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The motivation of developing simple minimal models for neuro-glio-vascular (NGV) 
system arises from a recent modeling study elucidating the bidirectional information flow 
within the NGV system having 89 dynamic equations (1). While this was one of the first 
attempts at formulating a comprehensive model for neuro-glio-vascular system, it poses 
severe restrictions in scaling up to network levels. On the contrary, low-dimensional  
models are convenient devices in simulating large networks that also provide an intuitive 
understanding of the complex interactions occurring within the NGV system. The key 
idea underlying the proposed models is to describe the glio-vascular system as a lumped 
system, which takes neural firing rate as input and returns an “energy” variable (analogous 
to ATP) as output. To this end, we present two models: biophysical neuro-energy (Model 
1 with five variables), comprising KATP channel activity governed by neuronal ATP dynam-
ics, and the dynamic threshold (Model 2 with three variables), depicting the dependence 
of neural firing threshold on the ATP dynamics. Both the models show different firing 
regimes, such as continuous spiking, phasic, and tonic bursting depending on the ATP 
production coefficient, ɛp, and external current. We then demonstrate that in a network 
comprising such energy-dependent neuron units, ɛp could modulate the local field poten-
tial (LFP) frequency and amplitude. Interestingly, low-frequency LFP dominates under 
low ɛp conditions, which is thought to be reminiscent of seizure-like activity observed in 
epilepsy. The proposed “neuron-energy” unit may be implemented in building models 
of NGV networks to simulate data obtained from multimodal neuroimaging systems, 
such as functional near infrared spectroscopy coupled to electroencephalogram and 
functional magnetic resonance imaging coupled to electroencephalogram. Such models 
could also provide a theoretical basis for devising optimal neurorehabilitation strategies, 
such as non-invasive brain stimulation for stroke patients.
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1. inTrODUcTiOn

A key tenet of the contemporary neuroscience states that neurons 
constitute the primary units of brain’s information processing 
networks. However, there is growing evidence suggesting an 
imperative role of the “other brain” in sustaining the brain’s 
physiological activity (2–4). This other brain comprises the 
glial cells that occupy around half of the brain’s volume, though 
the exact numbers and neuron/glia ratio vary across the brain 
(5–8). Developments in glial research over the last two decades 
reveal the immense and extensive contributions of this system 
to brain functions, such as neurotransmitter homeostasis, potas-
sium siphoning, and shuttling the energy substrates across the 
blood–brain barrier among others (2, 9–18). Interestingly, glial 
cells also sense and modulate the synaptic activity (19, 20) in 
addition to the above-mentioned maintenance functions. There 
are significant studies speculating on the contributions of glial 
cells in brain’s computations (21, 22).

Neural activity is constantly sensed by a type of glial cells 
called the astrocytes, whose perisynaptic processes eavesdrop 
on ongoing neurotransmission events (23–25). The end-feet of 
astrocytes also wrap around the blood vessels, thereby forming 
the blood–brain barrier (26). This configuration is known to 
facilitate the transmission of “hunger signals” from the neurons 
to the cerebral blood vessels through the glial interface (27, 
28). The possibility of reverse influence from the vessels to the 
neurons is generally neglected, though there are experimental 
grounds supporting the role of vasomotion in various diseases, 
such as diabetes, hypertension, and even Alzheimer’s disease 
(29, 30). Recent studies present substantial evidence supporting 
the role of glio-vascular dysfunction in cognitive impairments, 
such as epilepsy, neurodegenerative disorders, and migraine 
(31–33). Furthermore, some recent proposals postulate a role 
for the glio-vascular system in neural information processing 
(1, 34–36).

These significant developments in glial and cerebrovascular 
research indicate a need to incorporate both the glial and vascular 
systems in an expanded theory of brain’s computations. Hence, it 
seems pragmatic to investigate further the role of glial cells and 
the cerebral vasculature in information processing in the brain. 
Therefore, we hypothesize that the neural activity also has an 
obligate dependence on the spatiotemporal vascular dynamics 
governed by the astrocyte activity.

Chander and Chakravarthy (1) proposed a model of the 
neuro-glio-vascular (NGV) system, in which a single neuron 
interacts with a single astrocyte and single microvessel. The 
model is a detailed biophysical model consisting of 89 dynamic 
equations. In order to explore, using computational models, the 
possible role of NGV system as a fundamental unit in brain’s 
information processing, it is essential to develop network 
models of the NGV system. However, with a model that is sig-
nificantly complex at single-unit level, it is difficult to scale up to 
the network level. Therefore, the main objective of the present 
study was to formulate simple models of the NGV system whose 
rationale is inspired by the behaviors observed in more complex 
models like that of Chander and Chakravarthy (1). Considering 

the serious challenges involved in systematically reducing an 
89-dimensional system to a five-variable system, we begin with 
a simple five-variable biophysical neuron model that captures 
the dependence of neural firing on ATP. This five-variable bio-
physical model is constructed by modifying the neuron model 
of Ching et al. (37).

In an attempt to develop a more generic, low-dimensional 
model that shows the effects of varying energy (ATP) levels in a 
spiking neuron model as a function of vessel dynamics, we have 
developed two models (Figure 1). Our approach to development 
of the proposed simplified model of the NGV system is as follows: 
instead of treating the astrocyte and the vessels as independent, 
isolated entities, we represent the entire glial-vascular system 
as a single, lumped system, which represents a source of energy 
substrates for the neurons. Thus, the proposed system has two 
modules: a neuron module and an “energy” module. The output 
of the neuron module is its firing activity, which is sensed by the 
energy module. In turn, the energy module supplies “energy” to the 
neuron module to fuel its firing activity. Since the neuron module 
is characterized by the fast neural dynamics, it is considered the 
fast subsystem. The “energy” module, which represents the slower 
glial and vascular dynamics, is the slow subsystem. The energy 
module takes the firing activity output of the neuron module and 
releases energy in the form of ATP. It must be noted that the firing 
activity of the neuron has a dual impact on the ATP dynamics: on 
the one hand, neural firing activity leads to the consumption of 
ATP via the activity of Na+–K+ ATPase pump, while on the other 
hand, it acts as a trigger to induce the energy module to release 
more energy in the form of ATP (38). Based on this paradigm, we 
first present the two minimal models for NGV. The first minimal 
model (Model 1 with five dynamic variables) described in the 
present study is biophysical and elucidates the effect of intracel-
lular [ATP] on the excitability of a mammalian cortical pyramidal 
neuron by modulating the KATP channel activity. The first model 
reproduces most of the dynamical behaviors (such as tonic spiking 
and tonic bursting) of the detailed model. We then propose that 
this regulatory effect of [ATP] changes the neuronal firing thresh-
old and thereby governs its excitability. Accordingly, we propose 
the second model (Model 2 with three dynamic variables), which 
comprises a quadratic integrate-and-fire neuron with a dynamic 
threshold, governed by intracellular [ATP].

In both the models, ATP consumption directly depends on 
neural spiking activity. The production rate coefficient of ATP, ɛp, 
is a crucial parameter that is proposed to represent local vascular 
activity. Furthermore, the simpler Model 2 is calibrated against 
the biophysical Model 1 so as to obtain similar spiking rates. The 
neural dynamics in both the models expresses the same behaviors 
(tonic spiking, phasic bursting, and tonic bursting) for a similar 
range of control parameters: production rate coefficient of ATP, 
ɛp, and external input current, Iext.

We then describe a network model comprising one of the 
described “neuro-energy” models, followed by analyzing the 
model behavior under physiological and energy-starved condi-
tions. This is done by calculating local field potentials (LFPs) and 
comparing the frequency spectrum for different values of control 
parameters.
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FigUre 1 | schematic representation of the proposed modeling framework for the low-dimensional models of “neurovascular unit,” wherein the 
glio-vascular system is lumped into a single module. Model 1 is biophysical with neuronal ATP affecting the Na+–K+ ATPase pump activity (Apump) and 
extracellular potassium ion concentrations (Ko), which eventually governs the neuronal membrane potential. Model 2 is an abstract model with neuronal ATP 
modulating the firing threshold (Vth) of a quadratic integrate-and-fire model. Iext is the common key parameter across all the models and represents the external input 
current to the neuron (in microampere per square centimeter).
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2. MaTerials anD MeThODs

The simple models proposed in this study are canonical and are 
formulated to study further the relation between firing patterns 
and intraneuronal ATP, as was observed in the detailed biophysical 
model (1). We begin with a five-variable biophysical model that 
instantiates the dependence of neural firing on ATP and closely 
relates to the model of Ching et al. (37). Model behavior is studied 
by varying two parameters: ɛp and Iext. The first parameter ɛp con-
trols ATP production rate. Reduced values of parameter, ɛp, leads 
to slow-down in ATP production as, for example, in the case of a 
constricted vessel. The second key parameter of both the models 
is Iext, which represents the input current received by the neuron. 
The neurons activity is also critically governed by Iext such that 
below a threshold value of the current, the neuron does not spike 
at all as is the conventional approach to modeling biophysical 
neuron. In the models described in the following sections, we 
demonstrate the physiological range of these parameters, wherein 
the neuron shows continuous firing and the pathological range 
(especially ɛp), wherein the neuron enters burst firing modes.

2.1. Model 1: Biophysical neuro-energy 
Model
Model 1 is described by five dynamic variables with the neuron 
 represented by two variables: membrane voltage, V, and Na+ chan-
nel gating variable, n [Eq. (1)]. The typical Hodgkin–Huxley-based 

mammalian cortical neuron model is reduced to two variables 
by assuming the gating variables m to be extremely fast and h 
to be slow. Such assumptions are regularly made to construct 
low-dimensional neuron models, for example, the FitzHugh–
Nagumo model (39, 40). This makes m simply a function of 
voltage, V (Eq. 2) and h, a constant (Eq. 4). An important char-
acteristic of the model is the additional KATP channel (41), which 
is an ATP-dependent potassium channel and forms a direct 
link between metabolism and neuronal activity. The schematic 
representation of the model is given in Figure 2.
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TaBle 1 | Table for values of different parameters and constants used in 
the formulation of Model 1.

Parameters and constants Values

ENa 50 mV (37)

EK −67 mV (37)

gNa 100 mS/cm2 (37)

gK 80 mS/cm2 (37)
gKATP 0.15 mS/cm2 (37)

gL 0.1 mS/cm2 (37)

Imax 1.3 μA/cm2 (43)

C 1 μF/cm2 (37)

a 0.066 (current model parameter)

b 0.033 (current model parameter)

c 0 (current model parameter)

λA 0.009 (current model parameter)

λfr 0.14 (current model parameter)

The current model parameters a, b, and c are tuned so as to get optimum buffering 
effect making Ko lie within the specific physiological range of 3–10 mM (42).

FigUre 2 | schematic representation of Model 1: biophysical model: the neuron comprises the first compartment with the corresponding ion 
channels. The second compartment represents the glio-vascular system influencing the activity of the first via two mechanisms: (a) buffering of the Ko and (b) 
regulation of production rate of ATP (ɛp). The input to the glio-vascular system is the delayed firing rate signal from the neuron.
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The corresponding forward and backward rate functions, 
αm(V), βm(V), αn(V), and βm(V), given by Eqs 5–8 (37). In addi-
tion, C is the membrane capacitance, gi and Ei are the maximal 
channel conductance and reversal potential, respectively, for the 
ith ion, and gKATP  is the maximal channel conductance for the 
KATP channel gated by variable z given by Eq. 9, as implemented 
by Ching et al. (37).

 
z

A
=

+
1

1 10  (9)

where A is intracellular [ATP] and Iext is the continuous external 
current. The inverse relation of the gating variable, z, with the 
ATP, A, signifies the functionality of the KATP channels, depicting 
that the channels would be open under low ATP concentrations 

and closed at physiological ATP concentrations (37). The values 
and units of the variables are shown in Table 1.

In addition, the Ko dynamics affect the membrane voltage 
through EK (in millivolts), which is given by the Nernst potential 
equation (Eq. 10).

 
EK

o

tot o

K
K K

=
−

26 7. log( )  (10)
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FigUre 3 | Modeled activity of na+–K+ aTPase pump, where 
g k

1 1K eo
Ko( )= + − −( )l  and g2(A) = 1 + e−μ(A − l) and λ, μ, k, and l are slope 

parameters tuned as per the model for mammalian cortical neuron.

March 2016 | Volume 7 | Article 245

Chhabria and Chakravarthy Low-Dimensional Models for “Neuro-Glio-Vascular” Unit

Frontiers in Neurology | www.frontiersin.org

where

 K K Ktot o i= +  (11)

where Ki and Ko are the intracellular and extracellular potas-
sium ion concentrations, respectively. Ktot denotes the sum of 
intracellular and extracellular potassium ion concentrations, 
fixed at 133  mM for our simulations, assuming the intra- and 
extra-compartmental volumes to be the same (Eq. 12).

 Vol Volextracellular intracellular=  (12)

The Ko dynamics is given by summation of both inward and 
outward K+ currents along with a quadratic term: fglia oK( )  
(Eq.  14), which denotes the extracellular potassium buffering 
activity of the glial cells around the neuron. The quadratic 
term is more appropriate compared to a linear term because at 
resting conditions, with a linear buffering term, Ko can reach 0 
value in the absence of buffering, i.e., fglia oK( ) = 0 (which does 
not happen physiologically). On the contrary, the quadratic 
term ensures that Ko is always non-zero and maintained at the 
basal physiological value. The constants and other parameters 
are given in Table 1. Buffering is important as it does not allow 
Ko to go beyond a critical value. Studies have shown that Ko 
needs to be effectively buffered by spatial diffusion and/or 
glial activity (18). The buffering effect is due to the activity of 
various channels present on the membrane of glial cells, such 
as inward-rectifying potassium channels (Kir) and potassium 
pumps (Na–K and NKCC) (44–46). The activity/conductance 
of the channels and the pumps depend on the concentration of 
extracellular potassium (Ko). The conductance of a Kir channel 
is described by g = f(Ko)n, where n varies with the type of cell/
neuron (47, 48) and the pump activity depends non-linearly on 
[Ko]. However, the combined buffering effect of the channels and 
the pumps, together, is not explicitly modeled. There are models 
for potassium buffering, though more detailed than ours, like 
that of Kager et al. (43), which assume the buffering capacity to 
be limited. On the other hand, we modeled the buffering term 
with no constraint on the upper limit of the buffering capacity 
in order to study the effect of “energy” on the neural excitability, 
in isolation. Thus, as a simple case, we assume the glial buffering 
term to be quadratic and encompassing all the effects resulting in 
decrease in extracellular potassium. The advantage of a quadratic 
buffering term is that it gives a stable fixed point at a finite value 
of [Ko], representing the stable value of [Ko] sustained by the 
buffering process. Further experiments are required to validate 
the buffering term, fglia oK( ) .

In general, buffering is important as in the absence of buffer-
ing, Ko accumulates, making the neuron hyperexcitable, a phe-
nomenon observed in cases of epilepsy and spreading depression 
(49). Few experimental studies also attribute anomalies in Ca2+ 
activated K+ channels to the excessive accumulation of Ko (50). 
Thus, we speculate that the non-linear buffering term, fglia oK( ), is 
generic and is representative of the multiple factors affecting the 
concentration of Ko.

 
τ πK

o
glia o S K

dK
dt

K
tot

= − +f I( )  (13)

where

 f a b cglia o o oK K K( ) = + +2  (14)

and

 
I I I IK K K Ktot o i ATP

= + +  (15)

where a, b, and c are buffering constants and πS is the “current 
density to concentration” conversion factor (1), whose values are 
given in Table 1. IKo

 is outward potassium current (Eq. 16), IKi
 

is the inward potassium pump current (Eq. 17), and IKATP
 is the 

outward potassium current through the ATP-dependent potas-
sium channel (Eq. 18). The various ion channel current equations 
are described by Eqs 16–18.

 
I g n V EK K Ko

= −4( )  (16)

 
I I AK max pumpi

= −2  (17)

and

 
I g z V EK K KATP ATP

= −( )  (18)

The activity of the Na+–K+ ATPase pump (Apump) is modeled by 
a combination of sigmoidal functions of the concentrations of ATP 
and Ko concentrations (Figure 3), assuming it to be independent 
of Na+ dynamics (Eq.  19). This is done so as to represent the 
significance of intracellular ATP and Ko in modulating the pump 
activity under pathological conditions (51). The formulation of 
Na+–K+ ATPase pump dynamics is similar to that implemented by 
Forrest et al. (52) with parameters adjusted for the current model.

 
A k A lpump Ko

=
+ +− − − −

1
1 1( e )( e )( ) ( )λ µ  (19)

where λ, μ, k, and l are slope parameters, A represents the intracel-
lular ATP concentration and is given by Eq.  20 with τA as the 
time constant for the ATP dynamics. The steady state value of 
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FigUre 4 | schematic representation of Model 2: dynamic threshold 
model.
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intracellular neuronal ATP is constrained to 2  mM as per the 
experimental observations (53). The model can be adapted to 
different neuronal types by changing the slope parameters for 
ATP and Ko in the Eq. 19.

 
τ ε λA p pump A

d
dt
A f A A= − −  (20)

where f, a quantity analogous to neural firing rate, is calculated 
according to Eq. 21. In Eq. 20, f controls ATP production via the 
proportionality constant ɛp, the production signal calculated by 
integration of the membrane voltage (Eq. 21). Furthermore, the 
consumption term is given by the activity of the Apump (Eq. 19). On 
the one hand, consumption being local (to the neuron) affects the 
membrane voltage on a faster time scale. On the other hand, the 
production signal influences the membrane voltage on a slower 
time scale, since it is an outcome of the activities within the glio-
vascular system.

 
τ λp f

d
dt

f f H V= − + ( )  (21)

where λf is the damping coefficient, τp is the time constant of ATP 
production (signifying the delay arising through the processing of 
information in glio-vascular loop), and H(V) denotes a Heaviside 
function of membrane voltage, V.

The model shows different firing patterns by varying the Iext 
along with production coefficient, ɛp.

2.2. Model 2: Dynamic Threshold  
neuro-energy Model
In our quest to develop simple canonical models for NGV unit, 
we formulated the five-variable model described in Section 2.1, 
which depicts bursting behavior under energy-starved condi-
tions. We then consider whether we could effectively replicate the 
behaviors of the previous model in a further simpler framework 
(Figure  4) and explore the plausible extent of abstraction, we 
now seek out a model that is simpler than that of Section 2.1, and 
reproduces the broad dynamic regimes and their transitions. The 
main intuitive idea behind the second model is that ATP controls 
the firing threshold of the neuron. The threshold is low for high 
ATP levels and increases under low ATP or energy-starved condi-
tions (Figure  5). To this end, we construct the second model, 
which has three dynamic variables. This model comprises a 
quadratic integrate-and-fire neuron (Eq. 22), whose parameters 
are adjusted to obtain similar spike characteristics as that of the 
previous model (for a given Iext). The parameter and constants are 
listed in Table 2.

 
τV th rest ext

d
dt
V a V V V V I= − − +( )( )  (22)

where V is the membrane voltage, Vrest is the resting membrane 
potential, set to −100 mV (analogous to Model 1), and Vth is the 
dynamic voltage threshold that is dependent on the ATP inside 
the cell, given by Eqs 23 and 24.

The voltage is reset back to Vreset = −90 mV, when it reached 
the peak value, Vpeak = 25 mV. The values of Vreset and Vpeak were 
set to specific values in order to align the firing rates of Model 2 
with that of Model 1.

 
τth

th
th th

od
dt
V V V A= − + ( )  (23)

where Vth
o  is a function of ATP, denoted by A.

 V A V V V H A Ath
o

th
n

th
h

th
n

base( ) ( ) ( )= + − −  (24)

where Vth
n is the basal of membrane voltage threshold, set to 3 mV 

for the present set of simulations, and H(V) is the Heaviside 
function of membrane voltage, V. Figure 5 shows the relation-
ship between A and V Ath

o ( ), wherein Vth takes a higher value Vth
h  

(=65  mV) under low ATP conditions ( )A A< base , and a lower 
value, Vth

n (basal threshold = 3 mV) for higher A (>Abase). The ATP 
dynamics are modeled with a production term and a consumption 
term similar to that of Model 1. Here, the production term does 
not explicitly depend on the firing rate; instead, in the absence 
of firing activity, A approaches exponentially a maximal value of 
Amax, assumed to be the physiological ceiling level of ATP (53).

 
τ ε δA p

sp
dec

d
dt
A A A t t A= − − −( ) ( )max  (25)

where τA is the time constant for ATP dynamics, Adec is the step 
decrease in A, whenever the cell spikes, and finally, ɛp is the 
production coefficient analogous to the one used in the previous 
model. The present model is simplified and shows qualitatively 
the same range of behaviors as that of the previous biophysical 
model by varying ɛp along with Iext.
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TaBle 2 | Table for values of different parameters and constants used in 
the formulation of Model 2.

Parameters and constants Value

Vreset −90 mV

Vpeak 30 mV

Vrest −100 mV
Vth

high
65 mV

Vth
norm

3 mV

Adec 0.07

Abase 0.05

All the parameter values are set to get the best alignment with the previous model in 
terms of behaviors for a range of parameters.

FigUre 5 | Modeled voltage threshold function dependent on intracellular aTP concentrations (millimolar). The switch from Vth
h  to Vth

n  occurs at A A= base.
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2.3. neuro-energy-Based network Model
The neuro-energy unit as described in Section 2.2 is then 
implemented to construct a network model of 1000 such units 
in order to study the effect of the control parameter/s on the 
emergent properties of the network. The network configuration 
is similar to that implemented in the earlier studies (37, 54) and 
is illustrated in Figure 6. It comprises 85% excitatory neurons 
and 15% inhibitory neurons (55). Unlike Ching et al. (37), the 
inhibitory neurons also have the intracellular ATP dynamics 
associated with their activity, which in turn controls their firing 
threshold.

The basic neuronal model for both excitatory and inhibitory 
neuron is the quadratic integrate-and-fire neuron, with the 
major difference in the time constants (τexcitatory  =  2τinhibitory). 
This ensures faster dynamics of the inhibitory neurons, repre-
sentative of the fast spiking inhibitory neurons in the cortex. 
In addition, the neurons in the network are connected through 
synapses modeled as alpha function (Eqs 26 and 27), with the 

synaptic parameters (Table  3) corresponding to that of corti-
cal pyramidal and fast spiking inhibitory neurons similar to 
Cunningham et al. (56).

 I g h E Vsyn i i= −( ) (26)

 
τ λ δi

spd
dt
h h t t= − + −( ) (27)

where “i” represents the type of synapse (excitatory or inhibi-
tory); EAMPA and EGABA are 0 and −80 mV, respectively. Synaptic 
currents, Isyn, are calculated from the integral of the presynaptic 
spike history δ(t − tsp), which can be obtained by using auxiliary 
variable, h, similar to Mazzoni et  al. (54) with the damping 
constant, λ, tuned as per this model. The values for E and g are 
taken from Ching et al. (37), while the value for τ was tuned in a 
way so that τext = 0.5τin as the inhibitory synapse are at least twice 
as fast as excitatory synapses (37).

The corresponding gi values for both types of synapses are 
given in Table 3. Furthermore, to maintain a conservative bio-
logical realism in the model, the connectivity was chosen to be 
random and sparse with a 0.2 probability of directed connection 
between any pair of neurons, similar to Mazzoni et al. (54). For 
the described set of parameters, LFPs are calculated as sum of 
synaptic currents, averaged over the neurons in the network and 
is given by the following equation:

 
LFP syn=

==
∑∑1

11N
Ii n

i

C

n

N
,  (28)

where N is the number of neurons in the network and each 
neuron receives input from C synapses (20% of the total number 
of synapses).
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TaBle 3 | network parameters utilized for modeling the synaptic 
currents as adapted from ching et al. (37).

Pyrammidal Fast-spiking interneurons

gAMPA 0.1 2

gGABA 0.64 1

FigUre 6 | simulated network representation: the neuron layer comprises 1000 neurons with 15% as fast spiking inhibitory interneurons. The activity 
of each neuron is coupled to the ATP dynamics. The connectivity between the neurons is random and sparse (c = 20%). ATP production rate for each neuron is 
governed by a production rate coefficient, ϵp, proposed to be representing vascular input parameter. Neuronal firing consumes ATP, creating a deficit which results in 
increase in the production of ATP, representing the vascular feedback.
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3. siMUlaTiOn resUlTs

Both the models show same set of behaviors for a similar range 
of parameters, Iext and ɛp. As ɛp corresponds to the vascular input 
to the neurons, we suggest that low ɛp would be representative 
of “energy deficient” condition in the neurons. Both the models 
show bursting (tonic/phasic) under low ɛp and moderate Iext 
conditions, thereby suggesting metabolic basis of bursting. We 
demonstrate this effect in Model 1, wherein low ɛp conditions 
result in activations of KATP channels and thus show bursting at 
some moderate values of Iext.

3.1. Model 1: simulation results
Model 1, with its biophysical framework, shows four major 
behaviors by varying ɛp and Iext: no firing, phasic bursting, tonic 
bursting, and continuous spiking. In addition, it also shows phasic 
spiking (a single spike followed by a pause of fixed duration) for 
some values of ɛp and Iext (traces not shown). Figures 7 and 8 illus-
trate the voltage dynamics and the corresponding ATP dynamics 
for the regimes mentioned above for Model 1. In addition to the 
voltage trace (black), the EK dynamics is also depicted in the both 
the figures (in green). For any value of ɛp and subthreshold Iext, the 
neuron tends to be in a no-firing state as in Figure 7A.1. The value 
of ɛp becomes significant for suprathreshold Iext. For example, for 
Iext >4  μA/cm2 and low values of ɛp, the model shows (phasic 
or tonic) bursting (Figures 7B.1 and 8C.1), whereas for higher 
values of ɛp, continuous spiking is observed (Figure 8D.1). The 
state as described in Figure 8D.1 is considered to be physiological 
state, wherein the cell is showing continuous activity for the given 

Iext value. On the contrary, the states described in Figures 7B.1 
and 8C.1 could be considered as pathological states, wherein 
the neuron is unable to fire for a long time/continuously due to 
lesser availability of energy/ATP (low ɛp). The corresponding ATP 
dynamics (as in Figures 7A.2, B.2 and 8C.2, D.2) reveal fast and 
slow components in the sense that the ATP production is slower 
than its consumption. Particularly, in the case of continuous spik-
ing, ATP increases slowly after the initial decrease, to stabilize at a 
value around 1.8 mM as shown in Figure 9. This state represents 
the physiological state as the demand of ATP is matched with the 
supply, maintaining a homeostatic [ATP] = 1.8 mM (53).

As mentioned before, in order to keep minimal variables in 
the model, we incorporated Ko in our model to emphasize the 
importance of Ko in pathological conditions. Interestingly, Ko was 
shown to be slowly accumulating during normal phase of firing 
(57), which is also demonstrated in the proposed model.

We further show that the transition from one behavior to 
another is smooth with an intermediate regime, which shows a 
mixture of dynamics characteristic of the adjacent two regimes. 
Specifically, with respect to Model 1, such a transition zone 
was seen between the tonic bursting and continuous spiking 
regimes. Figure 10 illustrates the map for Model 1 showing the 
gross regimes obtained by varying the two control parameters: 
ɛp and Iext.

3.2. Model 2: simulation results
Model 2 is a lower dimensional model compared to Model 1. The 
decrease in ATP is modeled to be a step decrease and the produc-
tion of ATP is similar to that modeled by Ching et al. (37). In 
addition, the production term is a slowly increasing term whose 
slope is governed by ɛp, which we propose to be analogous to the 
glio-vascular input.

The model is optimized such that variation of ɛp within the 
range of 0–5 displays all the behaviors observed in the previous 
model (Figures 11 and 12). Intuitively, the results suggest that 
there is a critical homeostatic balance between production and 
consumption of energy that has to be physiologically maintained 
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FigUre 7 | Model 1: the membrane voltage dynamics (a.1,B.1) are shown as black traces. The green trace represents the EK (Nernst potential for 
potassium) dynamics for no firing and phasic bursting, respectively. The corresponding ATP dynamics as in (a.2,B.2) for respective regimes are illustrated with 
continuous red lines (simulated for 1 s). (a) No spiking at Iext = 3 μA/cm2. Note that in this case, the value of ɛp affects the slope of the ATP dynamics, and not 
changing the overall behavior/regime. (B) Phasic bursting at ɛp = 0.8 and Iext = 7 μA/cm2. As can be observed from the ATP dynamics in (B.2), there is a slight rise in 
the [ATP], followed by complete silence, owing to low ɛp conditions.

March 2016 | Volume 7 | Article 249

Chhabria and Chakravarthy Low-Dimensional Models for “Neuro-Glio-Vascular” Unit

Frontiers in Neurology | www.frontiersin.org

by the coordinated activities of the three networks working in 
parallel: the neural, the glial, and the vascular network. The 
coordination is of great importance for generating complex 
spatiotemporal patterns of delivery of energy resources required 
for normal cerebral functioning.

Model 2 captures the essence of the previous model and faithfully 
reproduces the same range of behaviors, such as continuous spiking, 
phasic, and tonic bursting, by varying ɛp and Iext as were observed in 
Model 1 (Figure 13). Figures 11 and 12 illustrate the various regimes 
and the corresponding ATP dynamics. The voltage threshold, Vth is 
also shown along with the membrane voltage traces (dashed green 
traces and black traces as in Figures 11A.1, B.1 and 12C.1, D.1, 
respectively). Correspondingly, the ATP traces are shown with the 
critical base ATP value (red traces and dashed green traces as in 
Figures 11A.2, B.2 and 12C.2, D.2). The characteristic transitions 
between the regimes (depending on the set of parameters) are 
analogous to Model 1. At subthreshold Iext, the neuron tends to be 
in a no-firing state (Figure 11A.1) and for suprathreshold Iext, the 
value of ɛp governs the firing pattern and physiological state of the 
neuron (Figures 11B.1 and 12C.1, D.1). However, the values of the 
parameters corresponding to different behaviors observed in the 
two models (Model 1 and Model 2) are not identical. One reason 
behind this could be the difference in the time scales of the two 

models, which were adjusted to align the two models. The values of 
the control parameters (Iext and ɛp) for which a range of behaviors is 
observed lack direct mapping to the physiological values, and thus, 
future experiments are required for validation.

Compared to Model 1, Model 2 represents an important step 
toward an abstract model. While Model 1 relates energy to neural 
firing via KATP channel, Model 2 relates the two through a more 
abstract parameter viz., “firing threshold.” Furthermore, Model 2 
also has fewer dynamic variables than Model 1.

3.3. Model comparisons
The parameters of Model 2 were tuned as per Model 1 so that the 
firing rates and burst rates for a given set of parameters match 
with good approximation. The firing rate comparison in shown 
in Figure 14 (top), while the individual spike dynamics is also 
shown in Figure 14 (bottom right). In addition, the inter-burst 
frequency is also comparable (Figure 14, bottom left) for a specific 
range of Iext. However, with the variation in εp, the match between 
the burst frequencies of the two models worsens (Figure  14: 
top red bar charts) due to the presence of aperiodic bursting in 
Model 2 (absent in Model 1). Consequently, the mean inter- and 
intra-burst frequencies are variable across the range of control 
parameters (both εp and Iext). In general, the alignment between 
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FigUre 8 | Model 1: the membrane voltage dynamics (c.1,D.1) are shown as black traces. The green trace represents the EK (Nernst potential for 
potassium) dynamics for no firing and phasic bursting, respectively. The corresponding ATP dynamics (c.2,D.2) for respective regimes are illustrated with 
continuous red lines (simulated for 1 s). The green trace is that of the EK dynamics, (c) tonic bursting at Iext = 7 μA/cm2 and ɛp = 1. The ATP dynamics [as in (c.2)] 
clearly demonstrate the effect of fast-slow subsystems, i.e., the production is slower than the consumption. Consequently, the uphill is more stretched across time 
as compared to the downhill. (D) Continuous spiking at ɛp = 2 and Iext = 7 μA/cm2. The initial dip in the ATP dynamics is characteristic of the fast local consumption; 
however, due to higher ɛp, the demand for ATP is sufficiently matched with the supply and the intraneuronal ATP then reach to a homeostatic physiological value 
(=1.8 mM).
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the models is consistent in terms of range of behaviors observed 
and their association with the control parameters.

3.4. network simulation results
The production rate of ATP described by ɛp effectively changes the 
neural dynamics. Low ɛp is thought to represent the “metabolically 
compromised” network state and depicts that lower frequencies 
LFP dominate. This is similar to that observed under propofol-
anesthetic conditions [associated with reduced metabolism (58, 
59)], which is characterized by decreased LFP power (60–62). 
We further show that a broader spectrum of LFPs is observed at 
high ɛp conditions as opposed to the low ɛp conditions, wherein a 
sharper spectrum is observed.

The network output is analyzed in terms of LFP, population 
responses of excitatory and fast spiking inhibitory neurons, and 
the mean ATP corresponding to each population and network.

Figure  15 illustrates the LFP patterns (Figure  15A.1–A.4) 
and mean ATP profiles for excitatory, inhibitory, and for the 
complete network, corresponding to various values of ɛp. As can 
be observed, the baseline for mean ATP for the inhibitory neuron 
population is lower than that of the excitatory population. We 

believe that this happens as a result of relatively fast consumption 
of ATP by the inhibitory neurons as they display higher firing 
rates compared the excitatory/glutamatergic neurons. The fast 
consumption could be attributed to the synchronous popula-
tion firing observed in case of inhibitory neurons as depicted 
in Figure  16, while the excitatory neuron population show 
desynchronous activation patterns. Higher ɛp shows continuous 
activation of both sets of neurons and is proposed to represent 
normal state (balanced excitation and inhibition).

The spectrogram for the calculated LFPs corresponding to 
different values of ɛp is shown in Figure  17, which shows the 
existence of high frequency activity with alternating periods 
of quiescence at low ɛp values. This is similar to the spectrum 
observed under deeper anesthetic conditions with isoflurane 
administration as described by Silva et  al. (63), representing a 
metabolically compromised or low energy state of the brain.

4. DiscUssiOn

The present study proposes a minimal and computationally 
efficient model of the neurovascular system that could be used 
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FigUre 10 | Model 1: complete map of different regimes obtained by varying ɛp and Iext simulated for 1 s. The vertical boundary between regime A and 
the other regimes depicts the threshold value of Iext. Bursting (tonic/phasic) is observed only under low ɛp conditions and medial above threshold Iext. The direct 
switch from no spiking to continuous spiking (A–E) is considered to be physiological. Note that the phasic spiking regime (regime B) is dependent on the initial 
conditions of membrane potential set to −100 mV [similar to Cunningham et al. (56) and Ching et al. (37)].

FigUre 9 | Model 1: the membrane voltage dynamics (left) with corresponding aTP dynamics (right) for corresponding regimes at Iext = 7 μa/cm2 
and ɛp = 1.7 simulated for 4 s to show the stabilization of aTP over the time in case of continuous firing.
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for simulating large scale networks. The first part of the study 
describes two low-dimensional single-unit neurovascular models 
depicting the importance of neuronal ATP production rate (rep-
resentative of the vascular input) in modulating the neural firing 
patterns. As described earlier, the first model is biophysical and 
highlights the crucial link between the neuronal ATP and neural 
firing through the activity of the KATP channels. In order to sim-
plify the first model further, based on the simple idea that “ATP 
controls the firing threshold,” we postulated the second model, a 
three-variable model. With a quadratic integrate-and-fire neuron 
model, the second neurovascular model parameters were adapted 
to mimic the spike characteristics observed in the first biophysi-
cal model. The second model effectively depicts the same set of 

behaviors observed in the first model as described in the previous 
sections. In the second part of the study, we then present a network 
model comprising the units described by the model equations of 
Section 2.2. With respect to the physiological correlates for the 
cortical neuronal networks, the simulated network is set to have 
85% of the neurons as glutamatergic and 15% as GABAergic (55). 
The connectivity between the neuronal units is assumed to be 
sparse on the lines of earlier studies (64, 65). The simulation of 
the network shows that the LFP spectrum depends on the ATP 
production rate, ɛp.

The described models specifically present the case of low ATP 
conditions (metabolic stress) in the neurons, wherein bursting 
(tonic/phasic) is observed at the single neuron level. Although 
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FigUre 11 | Model 2: the membrane voltage dynamics (a.1,B.1) are illustrated in the black traces and the voltage threshold, Vth in the dashed green 
traces. The corresponding ATP dynamics (a.2,B.2) for respective regimes are depicted by red traces with the dashed green trace representing the Abase (simulated 
for 1 s). The value of Abase is deterministic for the state of the neuron such that if A crosses Abase, the threshold is raised to the higher value and neuron ceases to fire 
[(B.1,B.2)]. (a) No spiking at Iext = 6 μA/cm2 for any value of ɛp. (B) Phasic bursting at ɛp = 0.001 and Iext = 7 μA/cm2. Here, the ɛp is very low to make the A cross the 
Abase, and thus, the neuron tends to be in the phasic bursting mode.
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there are studies showing burst suppression in electroencepha-
logram (EEG) as a result of reduced metabolic states, such as 
hypothermia, hypoxic–ischemic trauma (66, 67), there is no 
direct evidence showing bursting under such low ATP conditions 
at single neuronal level. However, there are experiments studying 
the activity of KATP channels under energy deficits or hypoxic 
conditions (68). Since KATP channel activations are associated 
with bursting both in vitro and in vivo (69, 70), this forms the 
crucial link between low ɛp and bursting. In the presented models, 
the neuronal system could show both tonic and phasic bursting. 
While most of the studies mentioned above demonstrate the 
occurrence of tonic bursting under reduced metabolic states, 
phasic bursting at the single neuron level is not studied well. 
However, there are studies showing that cervical interneurons 
transition from tonic bursting to phasic bursting under extreme 
hypoxic conditions (71). This highlights the key advantage of 
conducting computational modeling studies, wherein behaviors 
can be predicted and subsequently validated by experiments. 
Based on our simulation results, some of the testable predictions 
that suggest themselves are summarized as follows.

• The models described in the current study describe single 
neuronal behaviors. Hence, it would be pragmatic to first test the 

effect of “energy deficits” at the single neuron level experiments 
by designing a low energy conditions for the neurons followed 
by analysis of their activity. It would be also plausible to conduct 
such experiments on the slice cultures under low glucose and/or 
low oxygen conditions. It would be thus very interesting to see the 
change in the neuronal activity in these low energy conditions.

• The current study also suggests the existence of phasic bursting 
under extremely low energy conditions. Similar to the studies 
conducted by Sandhu et al. (71), experiments can be designed 
for cortical systems to investigate if the transition from tonic 
to phasic bursting occurs under extreme hypoxic conditions.

• An even more general experiment would be to observe the 
evolution of intracellular ATP during all the regimes described 
in the present study. Since there are few studies pertaining to the 
real time intracellular ATP measurements (69), it would be ben-
eficial to measure the ATP levels along with the neuronal activity 
in the conditions suggested in the present study and look for 
oscillations in ATP occurring in synchrony with neural bursting.

At the network level models proposed in the present study, low-
frequency large amplitude oscillations in LFP are observed with low 
ATP production rates. Studies depict a correlation between seizure 
activity or a spreading depression event and hypoxic–ischemic 
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FigUre 12 | Model 2: the membrane voltage dynamics (c.1,D.1) are illustrated in the black traces and the voltage threshold, Vth in the dashed green 
traces. The corresponding ATP dynamics (c.2,D.2) for respective regimes are depicted by red traces with the dashed green trace representing the Abase (simulated 
for 1 s) and at Iext = 7 μA/cm2. (c) Tonic bursting at ɛp = 1, note that here the decrease in ATP is a step decrease, and hence, the downhill of ATP is not smooth as 
compared to Model 1. (D) Continuous spiking at ɛp = 50, wherein the ATP stabilizes at the physiological value of 1.8 mM (ATP oscillates around the baseline of 
1.8 mM).
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conditions for hippocampal neurons in vitro (72). We suggest that 
seizures or spreading depression observed in slice cultures could be 
linked to tonic bursting at single neuron level [similar suggestions 
have been made by Kager et al. (43)]. Furthermore, experiments by 
Sandhu and Gonzalez-Rothi (71) describe the impact of hypoxic 
condition on a subset of cervical interneurons and show a switch 
from tonic to phasic bursting with increasing level of hypoxia. The 
physiological evidence also associates the comatose conditions to 
the persistence of burst suppression activity in EEG (66). The neo-
natal seizures and EEG burst suppression also have been correlated 
to the manifestation of metabolically compromised state of the 
brain as a result of hypoventilation, hypoxic–ischemic encepha-
lopathy, intracranial hemorrhage, or hypoglycemic conditions (73, 
74). All these conditions are concomitant to reduced energy release 
by the vascular system or low cerebral blood flow rates, leading on 
to hyperexcitability of the cerebral cortex due to increased release 
of glutamate (75, 76). The excitability of the neurons is also known 
to be governed by the concentration of extracellular potassium, 
determined by the activity of the various potassium channels (49). 
Specific among the gamut of potassium channels, KATP is of specific 
interest as its activity is dependent on the energy state (intracellular 
[ATP]) of the neuron such that low energy inside the neuron is 
attributed to higher efflux of potassium from the neurons (77). 

Therefore, low intracellular energy would lead to hyper excit-
ability as a result of either increased release of glutamate or higher 
potassium efflux from the neurons. These evidences reinforce our 
proposition of ATP controlling the neural firing threshold, thereby 
determining the excitability of the neurons. In the present study, 
the simulation of the network model depicts burst suppression, 
such as activity under low ATP production rate conditions, as 
demonstrated earlier.

It is thus evident that neuronal energy states are crucial in 
maintaining the physiological activity of the brain. We further 
speculate that these energy states must be considered in the 
background of the neurovascular coupling, as the neurons mostly 
depend on the surrounding glial cells and cerebral vasculature for 
energy supply (78). However, recent studies show the presence 
of glycogen metabolism in the neurons although it is thought 
to occur at meager levels under extreme cerebral hypoxia (79). 
Interestingly, the pathologies associated with the metabolically 
compromised brain states might possibly have an associated 
vascular dysfunction. Studies by Schwartz discuss the possibil-
ity of developing hemodynamic markers associated with the 
seizure onset in case of epilepsy (32). There exist clinical stud-
ies that also demonstrate occurrence of seizures in post-stroke 
cases (80), implicating vascular anomaly as one of the probable 
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FigUre 14 | comparison of biophysical model (Model 1) (a) with the threshold model (Model 2) (B). (Top) Comparison of inter-burst frequency (number of 
burst per second) between the two models across two sets of control parameters (Iext and ɛp). (Bottom left) Comparison of average firing rate at Iext = 8 and ɛp = 5. 
(Bottom right) The voltage traces of the two models compared. (Since the average firing rate and inter-burst frequency are slightly different, the traces do not match 
completely throughout the time of simulation and for all the parameter configurations.)

FigUre 13 | complete map for Model 2 regimes obtained by varying ɛp and Iext simulated for 1 s. The regimes transitions in the map are qualitatively similar 
to that observed in Model 1 (Figure 10) such that bursting (tonic/phasic) prevails under low ɛp and medial above threshold Iext.
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factors affecting the onset of epilepsy. Recent studies investigate 
the association between cerebral angiopathies and pathologies, 
such as Alzheimer’s disease, migraine, and epilepsy (81, 82). 
However, a clear causational relation between neurovascular 

pathophysiology and such disorders is not evident. For example, 
it is necessary to understand that whether the decrease in BOLD 
signal is associated with post-stroke seizure or it is an outcome 
of neuronal morbidity, as also discussed by Schwartz et al. (32). 
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FigUre 15 | network output activity for increasing ɛp: (a.1)–(a.4) raw and filtered lFP for ɛp; 1, 3, 8, and 15 (top to bottom). (B.1)–(B.4) ATP dynamics 
averaged across neuron populations; inhibitory, excitatory, and complete layer for varying ɛp. (c) External input current signal to the network with Gaussian noise.
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FigUre 16 | neuronal population response for varying ɛp; 1, 3, 8, and 15 (top to bottom). (a.1)–(a.4) Excitatory neuron population response.  
(B.1)–(B.4) Inhibitory neuron population response. The figure illustrates that varying ɛp governs the synchronous firing among the excitatory neurons, making the 
network response more desynchronized at higher ɛp.
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FigUre 17 | lFP spectrograms for varying ɛp; 1, 3, 8, and 15 (from a.1 
to a.4). The effect of increasing ɛp is evident in terms of frequency range of 
LFPs. At low ɛp (=1) the LFP spectrum oscillates between high and low 
frequency (almost zero) components (A.1). Increasing ɛp results in a broader 
and less oscillatory LFP spectrum (A.2 and A.3). At very large values of ɛp 
rthe higher frequency components are uniformly seen throughout the 
simulation time period (A.4.).

Thus, further studies are required to consolidate the notion of 
vascular dysfunction underlying cerebral pathologies. However, 
the “silent vascular infarcts” (also known as silent stroke) have 
been associated with dementia and neuropathies, such as vascular 
Parkinson’s disease (83–85). Such studies suggest that a primary 
vascular pathology may be a key factor precipitating neuronal 
dysfunction (82). The post-stroke studies depicting prolonged 
cognitive impairments (86) further corroborate the significance 
of the cerebral vasculature. All these studies highlight the notion 
that the vascular dysfunction could adversely affect the energy 
states of the neurons and therefore could predispose neurons to 
various pathologies.

The present study propounds a new perspective of energy 
coupled neuronal system, wherein the energy inside the neuron 
varies dynamically, depending on the neural activity and the 
local vascular influence. We further propose that this vascular 
influence boils down to the production rate of ATP inside the 
neurons, which is controlled by the production coefficient, ɛp, 
in the models. This study presents low-dimensional models for 
neurovascular coupling, wherein glio-vascular system is lumped 
into an energy reservoir and the coupling is represented by ɛp. 
Such models can be implemented to simulate network models to 
study the effect of neurovascular coupling on the network activity 
as the one described in the present study.

Another plausible direction of the study could be to introduce 
explicit vascular dynamics controlling ɛp associated with the 
neurons. The vascular component in such a neurovascular net-
work model may be designed on the lines of the existing vascular 
network models (87–91). Significant among these models is the 
vascular anatomic network (VAN) model proposed by Boas et al. 
(90) as it is relatively simple and is able to qualitatively predict 
the BOLD response characteristics. The model proposed in 
the present study provides an optimal substrate for developing 
comprehensive neurovascular models, wherein the evolution 
of neural dynamics in terms of EEG/LFP can be studied along 
with corresponding vascular responses in terms of BOLD sig-
nals. The firing rate signal calculated from the neural network 
would govern the vasodilatory signal that is fed to the VAN. The 
cerebral metabolic rate of oxygen (CMRO2) calculated from the 
model set parameters can then be employed to control the ATP 
production rates, ɛp of the neurons, completing the picture of 
neurovascular coupling. Thus, VAN coupled effectively to the 
model demonstrated in the present study would provide the 
basis for understanding and simulating the data obtained from 
multimodal systems, such as EEG coupled to functional magnetic 
resonance imaging (EEG–fMRI) and EEG coupled to functional 
near infrared spectroscopy (EEG–fNIRS).

In particular, this genre of neurovascular models will prove 
to be a vital brain mapping tool and could be implemented to 
understand the functional mechanisms of post-stroke recovery. 
As described earlier, there are clinical studies depicting the exist-
ence of post-stroke seizures and spreading depression, such as 
events which affect the post-stroke rehabilitation (92–94). Studies 
have shown the association between the early onset seizures post-
stroke with factors, such as metabolic dysfunction, glutamate 
excitotoxicity, hypoxia, and global hypoperfusion (80, 95, 96). 
These events are associated with cellular processes including ATP 
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recovery process (80, 95, 97–99). With the vascular component 
coupled to the network model presented in this study, the vascular 
dynamics resulting in low ɛp can be investigated quantitatively (as 
the low ɛp conditions underpin seizure-like activity as observed 
in our model simulations). This would further lead to effective 
monitoring of stroke rehabilitation, wherein the epileptic seizure-
like event could be anticipated. Moreover, a clear association 
could be established between specific hemodynamic patterns and 
seizure-like events. Furthermore, with a neurovascular model, the 
downstream effects of non-invasive brain stimulation (NIBS), an 
add-on stroke rehabilitation procedure to promote motor function 
recovery, could be simulated. Major efforts are being undertaken 
in devising optimal stimulation parameters for NIBS and to make 
it suitable to specific stroke patient groups (100, 101). Therefore, 
there is an immediate need to have a computational simulation 
platform, wherein the patient-specific stroke conditions can be 

simulated and the rehabilitation procedures can be calibrated by 
deriving the appropriate and patient-specific stimulation param-
eter set. The present study hence forms the base for developing 
such simulation platforms for stroke rehabilitation procedures.

In general, this line of study would help in deciphering the 
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to vascular-based frontiers for diagnosis and treatment of brain 
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