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There is evidence that the normal aging process is associated with impaired vestibu-
lo-ocular reflexes (VOR) and vestibulo-spinal reflexes, causing reduced visual acuity and 
postural instability. Nonetheless, the available evidence is not entirely consistent, espe-
cially with respect to the VOR. Some recent studies have reported that VOR gain can be 
intact even above 80 years of age. Similarly, although there is evidence for age-related 
hair cell loss and neuronal loss in Scarpa’s ganglion and the vestibular nucleus complex 
(VNC), it is not entirely consistent. Whatever structural and functional changes occur in 
the VNC as a result of aging, either to cause vestibular impairment or to compensate for 
it, neurochemical changes must underlie them. However, the neurochemical changes 
that occur in the VNC with aging are poorly understood because the available literature 
is very limited. This review summarizes and critically evaluates the available evidence 
relating to the noradrenaline, serotonin, dopamine, glutamate, GABA, glycine, and nitric 
oxide neurotransmitter systems in the aging VNC. It is concluded that, at present, it is 
difficult, if not impossible, to relate the neurochemical changes observed to the function 
of specific VNC neurons and whether the observed changes are the cause of a func-
tional deficit in the VNC or an effect of it. A better understanding of the neurochemical 
changes that occur during aging may be important for the development of potential drug 
treatments for age-related vestibular disorders. However, this will require the use of more 
sophisticated methodology such as in vivo microdialysis with single neuron recording 
and perhaps new technologies such as optogenetics.

Keywords: vestibular nucleus complex, aging, monoamines, glutamate, GABA, nitric oxide

AGe-ASSOCiATeD CHANGeS iN veSTiBULAR FUNCTiON

Aging in humans has been thought to be associated with an increasing impairment of the vestibulo-
ocular reflexes (VOR) and vestibulo-spinal reflexes, which results in reduced visual acuity and 
postural instability (1–14). The prevalence of dizziness and vertigo has been estimated at 30% in 
people over the age of 60, and dizziness in the elderly is associated with a high risk of falls (15, 
16). Nonetheless, there is disagreement about VOR impairment, in particular. A recent study of 
the VORs using the video head impulse test (vHIT) for all six semi-circular canals reported that, 

Abbreviations: 5-HT, 5-hydroxy-tryptamine; AMPA, α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate; GABA, 
γ-aminobutyric acid; HPLC, high performance liquid chromatography; NMDA, N-methyl-d-aspartate; NO, nitric oxide; VNC, 
vestibular nucleus complex; VOR, vestibulo-ocular reflex.
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although gain decreased with high head velocities, it was largely 
unaffected in healthy adults in the 80–89 years’ age group (17). 
Similar results have recently been reported by Matiño-Soler et al. 
(18), who observed that the horizontal VOR gain was stable up 
until 90  years of age and then decreased thereafter. McGarvie 
et al. (17) suggested that cerebellar compensation, in the form of 
VOR plasticity, may be responsible for the preservation of VOR 
function despite aging. On the other hand, Li et al. (19) reported 
that horizontal VOR gain remained stable from 26 to 79 years of 
age and then significantly declined (people over the age of 80 had 
an approximately eightfold increase in the odds of having a VOR 
gain <0.80). Kim and Sharpe (20) also found that the vertical 
VOR was relatively preserved in the elderly, although vertical 
smooth pursuit eye movement, eye-head tracking, and VOR 
cancelation during intentional head movement, were impaired. 
Studies of perceptual threshold levels related to the horizontal 
VOR have suggested that there may be little difference between 
young and older adults (21), although some dynamic visual acu-
ity studies suggest otherwise (22). Otolithic function, evaluated 
using ocular and cervical vestibular-evoked myogenic potentials 
(o- and c-VEMPs), has been reported to decline with age (19, 
23–26). Vestibulo-sympathetic reflexes have also been reported 
to be impaired with increasing age, which can lead to an increase 
in orthostatic hypotension (27, 28).

There is increasing evidence that age-related changes in 
vestibular function result in cognitive deficits (29–31). Cyran 
et  al. (31) studied the functional connectivity of a vestibular 
cortical network (i.e., the superior, middle, and inferior frontal 
and temporal gyri, the lingual gyrus, insula, superior and infe-
rior parietal lobe, parietal operculum, posterior cingulate gyrus, 
cuneus, thalamus, and cerebellar tonsil) in relation to age, using 
a tensor independent component analysis of fMRI data acquired 
in response to galvanic vestibular stimulation. They found that 
the functional connectivity of the network decreased with age, 
which they suggested was due not to structural deterioration but 
to functional changes; the somatosensory sensory networks, on 
the other hand, remained relatively intact. Recently, several large 
epidemiological studies have implicated vestibular dysfunction 
in the development of cognitive deficits in elderly humans (29, 
30, 32). Although these data are based on surveys and therefore 
necessarily correlational in nature, they are consistent with the 
results of clinical studies in humans [e.g., see Ref. (33, 34) for a 
review] and experimental studies in animals (35–40), which have 
shown that vestibular dysfunction results in cognitive impair-
ment, especially related to spatial memory.

Age-related vestibular impairment has often been attributed 
to a degeneration of the peripheral vestibular receptor hair cells 
or to changes in the number of neurons in Scarpa’s ganglion or 
the brainstem vestibular nucleus complex (VNC). Many studies 
have reported that the hair cells and their afferent connections 
decrease with age (41–50). Nonetheless, some studies have found 
no significant age-related differences in the number of hair cells 
in the crista ampullaris of aging gerbils (51) or the human utricle 
(52) and others have found no significant differences in the 
number of neurons in Scarpa’s ganglion (53, 54). Neuronal loss 
has been reported in the human VNC (55–58) and in the VNCs 
of some animal species [e.g., Ref. (59)]. However, Fernandez 

et  al. (60) could find no significant age-related decrease in the 
number of neurons in the golden hamster. Johnson and Miquel 
(61) analyzed the ultrastructure of the rat lateral vestibular 
nucleus at 4 weeks, 6–8 weeks, 6–8 months, and 18–20 months 
of age, and found a number of age-related changes that increased 
in frequency with increasing age, including nuclear membrane 
invaginations, disorganized endoplasmic reticulum, rod-like 
nuclear inclusions, and lipofuscin-like cytoplasmic dense bodies. 
In addition, the oldest age group exhibited axonal degeneration 
and dendritic swelling. Takeuchi et  al. (62) have also reported 
dystrophic axon terminals in the VNC of 360-day-old gerbils. The 
cytoplasms were found to contain neurofilaments and vesicles 
with membranous granular substances. Therefore, it is possible 
that there is age-related structural deterioration in the VNC even 
without neuronal loss itself.

In summary, there is increasing evidence that the human 
VORs are largely intact, at least until approximately 80 years of 
age. Ocular and cervical vestibular-evoked myogenic potentials 
(o- and c-VEMPs), on the other hand, appear to decline more 
obviously with age, and there is epidemiological evidence at least 
to suggest that any decline in vestibular function with age is asso-
ciated with cognitive deficits. The evidence relating to structural 
deterioration of the peripheral hair cells, and neuronal loss in 
Scarpa’s ganglion and the VNC, is divided, although there may be 
morphological changes in the VNC irrespective of neuronal loss.

The apparent discrepancies between the results of the different 
functional and structural studies in aged animals and humans 
suggest considerable variability in the effects of aging on the 
vestibular system. One obvious explanation for this is species dif-
ferences. Another possibility is that, even within a single species, 
some of this variability is the result of differences in a combination 
of genetic and environmental influences on the way that the ves-
tibular system ages and the extent to which it is capable of adaptive 
plasticity in response to aging. In this respect, it is important to 
note that Radtke-Schuller et al. (63) have recently reported that 
the cholinergic vestibular efferent neurons, which provide feed-
back to the peripheral vestibular system, do not degenerate with 
age. By contrast, cochlear efferent neurons do degenerate with age.

It is reasonable to assume that functional changes in the 
vestibular nucleus that are associated with either vestibular 
impairment or plasticity that prevents it, would be the result of 
neurochemical changes and that these would constitute a neuro-
chemical signature of the aged vestibular nucleus. The aim of this 
review is to summarize and critically evaluate what is currently 
known on this topic.

NeUROCHeMiCAL CHANGeS iN THe 
veSTiBULAR NUCLeUS wiTH AGe

By contrast with the functional and neuroanatomical studies 
of the vestibular system, there are relatively few neurochemical 
studies of the VNC in relation to aging.

Monoamines
The VNC has been shown to receive noradrenergic inputs from 
the locus coeruleus and the response of VNC neurons to glutamate 
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FiGURe 1 | Levels of glutamate (A) and GABA (B) in the vNC in aged (A) and young (Y) rats housed in either an enriched environment (“Y”) or not (“N”). 
Symbols represent means with the SE and SD for the mean. Modified from Liu et al. (69).
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appears to be modulated by noradrenaline (NA) via α2 receptors 
[see Ref. (64, 65) for reviews]. NA also appears to modulate the 
response to GABA via α2 receptors and β receptors (66). Likewise, 
the VNC receives serotonergic projections from the dorsal raphe 
nucleus and VNC neurons appear to have 5-hydroxytryptamine 
(5-HT)1A, 5-HT1B, and 5-HT2 receptors [see Ref. (64, 65) for 
reviews]. VNC neurons also respond to dopamine (DA) via “D2-
like” receptors (i.e., D2, D3, and D4 receptors). There is evidence 
that DA depolarizes medial vestibular nucleus (MVN) neurons by 
acting on presynaptic “D2-like” receptors to inhibit the release of 
GABA from inhibitory interneurons [see Ref. (65) for a review].

Cransac et  al. (67) studied the levels of NA, 5-HT, and 
DA and their metabolites in the MVN of rats at 4, 21, and 
24  months of age, using homogenized micropunch samples 
and high performance liquid chromatography (HPLC). They 
found a decrease in NA with age and an increase in the ratio 
of its metabolite, 3-methoxy, 4-hydroxyphenylglycol (MHPG), 
to NA. By contrast, 5-HT and its metabolite, 5-hydroxyin-
doleacetic acid (5-HIAA), increased in the MVN with age 
while DA and 3,4-dihydroxyphenylacetic acid (DOPAC) levels 
remained unchanged. Di Mauro et al. (66) have suggested that 
a decrease in the NA content of the VNC could be responsible 
for deterioration of vestibular function with age.

Amino Acids
The excitatory and inhibitory amino acids are among the most 
important neurotransmitters in shaping the response of VNC 
neurons. Every subtype of glutamate receptor is expressed in the 
VNC (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA), N-methyl-d-aspartate (NMDA) and the metabotropic 
glutamate receptors), and glutamate is the primary neurotrans-
mitter used in the synapses between the vestibular nerve and 
VNC neurons [see Ref. (64, 65) for reviews]. Similarly, many 
VNC neurons have γ-aminobutyric acid (GABA) receptors of 
both the GABAA and GABAB subtypes, and the GABAA receptor 

is thought to primarily mediate commissural inhibition between 
the bilateral VNCs. Glycine, acting on glycine receptors, is also 
important in inhibitory neurotransmission in the VNC [see Ref. 
(64, 65) for reviews].

Him et al. (68) reported that the responses of MVN neurons to 
NMDA and AMPA were similar in brainstem slices from young 
(3 months of age) and aged rats (24 months of age), suggesting 
no change in the sensitivity of these glutamate receptor subtypes. 
Liu et al. (69) compared glutamate levels in the VNCs of rats at 
4 and 24 months of age, using homogenized samples and HPLC, 
and found that glutamate levels significantly decreased with age 
(see Figure 1A); by contrast, there was no such decrease in the 
cerebellum. Since Him et al. (68) measured only the response of 
MVN neurons to NMDA and AMPA, and Liu et al. (69) measured 
only the levels of glutamate, the results of these two studies are not 
necessarily incompatible. For example, it is possible that AMPA 
and NMDA receptors upregulated or increased their sensitivity 
to glutamate in response to a decrease in its availability, resulting 
in an approximately normal response to those agonists. However, 
neither of these studies allows the neurochemical changes to be 
attributed to any specific function within the VNC. Therefore, the 
functional significance of these results remains unclear.

Him et  al. (70) reported that neurons in the MVN from 
aged (24 months old) rats exhibited an increased sensitivity to 
the GABAA receptor agonist, muscimol, which they suggested 
might be a compensatory change in response to a loss of neurons 
within the MVN. Giardino et al. (71) detected increased levels 
of glutamic acid decarboxylase (GAD) in the 24-month-old rat 
VNC, and concluded that this may reflect an increased synthesis 
of GABA in the aged VNC. However, Liu et al. (69), again using 
homogenized samples and HPLC, found no significant change 
in GABA levels in the VNC or cerebellum with aging in the rat 
(Figure 1B).

In the only study of age-related changes in glycine receptors 
in the VNC to date, Nakayama et al. (72) demonstrated a large 
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FiGURe 2 | The arginine metabolic pathway showing the conversion 
of l-arginine to the neurotransmitter, nitric oxide (NO), and l-citrulline, 
by nitric oxide synthase (NOS), of which there are three isoforms; the 
conversion of l-arginine to agmatine by arginine decarboxylase 
(ADC), which is then converted to polyamines such as putrescine, 
spermidine, and spermine by agmatinase and ornithine 
decarboxylase (ODC); and the conversion of l-arginine to l-ornithine 
by arginase, which is then converted to the same polyamines. 
Glutamate is one of the end products of l-arginine, and glutamate serves as 
a precursor for the synthesis of GABA. Reproduced from Smith et al. (82) 
with permission from Elsevier.
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decrease in strychnine binding in the VNC as a function of age 
(3, 18, and 26 months). The amount of strychnine binding in the 
26-month-old rat was approximately 50% of that in the 3-month-
old rat. Once again, the functional significance of these changes 
is unknown. However, Nakayama et al. (72) speculated that an 
increased glycine synthesis might occur in order to prevent such 
a large decrease in glycine receptors from causing functional 
impairment.

Other Neurochemical Changes with Age
Sulaiman and Dutia (73) showed that many MVN neurons in 
brainstem slices are inhibited by δ-opioid receptor agonists such 
as [d-Ala2, d-Leu5]-enkephalin (DADLE) and [d-Pen2, Pen5]-
enkephalin (DPLPE), an effect that was blocked by the δ-receptor 
antagonist, naltrindole. Interestingly, they found that the inhibi-
tory effects of DADLE increased with age, although the oldest 
animals used were only 160–180 g in weight.

Liu et al. (69) were interested in analyzing the l-arginine meta-
bolic system in the VNC and cerebellum of aged (24 months old) 
and young (4 months old) rats. Some of the rats were housed in 
a standard environment, and others were housed in an enriched 
environment, with running wheels and toys. They employed 
homogenized samples, HPLC and liquid chromatography/mass 
spectrometry (LC/MS/MS) to quantify the concentrations of 
l-arginine, l-citrulline, l-ornithine, agmatine, putrescine, sper-
midine, spermine, as well as glutamate and GABA (the latter as 
previously mentioned). These neurochemicals are all related and 
part of the l-arginine metabolic pathway (see Figure 2). l-arginine 
is a semi-essential amino acid metabolized by nitric oxide synthase 

(NOS) in order to produce nitric oxide (NO) and l-citrulline (74). 
NO is non-conventional neurotransmitter that is important for 
synaptic plasticity and learning and memory; however, it is also 
a free radical, and therefore in excessive amounts it can be neuro-
toxic [see Ref. (75) for a review]. There is a great deal of evidence 
that NO is implicated in both the normal aging process and age-
related neurodegenerative processes [(76, 77); see Ref. (78, 79) for 
reviews]. The polyamines putrescine, spermidine, and spermine 
are down-stream metabolites of l-arginine (see Figure 2).

Liu et al. (69) found that in the VNC, putrescine, l-arginine, 
and l-citrulline increased significantly with age, while spermine 
and l-ornithine decreased (see Figure  3). In the cerebellum, 
spermidine and l-citrulline increased significantly with age, 
while spermine decreased. Linear discriminant analysis (LDA) 
was used to show that age could be predicted from a subset of 
these neurochemicals. For the VNC, the LDA could predict age 
with 100% accuracy from the levels of putrescine, spermidine, 
spermine, l-citrulline, glutamate, and GABA. For the cerebel-
lum, age could be predicted with 93% accuracy from the levels of 
spermine and spermidine only.

l-citrulline (the coproduct of NO) was significantly higher 
in the aged VNC and cerebellum, which is consistent with the 
increase in NO in the aged cerebellum that has been reported 
previously (80). Mistry et  al. (81) reported that l-arginine 
concentrations in the cerebellum were not significantly different 
between young (3–5 months old) and aged (18–22 months old) 
male rats, which is consistent with the results of Liu et al. (69).

In further analyses of the same data set, Smith et  al. (82) 
used multiple linear regression in order to determine whether 
each variable could be predicted from the others. Age was a sig-
nificant predictor variable for putrescine (R2 = 0.68), spermidine 
(R2 = 0.93), agmatine (R2 = 0.76), and l-ornithine (R2 = 0.50). 
Using cluster analyses, there were no large differences in the 
covariation of the different neurochemical variables between 
the young and aged animals, and glutamate and GABA covaried 
closely in both groups (see Figure 4).

In summary, there is evidence that, with aging, the levels of 
NA and glutamate decrease in the VNC, while those of 5-HT and 
NO increase (Figure  5). On the other hand, there is evidence 
that GABA and DA levels do not change significantly (Figure 5). 
The data relating to neuronal responsiveness are more difficult 
to interpret, since they may reflect receptor number, affinity or 
efficacy; however, the available data suggest that the response 
of VNC neurons to NMDA and AMPA receptor agonists does 
not change significantly, while GABAA receptor and δ-opioid 
receptor agonists have an increased effect. There is a significant 
downregulation of glycine receptors in the VNC with age.

CONCLUSiON AND FUTURe DiReCTiONS

Although vertigo and dizziness are common complaints among 
the elderly (15, 16), there is some disagreement as to how much 
of this is due to VOR dysfunction. Some recent studies have sug-
gested that the VOR remains relatively preserved even in people 
over the age of 80 [e.g., Ref. (17)]. There is, on the other hand, 
evidence for dysfunction of o- and c-VEMPs with advancing age 
[e.g., Ref. (19, 23–26)]. The evidence for age-related hair cell loss 
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FiGURe 4 | Dendrograms showing the similarities in the degree of 
expression of the nine neurochemical variables in the vNC of young 
(A) and aged (B) rats. Reproduced from Liu et al. (69) with permission from 
Elsevier.
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and neuronal loss in Scarpa’s ganglion and the VNC is divided; 
however, it may be that structural deterioration occurs even with-
out neuronal loss. One possibility is that some of the changes that 
lead to increased vertigo and dizziness in the elderly are related 
not to peripheral degeneration or even degeneration in the VNC, 
but to deterioration in the vestibulo-limbic and vestibulo-cortical 
pathways. Recent studies have shown age-related changes in the 
vestibulo-cortical networks and epidemiological studies have 
increasingly linked vestibular impairment to cognitive deficits in 
the elderly (29–31).

Assuming that there are structural and functional changes in 
VNC neurons with age that contribute to vestibular impairment, 
it is almost certain that these will be dictated by neurochemical 
changes, either causing deterioration of function or perhaps 
caused by that deterioration; some of these changes may even 
be compensatory and may help to preserve vestibular function, 
up to a point. Unfortunately, at this time, there are relatively 
few quantitative studies that can shed light on this topic. Of the 
studies that have been published, there is evidence for a decrease 
in NA and an increase in 5-HT in the VNC, with no change 

in DA levels (67); a decrease in glutamate levels (69) with no 
change in the sensitivity of AMPA and NMDA receptors (68) 
(Figure  5). The evidence relating to GABA is contradictory, 
with Giardino et al. (71) reporting an increase in GAD, possibly 
reflecting an increased synthesis of GABA, while Liu et al. (69) 
found no significant change in GABA levels (Figure 5). On the 
other hand, Him et al. (70) reported an increased sensitivity of 
MVN neurons to a GABAA receptor agonist. There is evidence 
for a decrease in glycine receptors (72) and an increase in the 
sensitivity of MVN neurons to the inhibitory effects of δ opioid 
receptor agonists (73). Finally, Liu et  al. (69) have reported 
complex changes in various neurochemicals that are part of the 
l-arginine metabolic pathway, some of which are implicated in 
the production of NO. Unfortunately, to completely understand 
the changes that are occurring in any particular neurotransmit-
ter system, it is necessary to have information not only about 
neurotransmitter levels, preferably their release (see below), but 
also the number, affinity and efficacy of their receptors (i.e., the 
degree to which activation of the receptor by an agonist results 
in a change in neuronal function, for example, via influx of ions 
through linked ion channels or G protein mobilization). For 
example, it is possible to have no change in neurotransmitter 
release, no change in receptor number or affinity, however a 
change in efficacy. While neurotransmitter release can be 
measured using microdialysis in  vivo, and receptor number 
can be measured using receptor binding, western blotting or 
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