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Sleep is essential for healthy brain function and plasticity underlying learning and mem-
ory. In the context of physical impairment such as following a stroke, sleep may be 
particularly important for supporting critical recovery of motor function through similar 
processes of reorganization in the brain. Despite a link between stroke and poor sleep, 
current approaches to rehabilitative care often neglect the importance of sleep in clinical 
assessment and treatment. This review assimilates current evidence on the role of sleep 
in motor learning, with a focus on the implications for physical rehabilitation after stroke. 
We further outline practical considerations for integrating sleep assessment as a vital 
part of clinical care.
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aging

iNTRODUCTiON

The adult brain is highly adaptable, even after injury it often exhibits an impressive capacity for 
reorganization. Activity in the brain during sleep is thought to be critically involved in supporting 
these processes of plasticity. Briefly, sleep can be thought of as a state of consciousness, or alternations 
in consciousness, which oscillates between states of reduced awareness of external real-world stimuli 
to a complete loss of consciousness (1). While the precise mechanisms have yet to be clearly defined, 
sleep has been associated with many important functions, including those of the immune and 
memory systems (2–5). In memory, sleep is consistently attributed a particularly prominent role in 
supporting time-sensitive processes associated with the consolidation of memories. Consolidation 
here refers to dynamic processes in the brain that occur after initial (“on-line”) memory encoding 
takes place, such as when we practice a new skill. Subsequent (“off-line”) mechanisms of consolida-
tion serve to further process these new memory traces, for instance, to enable the integration of 
knowledge and long-term memory storage.

One reason memory consolidation may be particularly important in a clinical context is because 
of how it applies to neurological rehabilitation, such as motor recovery after lesion to the brain. Here, 
the primary aim of physical rehabilitation is to facilitate recovery of functional motor capacity after 
initial impairment. Another way to look at physical rehabilitation, therefore, is as a form of motor 
learning, or relearning, which in turn may tap into some of the same processes of memory formation 
and consolidation as other forms of procedural memory (6, 7). Consequently, experimental insights 
into processes in the brain that support motor memory are likely to have more wide-ranging applica-
tion that may benefit understanding and development of useful strategies for improving long-term 
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rehabilitative outcomes in the clinic. The primary objective of this 
review is to provide an assimilation of current evidence on the 
role of sleep in motor learning and to identify specific factors of 
learning and consolidation that may have important implications 
for rehabilitation. For the purposes of this review, we will focus 
primarily on sleep-dependent motor memory with relevance to 
physical rehabilitation after stroke, although many of the discus-
sion points included here will likely apply more broadly to other 
types of memory and rehabilitation. Meanwhile, what is some of 
the evidence linking sleep, in particular, to motor memory?

SLeeP AND MOTOR LeARNiNG

After initial encoding, memory traces undergo further processing, 
which takes place after we are no longer engaged with the learning 
task or environment. These off-line processes aid in stabilizing, 
and making more robust, learnt material (8–10). Depending on 
the type of input, this consolidation period may offer additional 
performance gains, specifically after a period of sleep, that are not 
due to further practice. For example, after practicing a new motor 
skill, such as a short, explicit motor sequence (Figure 1), young, 
neurologically intact individuals consistently show significantly 
improved performance on this task after sleep compared to an 
equivalent period of wakefulness (11–13).

Meanwhile, consolidation processes, including those involv-
ing sleep, may be more dynamic than previously thought, and 
there are a number of factors inherent in the learning context 
or task that impact on the expression and magnitude of the 
post-encoding consolidation gains observed with sleep. These 
findings may consequently have significant implications for the 
efficacy and long-term clinical outcomes of rehabilitative training 
paradigms.

Consolidation Depends on Content and 
Context
A growing number of studies suggest that individual properties 
inherent to a given task may rely on different off-line processes 
of memory consolidation. For example, simply being aware of 
the underlying regularities or patterns in a motor learning task 

(explicit memory) has been shown to require specifically a period 
of sleep for observable off-line gains, whereas the same task per-
formed without conscious awareness of such patterns (implicit 
memory) has been associated with significant improvements 
following the simple passage of time, and not specifically a period 
of sleep (12). That implicit learning may be time- rather than 
sleep-dependent is also consistent with recent findings (14, 15). 
Even different properties within the same task might be processed 
differently off-line. For instance, while the spatial or goal-based 
component of a motor task required a post-training consolidation 
period of sleep for performance gains, the movement property 
of the same task-related behavior relied specifically on wakeful-
ness, and not the simple passage of time or sleep, to elicit off-line 
improvements (16). Similar findings have also been reported 
more recently (17), showing that a nap preferentially enhanced 
the allocentric (spatial) representation of motor learning but that, 
in contrast, the egocentric (motor) component of the task was 
only maintained, without further gains, regardless of whether the 
consolidation period involved sleep or wakefulness. Moreover, 
sleep has also been shown to increase the probability of extract-
ing explicit rule-based information during an implicit task, such 
as might occur in moments of insight (18), suggesting that it is 
possible to transition at least from implicit to explicit memory.

Although the exact processes whereby memories are consoli-
dated remain unclear, it may be appropriate to think of a given 
motor task as generally involving a variety of components, rather 
than being purely implicit or explicit in content, and that sleep 
may facilitate a restructuring of such information in the brain as 
reflected in altered task-related behavior.

Interference
Contrary to early accounts of consolidation that stipulated a 
more rigid form of memory storage, accumulating evidence 
is now suggesting that memories may undergo several time-
sensitive stages of consolidation and reconsolidation. During 
this time, memory traces are highly labile and may once again be 
rendered susceptible to interference, even after initial memory 
consolidation has taken place (19–21). For example, behavioral 
interference of a motor memory may occur if an alternate motor 

FiGURe 1 | Motor learning and sleep-dependent consolidation. After a period of consolidation following training on an explicit motor sequence-learning task 
performed on a standard keyboard or button box, young, healthy adults consistently demonstrate marked performance improvements after sleep, whereas an 
equivalent period awake during the day does not provide significant off-line gains. Adapted from Gudberg et al. (13).
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FiGURe 2 | Factors influencing or interacting with processes of consolidation. Simplified sketch of specific variables that have been studied in the context of 
motor learning. (A) Pairing two motor tasks separated by a short time-interval (t) is associated with retroactive interference, and typical consolidation gains in 
performance may no longer be observed on the first task. (B) Expectation of future relevance or a monetary reward has been shown to elicit selective enhancement 
of specific (tagged, in black) memories during sleep. (C) Interleaved practice structures (black/white vertical) have also been associated with greater retention and 
transfer compared with blocked or massed practice (black solid). (D) On average, older adults show sleep-dependent motor memory consolidation on a whole-
hand motor sequence task (Task B) but not on the same task requiring individuated finger movements to perform the sequence (Task A); adapted from (13). Green 
and red dots, respectively, denote the presence or absence of stabilization, improvement, or selective enhancement at retention testing.
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learning task is  introduced shortly after training on an initial 
motor task (Figure 2A). Here, studies have tended to investigate 
the effects of this type of (retroactive) interference using two 
similar tasks (e.g., sequence learning) paired at different time 
intervals. However, retroactive interference may occur even in 
the case of two different motor-based tasks if, for example, both 
tasks are performed with the same limb [(22); for an account of 
retroactive effects of declarative memory on motor learning, see 
Brown and Robertson (23)]. This effect is differentiated from the 
(related) concept of contextual interference, which is thought to 
result from variable or interleaved practice during acquisition 
training, and which may actually increase levels of retention [(24, 
25); further discussed in Section “Practice Structures”]. Classic 
studies of consolidation and reconsolidation (e.g., 21, 26) have 
elegantly demonstrated this retroactive disruption to be specific 
to the consolidation process (rather than to performance at 
immediate retest, which was not reduced after the second, inter-
ference task) as well as specific to sleep (not wake) consolidation. 
Interestingly, this effect was only observed for the accuracy of 
the performed motor task, but not for the speed of execution 
(21). The time-window of potential interference may, however, 
be short-lived and may be suspended following initial stabiliza-
tion (robustness to interference), which has been shown to take 
effect within a few hours proceeding initial training (21, 26, 27), 
and possibly earlier if a short nap follows initial practice (28). 
However, even after a period of sleep consolidation, an initially 
stable memory may be interrupted if the memory is reactivated 
(e.g., through a brief retest) immediately before training on 

another task (21). In other words, it is possible that merely 
reactivating an existing, stabilized motor memory facilitates a 
renewed labile period due to a process of destabilization, which 
under normal circumstances is usually followed by a form of 
reconsolidation or, if coupled with interference training, possibly 
degradation or complete extinction of the memory (21, 29). This 
dynamic consolidation process is likely a very useful mechanism 
of plasticity that allows the brain to continually revisit and update 
existing stored memories or representations in light of newly 
acquired information (20, 30). However, these findings may also 
have implications for the structure of learning paradigms in an 
applied setting, such as in the context of rehabilitation, particu-
larly those involving training on tasks with different motor-based 
content in relatively close succession.

Selectivity
In addition to these time-sensitive phases, memory processing 
also appears to encompass highly selective mechanisms that 
have been shown to occur shortly after initial encoding as well 
as during subsequent sleep consolidation [(31, 32); Figure 2B]. 
For example, Wilhelm et al. (32) showed that different types of 
memories, including those formed during motor sequence learn-
ing, could be selectively enhanced during sleep if participants 
expected to be tested on the task at a later time, as compared with 
participants who did not expect to be retested on the task. Similar 
selective motor gains have been demonstrated for the anticipation 
of monetary reward at retest (31), and are consistent with selec-
tive reactivation processes thought to occur during sleep (33, 34). 
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These intriguing findings, although preliminary, indicate that it 
may be possible to pre-select particular motor memories for fur-
ther processing during sleep, which consequently show benefits 
over and above ‘untagged’ memories. However, further work that 
elucidates the underlying mechanisms of selective enhancement 
is needed, and it remains unclear whether sleep replay is a causal 
mechanism for the selective gains observed after sleep consolida-
tion. In addition, directed selectivity in memory processing may 
be particularly useful to further study in the context of rehabilita-
tive therapy as a possible adjunct aid for augmenting the effects of 
training, for instance, by integrating aspects of physical training 
with cognitive components of perceptual saliency.

Practice Structures
Like other forms of real-world learning, rehabilitative motor 
training arguably has (at least) two desirable learning goals: 
long-term retention and transfer to other contexts and tasks (7, 
35). However, unlike training paradigms associated with retroac-
tive interference, combining different tasks in specific practice 
structures may actually offer benefits to learning outcomes. For 
instance, variable or interleaved practice has been shown to 
facilitate both improved retention and transfer (24, 36, 37) relative 
to other types of practice (e.g., massed or blocked; Figure 2C). 
This practice-dependent effect was initially conceptualized as 
‘contextual interference’ (38), and may tap into specific latent 
dynamics associated with the learning/performance distinction 
(39, 40). Here, evidence hints at a seemingly paradoxical relation-
ship between in-session performance gains and post-encoding 
processes of consolidation and learning. That is, while training 
paradigms such as massed motor practice often show immedi-
ate performance effects in the form of better within-session 
acquisition, such paradigms may counter-intuitively be less 
conducive to long-lasting memory retention and transfer (7, 35, 
37). By contrast, variable practice, which may elicit more modest 
performance gains during training, has instead been associated 
with better stabilization (41), retention, and transfer (24, 36, 37) 
at subsequent retest sessions. In other words, maximizing perfor-
mance within the training session may not be a useful marker of 
eventual learning. This is consistent with previous work showing 
no or an inverse correlation between in-session training gains and 
subsequent sleep-dependent improvements in performance (13, 
42). Such practice-dependent dynamics have been demonstrated 
for a wide range of tasks, including motor skill and imagery (36, 
37), for verbal domains (38), and even for the retention of surgical 
technical skills (43), suggesting that there may be wider implica-
tions for learning in different contexts including, for instance, 
mixed-content rehabilitative training.

Recent evidence has also shown a potential role for sleep 
consolidation in the processing of, at least, motor imagery with 
variable practice (37), and preliminary neuroimaging findings 
have implicated different cortical brain areas in the retention 
processes respectively supporting variable and constant practice 
structures (41). However, it is unclear what mechanisms, particu-
larly relating to sleep, support the effects associated with variable 
practice, or how subtle differences in the timing of “interference” 
tasks (e.g., blocked sequential versus interleaved trials) may elicit 
seemingly dissociable effects on consolidation outcomes. Further 

studies are needed to clarify these specific mechanisms and to 
assess possible avenues for beneficial application in the clinic.

Mechanisms of Sleep Consolidation
Although the exact neural mechanisms of sleep that support 
the different phases and types of memory consolidation remain 
unclear, it is thought that these occur in part through fundamen-
tal regulatory processes that ensure cellular homeostasis and the 
integration of information in the brain. This may occur through 
processes of desaturation of synaptic potentiation that accumu-
lates during active wakefulness (44, 45). This downscaling, in 
turn, is thought to promote increased functional efficiency and 
signal-to-noise ratio in neural environments, thereby supporting 
memory processing and information transfer in the brain (46, 
47). Sleep slow wave activity is thought to be one of the candidate 
oscillatory mechanisms underlying these essential processes, 
which, in the human electroencephalogram recorded from the 
scalp, is reflected primarily in the low-frequency, high-amplitude 
activity (<4  Hz) characteristic of deeper stages of sleep. This 
activity is greatest in the early cycles of the night and decreases 
as sleep progresses, and is thought to be a marker of sleep need 
(48, 49). Moreover, studies have shown that markers of synaptic 
potentiation, for example, following motor learning, are associ-
ated with a subsequent increase in sleep slow wave activity in 
both animals (50) and humans (48, 49). Interestingly, findings 
suggest that local changes in synaptic density due to learning 
may also lead to site-specific increases in slow wave activity 
(51). However, in addition to these important neural regulatory 
processes, sleep may also occupy a more “active” role in memory 
consolidation.

According to the standard model of systems consolida-
tion, sleep supports a process whereby memory traces are 
reprocessed and transferred across distributed networks via 
cortico-hippocampal projections (52, 53). For example, several 
studies have demonstrated reactivations of neural firing patterns 
during sleep that were initially activated during wakeful learn-
ing (54–57). Moreover, activity that is typically associated with 
increased arousal states, such as learning (58), has also been 
shown to be highly prevalent during sleep (59). The presence of 
“active” states during sleep is also consistent with neuroimaging 
findings showing sleep reactivation of the same brain areas that 
were engaged during initial motor skill encoding (60). Several 
electroencephalographic (EEG) signatures have been linked 
with these active consolidation processes during sleep, including 
high-frequency activity such as spindles and sharp-wave ripples, 
which are thought to be temporally coupled to the depolarizing 
phase of the sleep slow oscillation (61, 62). Spindle activity has 
also been associated more specifically with behavioral gains in 
motor sequence performance following sleep (63, 64).

Interestingly, recent studies have demonstrated that it may 
be possible to experimentally induce memory reactivation 
during sleep by, for instance, presenting a sensory cue that was 
initially introduced during skill acquisition. This pairing was 
subsequently associated with significant post-sleep performance 
gains (2, 65). Cued reactivation during sleep has also been linked 
with an increase in explicit knowledge (66). Moreover, applying 
transcranial direct current stimulation (tDCS) to the premotor 
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cortex during sleep, using a paradigm thought to enhance excit-
ability, was found to elicit a post-sleep improvement in the recall 
of the practiced motor sequence (67).

Collectively, there is growing evidence supporting a role of 
sleep in both up- and down-regulating the expression of plasticity-
related activity in memory consolidation. Such plasticity-evoked 
regulations could map onto, or partially underlie, proposed 
sleep functions including “active” consolidation (e.g., through 
processes of synaptic potentiation or reactivation) and homeo-
static regulatory processes (e.g., through mechanisms of synaptic 
desaturation). Meanwhile, how are motor memories affected 
when sleep changes significantly over time, such as with aging?

Age-Related Changes
It is well established that older age is associated with changes in 
sleep architecture. Studies highlight a multiplicity of age-related 
variations [for meta-analysis, see Ohayon et al. (68)], including 
time spent in different sleep stages, such as increased stage 1 and 
2 non-rapid-eye-movement (NREM) sleep, reduced slow wave 
sleep and overall sleep efficiency [including greater fragmenta-
tion (69, 70)], decreased incidence of sleep spindles (71, 72), as 
well as more indirect age-related differences in sleep processes in 
the form of altered circadian cycles, brain structure and function. 
For instance, neuroimaging evidence suggests that structural 
changes in the brain with older age, such as atrophy in the 
medial prefrontal cortex, could influence key sleep architecture, 
including non-REM slow waves (73). This is further supported 
by cross-sectional findings showing gradual decrements in 
k-complex morphology across the lifespan (74), as well as results 
suggesting a significant association between cortical atrophy and 
poor sleep quality (75).

Moreover, older age has also been associated with specific 
memory deficits related to the sleep-dependent motor gains 
typically observed in younger adults (76–78). It is possible that 
changes to sleep architecture with aging are responsible for such 
impairments in consolidation. However, it may also be that 
additional age-related factors contribute to observed deficits. For 
example, accumulating evidence suggests that fine motor ability 
deteriorates markedly with older age (79–82). Importantly, most 
tasks adopted to assess sleep-dependent motor consolidation in 
older age-groups have tended to rely entirely on fine motor skill, 
such as rapid individuated finger movements to execute a repeat-
ing number sequence (Figure  2D). We recently showed that 
subtle changes to individual task demands, which reduce this fine 
motor requirement, in turn, reveal significant sleep-dependent 
gains in older adults (13). Therefore, there may be multiple fac-
tors, for example, relating to motor control and sleep remodeling, 
that interact with consolidation processes in aging.

In the context of stroke rehabilitation, age-related changes in 
motor ability and sleep architecture could have important impli-
cations for physical rehabilitation in older patient groups and the 
efficacy of therapeutic training paradigms.

SLeeP AFTeR STROKe

The concepts of learning and consolidation explored here have 
further implications in clinical settings. For example, the role of 

sleep in consolidating motor memories may change dramatically 
after stroke-related brain damage, which in turn may have conse-
quences for movement rehabilitation, which depends on motor 
learning and consolidation. In contrast to young, neurologically 
intact adults, who generally show sleep-dependent effects for 
explicit motor memories and time-dependent effects for implicit 
motor learning (12, 13), patients who had suffered a stroke 
required specifically a period of sleep to consolidate both implicit 
and explicit motor learning (83).

There are many possible reasons for altered consolidation 
of motor memories after stroke, including sleep disruption and 
altered learning processes. Sleep problems are highly prevalent 
following both ischemic and hemorrhagic stroke, affecting up 
to 78% of stroke patients (84). These include insomnia (85) and 
sleep-related breathing disturbances (86, 87), as well as daytime 
impairments associated with post-stroke fatigue (88). Sleep-
related breathing disturbances, such as obstructive sleep apnea, 
are the most prevalent sleep disorders following stroke (84), and 
some form of sleep apnea may be present in as many as 50–70% 
of stroke survivors (87). Multiple direct and indirect mechanisms 
may underlie stroke-related sleep disorders, including changes to 
endogenous circadian control of essential sleep–wake functions, 
medication-dependent influences on sleep architecture, as well 
as increased daytime inactivity and napping. While sleep-related 
problems are commonly reported during the acute phase after 
stroke, there is also increasing evidence of disordered sleep–wake 
patterns in later, more chronic stages post-stroke. For example, 
in a cross-sectional sample of patients assessed 1 to 15 years fol-
lowing first-ever stroke, self-reported sleep quality was found to 
be relatively consistent regardless of time since stroke, whereas 
daytime sleepiness worsened with advanced chronicity (89). Such 
sleep–wake disruptions after stroke have, in turn, been linked 
with significant cognitive and attentional deficits (90, 91) as well 
as adverse health and clinical outcomes (87, 92–94). Therefore, 
it is likely that sleep-related problems following stroke may have 
an impact not only on processes of memory consolidation dur-
ing sleep but also on the initial acquisition and encoding of new 
memories.

Moreover, both acute and chronic stage stroke have been 
associated with more specific imbalances in both the sleep and 
wake EEG relative to healthy controls. For instance, research 
suggests a higher prevalence of both slower and faster frequency 
oscillations (specifically in the delta, theta, and sigma ranges) 
during sleep at the infarct site following a stroke but also more 
widely across the affected hemisphere (95). In addition, an 
increase in slower frequencies have also been observed in the 
awake EEG of both acute and chronic stroke patients (95, 96), 
which may reflect an increased sleep need (97–99). This is con-
sistent with common reports of daytime symptoms of sleepiness 
post-stroke (89, 95), although daytime sleepiness was not found 
to correlate with this low-frequency activity in the chronic phase 
post-stroke (96). Moreover, this slowing of neural activity dur-
ing wakefulness is also in line with observed patterns of activity 
following sleep deprivation in non-clinical samples (100, 101) 
and has, in turn, been associated with severely reduced task 
performance as well as ability to form new memories (101–103). 
Reported increases in slow frequency activity during wakeful 
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resting state after stroke may also be indicative of significant 
maladaptive responses after injury, and the up-regulation of 
wakeful delta activity has, for example, previously been associ-
ated with encephalopathy as well as structural brain changes 
such as reduced white matter volume (104, 105). Therefore, 
altered electrical activity in the brain following stroke may partly 
reflect processes of plasticity and homeostatic regulation, but 
also potentially more maladaptive local processes in response 
to brain damage.

Given the relatively wide-ranging influences that stroke may 
have on sleep microarchitecture, it is conceivable that such 
changes may have further impact on both skill acquisition and 
consolidation processes during physical recovery. Although evi-
dence assessing the impact of sleep quality on clinical outcomes 
after stroke is scarce, a recent study in stroke survivors found 
that higher slow wave activity in the sleep EEG correlated with 
poorer functional recovery in the chronic stage of stroke (95). 
In another study, low subjective feelings of recovery post-stroke 
were correlated with poorer sleep scores on the Pittsburgh Sleep 
Quality Index (106). The link between sleep and stroke outcomes 
is consistent with preliminary research investigating ischemic 
stroke models in rats suggesting that sleep deprivation may 
have a significant detrimental effect on motor recovery (108). 
In humans, treatment of sleep problems such as obstructive 
sleep apnea with continuous positive airway pressure (CPAP) 
was associated with both improved motor recovery and reduced 
daytime sleepiness in stroke patients (107). However, further 
studies in human patient groups are needed to assess the relative 
contributions of sleep problems and microarchitecture on clini-
cal outcomes after stroke rehabilitation.

During initial memory encoding, there is also evidence to 
suggest that the damaged brain may respond differently to the 
provision of explicit information in the context of motor train-
ing. For instance, retention on an implicit motor sequence task 
was impaired in stroke patients, but not healthy controls, when 
paired with explicit information about the underlying sequence 
(109, 110). Interference effects between declarative and proce-
dural components during rehabilitative training have been asso-
ciated with altered brain activity patterns in stroke patients (111). 
However, such task-related impairments may crucially depend 
on underlying patient-specific factors such as lesion site, severity, 
or time after stroke. For recovery more broadly, individual differ-
ences in brain and behavior may also significantly influence the 
long-term clinical efficacy achieved with rehabilitation training. 
Neuroimaging results further suggest that functional activation 
changes, particularly in the sensorimotor regions of the brain, 
after stroke rehabilitative therapy may be able to explain some of 
the observed variance in motor recovery (112). This is consist-
ent with research in healthy adults, suggesting that individual 
differences in brain structure and function significantly predict 
differences in behavior and motor skill learning (113, 114). 
However, neither corticospinal tract integrity nor lesion volume 
predicted rehabilitation gains in motor performance in chronic 
stroke patients (115). Meanwhile, evidence suggests that time-
dependent factors may interact with individual differences, with 
potential implications for motor recovery. For example, poorer 
clinical outcome scores in the early, but not late, stages post-stroke 

were associated with recruitment of brain areas including the 
contralesional cerebellum and ipsilesional premotor cortex dur-
ing an isometric hand-grip task (116). Together, these findings 
highlight the importance of individual differences and temporal 
factors in recovery pathways. However, it is unknown how 
these factors influence, or interact with, altered sleep processes 
post-stroke.

In addition, it is important to note that sleep disorders may 
also pre-date stroke onset as both obstructive sleep apnea and 
habitual snoring have been attributed as independent risk 
factors in stroke pathology (117). Therefore, an important 
challenge for future studies will be to dissociate the specific, 
directional effects of stroke on sleep-related disorders and 
microarchitecture from any pre-existing conditions or sleep 
disorder. Evidence taking into account sleep disturbances fol-
lowing other types of brain damage, such as traumatic brain 
injury, may here provide useful clues to further dissociate spe-
cific mechanisms governing these relationships. Investigations 
of sleep and consolidation after stroke are further challenged by 
potential limiting factors and confounds, such as the relatively 
extensive list of post-stroke medications thought to influence 
sleep–wake patterns and specific sleep architecture, as well as 
difficulties in directly comparing between highly diverse patient 
groups, lesion site and volume, or time post-stroke. Further 
studies are needed that carefully address these challenges and 
to elucidate the extent to which variables that are shown to 
influence consolidation in healthy groups (e.g., interference, 
practice structures) translate to specific learning outcomes 
following brain damage.

Practical Considerations
Sleep has been shown to benefit many processes of learning and 
memory, and may also have an important role in the homeostatic 
regulation of neural mechanisms. Meanwhile, brain damage such 
as stroke has been associated with a number of sleep–wake disor-
ders, which in turn may have detrimental effects on both short- 
and long-term recovery. Therefore, integrating sleep assessments 
as a routine part of rehabilitative care is likely to have significant 
implications for stroke recovery and long-term disability.

Here, the availability of relatively cost-effective and non-
invasive devices, such as actigraphy monitoring, may provide a 
practical solution for routine or longer-term sleep assessment. 
These can often be worn continuously throughout the day and 
night with minimal intrusion to the patient or treatment course. 
However, such devices provide only indirect measurements of 
sleep by analyzing activity-rest accelerometer data. For more 
direct and in-depth measurements of sleep, EEG remains the 
gold-standard technique, often as a part of full polysomnographic 
assessment. In addition, strategies should be considered that pro-
mote better sleep on the ward, such as strategies for noise reduc-
tion during sleep (118), ensuring chronobiologically appropriate 
light levels during the daytime and evening (119), and potential 
use of other approaches to improving sleep such as cognitive-
behavioral and/or pharmacotherapy in stroke patients suffering 
from comorbid sleep–wake disturbances (117). Moreover, given 
the high prevalence of sleep-related breathing disturbances fol-
lowing stroke (87), a combination of routine monitoring (e.g., 
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with respirography) and the provision of suitable treatment 
options (e.g., with CPAP) may here help to significantly improve 
both sleep and clinical outcomes of patients with moderate to 
severe sleep apnea (117). However, an ideal approach would con-
sider these and other sleep-related factors within an integrated 
dynamic care pathway that is both tailored to the individual 
patient as well as appropriately updated throughout the treatment 
course. It will be useful to further consider whether such tailored 
stroke rehabilitation programs may help to alleviate individual 
symptoms and rebalance sleep–wake dynamics (e.g., by reduc-
ing daytime sleepiness or any disproportionate representation of 
low-frequency neural activity during wakefulness).

In the context of physical rehabilitation training, experimen-
tal evidence suggests that motor learning and retention may be 
sensitive to particular training structures, such as variable and 
massed practice. Here, sleep may also offer intermediate stabili-
zation of new learning by further protecting against retroactive 
interference, and may even serve a more active role in consolida-
tion by, for example, drawing on concepts of selectivity or cued 
reactivation during training and sleep. In addition to maximiz-
ing the quality of night-time sleep, the effects of encouraging 
naps following rehabilitation settings could be tested, given the 
beneficial effects of even brief periods of sleep following motor 
learning [e.g., (120)]. However, these effects have primarily been 
studied in non-clinical settings. It will, therefore, be important 
to determine how the variables of practice structure, sleep qual-
ity, and sleep timing interact with memory consolidation in the 
clinic, and whether there are stroke-specific factors that may 
influence these processes such as, for example, greater suscep-
tibility to the influence of explicit information during implicit 
motor training.

CONCLUSiON

Converging evidence suggests that memory consolidation is 
dynamic and complex, capable of achieving various memory 
states, including stabilization, enhancement, reactivation, as well 
as reconsolidation over time. In addition to supporting these 
processes of memory formation, sleep is also a critical compo-
nent for enabling the acquisition of new memories. This review 
has outlined a selection of candidate processes that have been 
explored in the sleep and motor learning literature, and which may 
have important implications for physical rehabilitation training. 
Stroke is here a useful model in which to situate such a discussion, 
however, it is important to bear in mind that different neurologi-
cal conditions may have very different effects on sleep, learning, 
and consolidation. Moreover, while we have primarily focused 
on sleep consolidation in the context of motor-based learning, 
these concepts likely have broader application to other types of 
learning and rehabilitation. Further studies in clinical settings 
are needed to examine the role of sleep quality on rehabilitation 
training and whether the beneficial effects of sleep consolidation 
translate to meaningful clinical outcomes in rehabilitative care. 
However, increasingly incorporating sleep as an integral part of 
clinical assessments and training paradigms will undoubtedly 
have important implications for rehabilitation outcomes.
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