were not different among the groups. But, in 
the non-recovering patients, the C-reactive protein was elevated 
and related to a low number of waking hours. These results sup-
port the notion that in the acute stage after MCA stroke, there 
are patients with a secondary decline in general motor activity 
and an enhanced sleep demand which was related to systemic 
inflammation.

Moreover, recordings with the electroencephalogram (EEG) 
revealed that stroke patients may exhibit focal slow wave activ-
ity (SWA) as well as focal epileptic changes in the affected 
hemisphere (175–177). Focal SWA (1–4 Hz) has been reported 
to predict poor recovery from stroke (178–180) but can last even 
for years (181). Notably, EEG recordings have revealed that, in 
addition to their neurological deficit, stroke patients also have 
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an abnormal sleep architecture (182, 183). It is unclear, however, 
what the functional impact of SWA is on spontaneous movement 
activity of the affected side after stroke. In fact, stroke patients 
with similar infarcts concerning lesion location and volume may 
show recovery patterns of the formal neurological assessment 
that are not reflected by the spontaneous movement activity of the 
affected limbs (184, 185). In acute stroke patients (68 ± 8 years) 
and age-matched controls (68  ±  12  years), movement activity 
was measured continuously and synchronously with the EEG for 
24 h in both arms using actiwatches (174). The stroke patients had 
lower total sleep time (P = 0.031), sleep efficiency (P = 0.019), 
percent non-rapid eyement movement sleep (P  =  0.034), and 
percent sleep stage N2 (P = 0.003) and showed reduced spontane-
ous movement activity in the affected arm during wakefulness. 
Stroke patients with abnormal focal SWA showed less spontane-
ous arm movement activity than those without SWA, while there 
were no differences in the sleep parameters (Figure  3). These 
findings accord with earlier observations by Bassetti and Aldrich 
(175) supporting the notion that sleep architecture is impaired 
in stroke patients leading to sleep fragmentation, increased 
wakefulness, and increased REM latency (186). Furthermore, the 
stroke patients with SWAs enjoyed a limited recovery as assessed 
with the NIHSS. Thus, focal SWA is a marker of profound brain 
pathology.

Times-Lines for Post-Stroke Recovery
The neurological deficits can regress substantially in the early 
period after ischemic stroke following acute stroke treatment 

with arterial recanalization and effective reperfusion. The 
relatively early recovery in patients with small cortical lesions 
steadily evolves over weeks and levels out over the subsequent 
months (112, 187, 188). In contrast, the processes of cerebral re-
organization are slow and may need many months to complete. 
In the acute phase of stroke, it is difficult to predict the degree of 
ultimate recovery, since there is a large heterogeneity of recovery 
over the first 3  months after stroke (12). Prediction becomes 
progressively better the more specific and differentiated the 
physiological assessment measures are and the longer the time 
since stroke (70, 189, 190). For example, the neurological state 
by day 4 predicts the long-term neurological outcome (188, 191). 
The recovery of activities of daily living usually develop within 
26  weeks after the stroke insult and is often accompanied by 
compensatory hand use (192, 193).

Neurorehabilitative Training
There are numerous reports about rehabilitative approaches to 
improve the neurological deficit following stroke (4, 13). Notably, 
patients older than 65 years benefit as much as younger patients 
from intensive rehabilitation (190, 194), while younger patients 
typically improve more on mobility, balance, walking, and grip 
strength (195). The intensity of the training rather than the type 
of training appears to determine long-term improvement of 
motor function (113, 196–198). While passive training of wrist 
movements was reported to be clinically effective and associated 
with change in cortical activation (199), volitional control of 
finger and thumb extensions was found to play an important role 

FiGURe 4 | Gaming-based training scenario using the commercially available hand hold PABLOR-device. Hand movements are measured by acceleration 
and force sensors and thereby steer objects in virtual reality games. Training on consecutive days enlarged the angle of hand rotations and decreased the 
heterogeneity of movement execution both in healthy subjects and stroke patients. From Seitz et al. (213).
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