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The term “junk DNA” has been reconsidered following the delineation of the functional 
significance of repetitive DNA regions. Typically associated with centromeres and 
telomeres, DNA repeats are found in nearly all organisms throughout their genomes. 
Repetitive regions are frequently heterochromatinized resulting in silencing of intrinsic 
and nearby genes. However, this is not a uniform rule, with several genes known to 
require such an environment to permit transcription. Repetitive regions frequently exist 
as dinucleotide, trinucleotide, and tetranucleotide repeats. The association between 
repetitive regions and disease was emphasized following the discovery of abnormal 
trinucleotide repeats underlying spinal and bulbar muscular atrophy (Kennedy’s disease) 
and fragile X syndrome of mental retardation (FRAXA) in 1991. In this review, we provide 
a brief overview of epigenetic mechanisms and then focus on several diseases caused 
by DNA triplet-repeat expansions, which exhibit diverse epigenetic effects. It is clear 
that the emerging field of epigenetics is already generating novel potential therapeutic 
avenues for this group of largely incurable diseases.
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ePiGeNeTiC MeCHANiSMS

Transcription is tightly regulated in all cells. This is done in part through a number of epigenetic 
mechanisms, namely: heterochromatin formation and associated histone modifications, DNA 
methylation, antisense transcription, and formation of complex DNA structures, such as DNA–RNA 
hybrids, RNA loops, and DNA triplexes (1). Working alone or in unison, these mechanisms allow for 
a dynamic state of gene expression. These mechanisms have been implicated in a variety of disease 
states, with the enticing potential that they may be amenable to therapeutic intervention.

DNA methylation is the most studied epigenetic modification and is heavily implicated in many 
oncological disorders. Methylation in adult somatic cells is primarily found on CpG nucleotides 
and this modification is maintained through cell division (2). DNA methylation is thought to have 
developed as a means to silence viral genes that have been integrated into a host organism’s genome 
over time.

DNA is transcribed by RNA polymerase II along the template strand in the 5′–3′ direction. 
This results in the formation of primary or nascent RNA, which is subsequently spliced to remove 
introns and polyadenylated to form mRNA. Initially described in yeast, antisense transcription 
(transcription of the antisense strand in the 3′–5′ direction) is now known to be important in the 
regulation of gene expression through mechanisms, including RNA interference and the forma-
tion of RNA–DNA complexes (3). The most widely recognized antisense transcript implicated 
in gene regulation is Xist, which is known to cause X chromosome inactivation (4). The random 
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FiGURe 1 | Transcriptionally permissive euchromatin may be remodeled in a reversible fashion through the action of a number of chromatin-
modifying elements, which act to methylate lysine residues in position 9 (SUv39H associated with constitutive heterochromatin) and position 27 
(Polycomb repressor complex associated with facultative heterochromatin). Regions of repetitive DNA have been shown to promote the formation of 
heterochromatin. Figure used with permission from Yandim PhD thesis 2012, Imperial College London.
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action of Xist on one of a cell’s X chromosomes results in DNA 
methylation, the addition of silencing histone modifications and 
subsequently widespread heterochromatinization (3). DNA is 
packaged within the nucleus into a compact structure known 
as chromatin. Nucleosomes form the functional unit of chroma-
tin, whereby a 147 base pair length strand of DNA is wrapped 
around a histone octamer core. Chromatin can be further pack-
aged into dense regions known as heterochromatin, which are 
often transcriptionally silenced (5). The mechanisms that dictate 
whether a region of DNA undergoes heterochromatinization are 
still being elucidated, with a dynamic state being implicated by 
the reversible nature of “silencing marks” (histone lysine meth-
ylation or acetylation) associated with heterochromatin and the 
dosage-dependent effects of various heterochromatin modifiers, 
such as heterochromatin protein 1 (HP1) and suppressor of var-
iegation 3-9 (SUV39H) (6). Transcription factors have also been 
shown to regulate silencing of repeat regions, with sequence-
specific binding sites for several transcription factors (e.g., Pax3) 
located in repetitive DNA. Disruption of these binding sites may 
result in a reduction in heterochromatic marks (e.g., H3K9me3) 
and release from silencing of heterochromatin (7). Coupling of 
repeat length and transcription factor dosage may provide an 
explanation for the close link in several disorders between repeat 
length, disease onset, and severity. This interplay between posi-
tive and negative factors (Figure 1) regulating heterochromatin 
formation and/or transcription has allowed novel treatments to 
be trialed for a number of neurological disorders with the aim 
of restoring expression of pathologically silenced genes with the 
promise that such an approach might lead to disease-modifying 
therapies for several as yet incurable diseases (8, 9).

DNA is most commonly found in a double helical structure, 
also known as B-DNA, and is the result of complementary base 
pairing between nucleotides. The sequence of nucleotides plays 
an important role in the structure adopted by DNA. Non-B DNA 
structures, such as triplexes and tetraplexes, and DNA–RNA 

hybrids are implicated in the pathogenesis of several trinucleo-
tide repeat disorders through their effect on transcription, DNA 
replication, and genomic stability (10).

TRiPLeT-RePeAT DiSeASeS AND 
ePiGeNeTiCS

Friedreich’s Ataxia
Friedreich’s ataxia (FRDA) is the commonest inherited ataxia, with 
a prevalence between 1 in 20,000 and 1 in 50,000 among caucasians 
(11, 12). Over 98% of cases are the result of a (GAA)n triplet-repeat 
expansion within intron 1 of the frataxin (FXN) gene, the rest 
being the result of compound heterozygosity with an expansion on 
one allele and a point mutation or insertion on the other (13). Both 
result in gene silencing and a downregulation of frataxin protein, 
which causes FRDA. Frataxin levels can be used to differentiate 
unaffected individuals, carriers, and FRDA patients (14). There is 
no evidence that frataxin itself is dysfunctional in FRDA, with no 
defect in mRNA half-life or splicing between patients and unaf-
fected individuals (1, 15–17). Frataxin is a mitochondrial protein 
important in iron-sulfur cluster biogenesis and intracellular iron 
homeostasis. Various mechanisms have been put forward for the 
reduction in expression, including adoption of abnormal second-
ary DNA structures by long GAA tracts (DNA triplexes and 
R-loops), problems in transcription initiation and/or elongation 
and more recently greatest attention has focused on epigenetic 
gene silencing (16). Epigenetics broadly describes processes that 
alter gene expression without a change in nucleotide sequence (1, 
18). Epigenetic silencing of the FXN gene has been shown in vivo, 
and a number of therapeutic agents have been shown to “switch” 
the FXN gene back on and are in early stage clinical trials (17). 
Other clinical treatments have aimed at the downstream effects of 
frataxin deficiency, such as boosting mitochondrial function (e.g., 
coenzyme q10 and idebenone) and iron chelation (19–23).
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FiGURe 2 | Radiation-induced translocation of the white gene, which 
is responsible for the fly’s red eye color, near to a region of 
heterochromatin results in silencing of the gene in a proportion of 
cells that is clonally stable. Figure used with permission from Yandim PhD 
thesis 2012, Imperial College London.
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The first evidence for the epigenetic silencing mechanism 
behind FRDA came from experiments in mice where a human 
CD2 (hCD2) reporter transgene was linked to triplet-repeat 
expansions (GAA a or CTG) (24). Here, insertion of a hCD2 
transgene without the associated repeats but near centromeric 
repetitive heterochromatic regions resulted in variegated silenc-
ing that resembled the archetypal epigenetic silencing known as 
position effect variegation (PEV) (24). PEV was first shown in 
Drosophila when the white gene (which encodes red eye color) 
was translocated close to pericentromeric repeats resulting in 
silencing in a proportion of cells, which is clonally stable. It has 
been instrumental in unraveling the molecular basis for hetero-
chromatin formation and stochastic silencing of the affected gene 
(Figure 2) (25).

Genetic screens identified powerful suppressors of variegation 
(silencing), which were components of the silencing machinery. 
These included a highly conserved histone methyltransferase, 
Suvar 3-9 which methylates histone H3 on the N-terminal tail 
that protrudes from the nucleosome, helping to establish the 
notion of an “epigenetic” or “histone code”(26) whereby hetero-
chromatin is “labeled” by histone H3 lysine 9 (K9) trimethylation 
(me3) and this “label” is recognized and bound by the product 
of another powerful genetic modifier of PEV – heterochromatin 
protein 1 (Suvar205) (26). These findings established a possible 
mechanism for heterochromatin formation and spreading. That 
these mechanisms are conserved in mammals was established 
using the hCD2 transgenic model for PEV where it was also 
shown that expressing transgenes carry acetylation marks on 
their histones and non-expressing transgenes from the same 
mice bear H3K9me3 (24, 27). When a pathological GAA tract 
was linked to this transgene, it triggered variegated expression, 

which was independent of the location of the construct along the 
chromosome (Figure 3) (24).

Subsequent work has supported aspects of this mechanism 
in FRDA with the identification of histone modifications fre-
quently associated with constitutive (H3K9me3) and facultative 
(H3K27me3) heterochromatin being found flanking the GAA 
repeat as well as a reduction in acetylated H3 and H4 (marks 
associated with active chromatin) (12). The coexistence of both 
H3K9me3 and H3K27me3 is unusual, with the latter mark the 
result of methylation by another methyltransferase (enhancer of 
zeste – EZH2) (28). H3K27me3 is recognized by a protein called 
Polycomb which is part of the Polycomb Repressor Complex (29). 
A number of factors are known to regulate a gene’s epigenetic 
landscape, such that an alteration in the dosage of “positive” or 
“negative” factors can tip the scale in favor of gene expression 
or repression, respectively (6). To this end, histone deacetylase 
inhibitors (HDACi) have shown promising results in promoting 
frataxin expression in animal and human studies (30–33). Histone 
deacetylases (HDACs) are a group of enzymes that act by remov-
ing acetylation marks from histones, which subsequently allow for 
their methylation by histone lysine methyl transferases (HMTs) 
(13). Studies in mice have shown that these compounds are able 
to significantly upregulate frataxin expression in disease-specific 
tissues (heart, brain, cerebellum, and dorsal root ganglia) (30). 
The earliest work on the role of HDACi in FRDA was completed 
by Gottesfeld and colleagues who found that BML-210 and its 
synthesized derivatives (pimelic diphenylamides) HDACis were 
able to increase frataxin expression in cellular models and pri-
mary lymphocytes (33). Compound 109, synthesized for greater 
specificity for HDAC3, has since been taken into an early phase 
clinical study where it increased frataxin expression in peripheral 
blood mononuclear cells (PBMCs) from patients and reduced 
H3K9me3 (31–38).

Another such compound is nicotinamide, vitamin B3, a class 
III HDACi. Nicotinamide treatment of FRDA mice and primary 
lymphocytes in culture resulted in a permissive environment for 
transcription, as suggested by an increase in euchromatic histone 
marks and a reduction in heterochromatin marks, increased 
frataxin production and correction of 67% of genes known to be 
dysregulated in FRDA (17). The higher-order architecture of the 
abnormal FXN gene was shown by chromosome conformation 
capture (3C) to be remodeled following nicotinamide treatment 
with a reduction in interaction frequency of regions flanking the 
GAA repeat containing anchor fragment and increased DNAse 
I accessibility, both implying a more open chromatin structure 
(17). In the first trial of an epigenetic therapy for a disorder out-
side cancer, nicotinamide was safely used in patients with FRDA 
(19). In this study, nicotinamide was administered daily at high 
dose for 8 weeks with an increase in frataxin protein to levels seen 
in asymptomatic carriers, measured from PBMCs. Although 
the short duration of the study would not allow for changes in 
disease severity to be measured by recognized clinical scales 
[e.g., Scale for the Assessment and Rating of Ataxia (SARA)], 
a suggestion of improvement was noted in patient’s activities 
of daily living, which did not reach significance. The main side 
effects were of reversible nausea and liver function test derange-
ment. No serious adverse events related to the treatment were 
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FiGURe 3 | Fluorescence-activated cell sorting (FACS) plots highlighting variegated silencing of hCD2 reporter transgene when located near 
centromeric heterochromatin (gray dot). When attached to GAA-repeat expansion, a similar silencing was noted independent of the location of the transgene. 
Adapted from Yandim et al. (13).
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reported. A randomized controlled trial of adequate duration 
with nicotinamide is warranted to determine clinical efficacy 
and long-term safety.

Increased DNA methylation has also been noted in GAA-
flanking regions in FRDA lymphoblastoid cells, PBMCs, and buc-
cal cells. The extent of CpG methylation was shown to predict age 
of onset and levels of FXN expression as well as clinical outcome 
(39). Antisense transcription has also been implicated in FRDA 
with increased levels of FXN antisense transcript 1 (FAST1) 
noted in FRDA fibroblasts compared to unaffected individuals. 
Additionally, siRNA knockdown of CTCF, a chromatin insula-
tor protein known to prevent the spread of heterochromatin, 
upregulated FAST1 and reduced FXN transcription (40). A recent 
study that screened 1600 available drug compounds found an 
improvement in FRDA mouse phenotype and a 1.5-fold increase 
in frataxin expression in disease-specific tissues following treat-
ment with dyclonine, a topical anesthetic that can cross the 
blood–brain barrier (41). FRDA subjects given dyclonine as an 
oral rinse, which is already FDA approved, twice a day for 7 days, 
resulted in increased frataxin protein in buccal cells. Dyclonine 
both induces Nrf2 transcription factor that binds an upstream 
response element [nuclear factor (erythroid-derived 2)-like 2] in 
the FXN locus as well as inhibiting the histone methyltransferase 
G9a (PubChem, assay ID 504332), which is known to methylate 
H3K9, a marker of transcriptional repression (1, 41). Interestingly, 
the use of another G9a inhibitor (BIX-01294) also showed a trend 
toward increased frataxin expression to a similar extent in FRDA 
lymphoblastoid cell lines. However, this was not statistically 
significant, and it had no effect in another study (15, 42). This 
partial release from silencing may be in part due to the known 
presence of both H3K9me3 and H3K27me3 at the FXN locus 
with the possibility of complete release following antagonism of 
both such marks (13). It should also be noted that carriers with 
one expanded allele are asymptomatic and only express half the 
frataxin of unaffected individuals, further supporting the impor-
tance of these mechanisms in disease modification (12–14).

FRAGiLe X SYNDROMe AND FRAGiLe-X-
ASSOCiATeD TReMOR/ATAXiA 
SYNDROMe

Another disease caused by triplet-repeat expansion that affects 
expression of the gene is fragile X syndrome (FXS) that is the 
most common form of inherited mental retardation with those 
affected often exhibiting an autistic spectrum disorder. It is an 
X-linked dominant disease with variable penetrance, affecting 1 
in 2500 males and 1 in 4000 females (43). Its name stems from the 
discontinuation of staining at the Xq27.3 cytogenetic band (i.e., a 
“fragile site”) when cells are cultured in folate-deficient medium, 
where the FMR1 gene is located. In addition to cognitive difficul-
ties (often more severe in males due to its presence on only one X 
chromosome), patients can also exhibit facial dysmorphism and 
macroorchidism in males. The disorder is the result of a (CGG)n 
triplet-repeat expansion in the 5′ untranslated region of the frag-
ile X mental retardation 1 (FMR1) gene (44). DNA methylation, 
alteration of the histone code, and toxic RNA gain-of-function 
have all been implicated in the pathogenesis of FXS (43–52). 
Those with a full mutation (>200 repeats) were noted in to have 
hypermethylated CpG sites along the FMR1 promoter region with 
subsequent loss of fragile X mental retardation protein (FMRP). 
FMRP is a RNA binding protein that can bind its own RNA among 
others, permitting RNA transport along neuronal dendrites and 
is implicated in synaptic maturation (45). Treatment of FXS cells 
with the DNA methylation inhibitor 5-aza-2-deoxycitidine was 
able to reduce levels of CpG methylation and reactivate FMR1 
expression (50). The histone signature was further defined with 
evidence of H3K9me3 and H4K20me3 in close proximity to the 
repeat and a broader distribution of H3K9me3 and H3K27me3 
(51). The complexity of epigenetic gene regulation is highlighted 
in the finding of two unrelated males with FXS full CGG expan-
sion, which were atypically found to have unmethylated FMR1 
DNA within the promoter regions. Histone H3/H4 acetylation 
and H3K9me1 were similar to those of typical FXS cell lines with 
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methylated promoters. H3K4 and H3K27 trimethylation levels 
were similar to unaffected control individuals with no repression 
of the FMR1 gene. However mRNA translational efficiency was 
shown to be reduced (46). Recently, the formation of an RNA–
DNA duplex, whereby RNA transcripts directly interact with the 
FMR1 promoter, has been shown to cause gene silencing (52). 
Treatment with an inhibitor of linearization (named “1a”) of the 
RNA hairpin during development of a FXS embryonic stem cell 
prevented gene silencing by preventing duplex formation (52). 
Those FXS alleles carrying 55-200 repeats are classed as having 
a pre-mutation, which has been associated with an increased 
propensity to develop autistic features or anxiety disorder (43). 
Twenty percent of female carriers suffer premature ovarian fail-
ure. Fragile-X-associated tremor/ataxia syndrome (FXTAS) also 
develops in pre-mutation carriers, with FMR1 mRNA increased 
2–10 times, with no subsequent increase in FMRP protein, indi-
cating a toxic RNA gain-of-function mechanism behind FXTAS 
(43, 53). This apparent fine regulation of FMR1 transcription, with 
either too little or too much FMR1 transcript being pathogenic, 
poses a challenging hurdle for those investigating therapeutic 
agents aimed at increasing FMR1 expression.

MYOTONiC DYSTROPHY

Myotonic dystrophy (DM) is an autosomal dominant neuro-
muscular disorder and the commonest form of adult muscular 
dystrophy affecting 1 in 8000 within Caucasian populations 
(54). Characteristic signs are those of myotonia (skeletal muscle 
hyperexcitability), progressive muscular dystrophy, cataracts, 
cardiac conduction defects, cognitive deficits, and endocrine 
anomalies. Myotonic dystrophy type 1 (DM1) is caused by a 
(CTG)n expansion in the 3′ untranslated region of the gene, dys-
trophia myotonica protein kinase (DMPK), on chromosome 19 
(54). Expanded CTG repeats are highly unstable in both germline 
and somatic tissues, with the phenomenon of genetic anticipation 
being first described in a family with DM1 whereby successive 
generations have a tendency to exhibit a more severe phenotype 
than their ancestors (55, 56). The number of repeats is correlated 
with the severity of symptoms and the earlier disease onset pro-
viding a molecular explanation for anticipation. Individuals with 
5–37 repeats are unaffected, while >50 repeats results in disease, 
congenital onset being seen in those with very large expansions 
(e.g., 1500 repeats) (54–57).

A number of mechanisms have been proposed for the 
pathological role of CTG repeats in DM (58). Dominantly a 
spliceopathy is implicated in the pathogenesis, whereby RNA 
foci formed by triplet-repeat transcripts result in sequestration of 
muscleblind-like (MBNL) proteins and the upregulation of CUG-
binding (CUGBP)/Elav-like family member 1 (CELF1) proteins, 
possibly through an increase in CUGBP’s half-life (58). These 
proteins are required for mammalian myoblast differentiation. 
Importantly, misplacing of a gene that encodes an ion channel 
CLCN1 occurs in DM1 and direct mutation of this ion channel in 
another disease causes myotonia (59). Thus, imbalance between 
levels in regulators of splicing may explain the phenotypic hetero-
geneity in DM1 (60–62). The CTG repeat has also been shown to 
influence chromatin, making it less permissive for transcription 

(63), as is the case for the heterochromatin-mediated silencing 
triggered by CTG expansions using the hCD2 reporter gene in a 
similar manner to GAA expansions (25) and in patient-derived 
fibroblasts, nuclease resistance of the SIX5 enhancer present in 
the 3′ region of the DMPK gene, renders it inaccessible to tran-
scription factors and causing downregulation of SIX5 expression 
(63–65). Repression of the SIX5 gene has been shown to lead 
to the development of cataracts in mice, which is a dominant 
symptom of myotonic dystrophy (66). Repeat instability is key in 
the pathogenesis of DM1, with muscle tissue showing the great-
est incidence of somatic repeat expansion, dictating severity of 
disease. Increased repeat instability was shown in cells from DM 
patients treated with DNA methyltransferase inhibitor 5-aza-
deoxycytidine (67). Loss of CTCF boundary regions flanking the 
CTG repeats have been shown to be associated with DNA hyper-
methylation (68). Activation of DMPK antisense transcription 
resulted in enrichment of H3K9 methylation and HP1gamma 
at regions flanking CTG repeats, providing further support for 
heterochromatic spreading from the CTG repeat region (68). 
Interestingly, the maintenance of transcription at this heterochro-
matinized locus may be the result of the loss of CTCF binding 
with an insulator loss-of-function promoting action of nearby 
promoters and enhancers. This theory is supported by increased 
DMPK expression during late embryogenesis in congenital DM1. 
In adult onset DM1, CpGs in the region of the CTG expansion are 
unmethylated and DMPK expression is lower; while in congenital 
DM1, CpGs are aberrantly methylated preventing CTCF binding 
allowing action of the SIX5 enhancer (69). As CTGs can trigger 
heterochromatin formation, it is possible that the DMPK gene 
is in fact causing variegated silencing. To our knowledge, this 
has not been examined in detail. If this were the case, a potential 
therapeutic approach would be to increase the silencing with epi-
genetic modifiers. Interestingly, a current therapeutic approach 
being investigated is to silence genes using exon-skipping as is the 
case with Huntington’s disease (HD).

HUNTiNGTON’S DiSeASe

Huntington’s disease is an autosomal dominant disease with 
a prevalence of 10 per 100,000 people (70). It is a progressive 
neurodegenerative disorder typically presenting in the fourth or 
fifth decade with generalized chorea. Cognitive impairment and 
behavioral change are also frequently exhibited, and often precede 
the movement disorder. Dementia is a late feature of the disease. 
HD is the result of a heterozygous (CAG)n expansion within exon 
1 of the huntingtin gene (HTT) (71). This results in a polyglutamine 
expansion within the HTT protein. As with other trinucleotide 
repeat disorders, there is an apparent repeat threshold, which 
dictates both likelihood of disease onset as well as subsequent 
age of onset (72, 73). Those with 6–35 repeats are unaffected, 
while greater than 40 repeats is causative. Individuals with 36–39 
repeats have a variable penetrance and often present late with the 
disorder. Due to repeat instability, there is an increased risk to 
children of intermediate length mutation carriers developing the 
disease (72). Juvenile onset HD is associated with large expan-
sions. The (CAG)n expansion results in misfolding of the HTT 
protein and following cleavage, intracellular aggregate formation 
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(74, 75). It is the interruption of numerous cell processes by these 
aggregates, which is implicated, in the neuronal toxicity and cell 
death in HD (70, 74–78).

Unlike many other TNR disorders, the HD gene locus is not 
known to be overtly heterochromatinized, allowing for transcrip-
tion. However, single cell gene expression analysis is lacking and 
would greatly increase our understanding of the transcriptional 
kinetics of the pathological HTT gene. As TNR in HD are often 
much shorter than in other TNR diseases, this may explain the 
lack of compaction at this locus (73). Furthermore, it has been 
shown that the location of transgenes containing CAG expansions 
in a heterochromatic environment resulted in reduced somatic 
instability, whereas those integrated in an open chromatin environ-
ment had more instability that may be in part due to the increased 
accessibility to the transcriptional machinery (77). The possibility 
of increased somatic instability, which has been implicated in dis-
ease progression in HD and DM1, should be considered in studies 
using agents such as HDAC inhibitors in HD (77).

Hypoacetylation of histones H3 and H4 as well as the discov-
ery of Creb-binding protein (CBP, a histone acetyl transferase 
and transcriptional activator) within intracellular inclusions 
was shown in several HD animal models, human cell lines, and 
post-mortem tissues (78). In support of the association of CBP 
with the pathogenesis of HD, overexpression of CBP reversed 
neuronal toxicity in cells expressing mutant HTT (78). Further 
evidence for the importance of histone and non-histone protein 
acetylation in HD has been shown through the effect of HDAC 
inhibitors (HDACi) on several HD models (79–83). Neuronal 
degeneration was shown to be reduced in Drosophila models 
of HD following treatment with HDACi. Reduction of RPd3 
(ortholog to HDAC1/2/8 in humans) or Sir2 (Sirt1 in humans) 
was also neuroprotective in another study (80).

Increased transcription of alpha thalassemia/mental retarda-
tion X linked (ATRX) protein has also been found in HD models 
(84). ATRX is an ATPase/helicase that binds to the repressive 
mark H3K9me2/3 and co-localizes with HP1-alpha (1, 85). 
ATRX overexpression increased H3K9me3 and pericentromeric 
heterochromatin condensation as well as eye degeneration in a 
HD fly model (84–86). H3K4me3 was reduced at transcription-
ally repressed promoters in HD mice and patients (87). This is 
thought to be caused by an increase in KDM5C, a histone lysine 
demethylase, which was protective in HD mouse and Drosophila 
models (87).

DNA methylation has also been implicated in epigenetic dys-
regulation in HD (70, 79, 88). Comparison of genome-wide CpG 
methylation status between control cells and those expressing 
mutant HTT found that a significant number of downregulated 
genes in HTT cells were preferentially methylated (79). Two 
frequently downregulated genes are brain-derived neurotrophic 
factor (BDNF) (important for mature neuron survival) and the 
adenosine A2A receptor (79, 89, 90).

SPiNOCeReBeLLAR ATAXiAS

Spinocerebellar ataxias (SCAs) are a group of dominantly inher-
ited neurodegenerative disorders that predominately affect the 

cerebellum, brainstem, and spinal cord. Several SCAs are the 
result of polyglutamine (CAG) repeat expansions in the coding 
region of genes (SCA-1, 2, 3, 6, 7, and 12). Epigenetic gene regu-
lation mechanisms have been implicated in the pathogenesis of 
several SCAs (91–96).

SCA7 is the result of an expansion in the N-terminal region 
of the ATXN7 gene, patients exhibit ataxia as well as retinal 
dysfunction (91). ATXN7 is a subunit of the SAGA complex, 
a multi-subunit complex that can acetylate and deubiquitinate 
histones and other non-histone substrates (92). There is conflict-
ing information regarding the effect of the expanded tract on 
the histone acetyl transferase activity of the SAGA complex. 
One study in SCA7 mice found increased acetylation of H3K9 
and H3K14 at rod cell-specific gene promoters, surprisingly 
this was associated with a reduction in mRNA (92, 93). Other 
studies in SCA7 yeast models and mammalian cell lines showed 
a reduction in H3 acetylation through reduced acetyltransferase 
activity (94).

SCA8 is the result of a CAG repeat expansion in the ataxin 8 
gene and a CTG expansion at the 3′UTR of the antisense strand 
(95). An increase in H3K9me2 and reduction in H3K14ac were 
noted in ATXN8OS cells lines with 157 repeats, but not in those 
with 23 or 88 repeats (97). Similar to findings in DM1, a toxic RNA 
gain-of-function mechanism has been implicated with splicing 
changes and increased expression of the CUGBP1–MBNL1 
regulated CNS target, GABA-A transporter 4 (96).

A similar toxic RNA gain-of-function mechanism has been 
implicated in the pathogenesis of SCA3 whereby experiments in 
Drosophila showed disruption of CAG repeats by insertion of a 
CAACAG sequence that was able to alleviate neurodegeneration, 
while expression of the untranslated CAG repeat caused neuro-
degeneration (98).

SPiNAL AND BULBAR MUSCULAR 
ATROPHY

Spinal and bulbar muscular atrophy (SBMA) is an X-linked reces-
sive disorder and the first TNR disorder described. It is caused by 
a pathogenic CAG expansion in the first exon of the androgen 
receptor. Males are affected and exhibit motor neuron degenera-
tion in the spinal cord and brainstem and wasting of limb muscles. 
There is also subclinical loss of sensory neurons in the dorsal root 
ganglia. HDAC inhibitors have been shown to effectively treat the 
disease phenotype and correct histopathological abnormalities in 
a mouse model of SBMA (97).

CONCLUSiON AND FUTURe DiReCTiONS

It is evident that epigenetic gene regulation is integral to the 
pathogenesis of several trinucleotide repeat diseases, with 
mutations resulting in DNA methylation, local heterochro-
matinization, RNA loss- or gain-of-function, aberrant mRNA 
splicing, antisense transcription, and/or protein aggregation 
being predominant mechanisms. Furthermore, global altera-
tions in gene expression are implicated in the varied disease 
course and phenotype of many TNR disorders. This epigenetic 
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layer of gene regulation brings with it the prospect of new 
therapeutic targets. Global activation or inhibition of these 
highly conserved epigenetic targets is likely to result in off-
target effects, posing the need for further work in improving 
specificity of interventions for each disease. The answers to key 
questions on mechanisms of epigenetic regulation will bring 
us closer to more effective and selective therapies for these 
diseases.

GLOSSARY

R-loop: A loop of single-stranded DNA formed when mRNA 
binds to its complementary exonic regions of double-stranded 
DNA. Unbound intronic DNA forms R-loops.

CTCF: Eleven zinc-finger protein that binds in a sequence-
specific manner to DNA. Regulates 3D structure of the genome by 
forming chromatin loops and forms boundary regions between 
euchromatin and heterochromatin.

Heterochromatin: Regions of compact chromatin, mainly 
consisting of transcriptionally inert satellite sequences. Classically 
found at centromeres and telomeres.

Euchromatin: Open chromatin, providing an environment to 
permit gene expression.

Repeat instability: The propensity for repetitive sequences of 
DNA to undergo expansion and contraction.

Anticipation: The onset of symptoms of a genetic disorder 
at an earlier age in subsequent generations, often due to expan-
sion in the case of triplet-repeat disorders. More frequently seen 
through paternal inheritance.

Histone deacetylase (HDAC): Enzyme that promotes the 
removal of acetylation from histone and other non-histone 
proteins. Permitting addition of methylation.
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