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Objectives: Characterize the scale and pattern of long-term atrophy in gray matter 
(GM), white matter (WM), and cerebrospinal fluid (CSF) in chronic moderate–severe 
traumatic brain injury (TBI) and its relationship to neurocognitive outcomes.

Participants: The TBI group consisted of 17 males with primary diagnosis of  
moderate–severe closed head injury. Participants had not received any systematic, post-
acute rehabilitation and were recruited on average 8.36 years post-injury. The control 
group consisted of 15 males matched on age and education.

Main measures: Neurocognitive battery included widely used tests of verbal memory, 
visual memory, executive functioning, and attention/organization. GM, WM, and CSF 
volumes were calculated from segmented T1-weighted anatomical MR images. Voxel-
based morphometry was employed to identify brain regions with differences in GM and 
WM between TBI and control groups.

results: Chronic TBI results in significant neurocognitive impairments, and significant 
loss of GM and WM volume, and significant increase in CSF volume. Brain atrophy is not 
widespread, but it is rather distributed in a fronto-thalamic network. The extent of volume 
loss is predictive of performance on the neurocognitive tests.

conclusion: Significant brain atrophy and associated neurocognitive impairments 
during the chronic stages of TBI support the notion that TBI results in a chronic condition 
with lifelong implications.
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inTrODUcTiOn

Traumatic brain injury (TBI) has been historically considered 
as a single event that requires rehabilitation during the months 
after the injury and results in a static course thereafter (1). 
However, an emerging hypothesis views TBI as a long-term 
condition with chronic and possibly progressive consequences 
rather than a static condition following a short recovery phase 
(1–4). Neuropsychological research indicates that following an 
acute recovery phase many patients with moderate–severe TBI 
sustain significant cognitive deficits lasting for many years post-
injury (5–8). Epidemiological evidence suggests that a single  
moderate–severe TBI is the strongest acquired risk factor for 
developing dementia later in life (9, 10).

During the acute and subacute stages of TBI, Wallerian degen-
eration, inflammation, apoptosis, excitotoxicity, and prolonged 
hypo-perfusion result in white matter (WM) and gray matter 
(GM) volume loss (11–13). Neuroimaging studies demonstrated 
that these effects extend beyond the first year post-injury and 
individuals with TBI exhibit significant brain volume loss in both 
the subacute and chronic phases (3, 4, 14–18) that continues for 
years after the injury (3, 5, 15, 19). For example, recent reports 
demonstrated GM and WM volume loss for up to approximately 
4 years post-injury (17).

The reported brain atrophy resulting from GM and WM 
volume loss could potentially explain the neurocognitive 
deficits observed in moderate–severe TBI many years post-
injury. However, previous studies that assessed brain volume loss 
focused primarily on either mild TBI cases [e.g., Ref. (20, 21)] 
or on moderate–severe TBI during the acute/subacute recovery 
phase and only up to approximately 4  years post-injury (3, 5, 
17, 22). Moreover, studies that have examined brain atrophy in 
chronic moderate–severe TBI patients have either not examined 
the associated neurocognitive deficits or have focused on just a 
select few neurocognitive measures (17, 23, 24–28). Therefore, 
it is unclear if the well-established neurocognitive deficits of 
moderate–severe TBI observed many years post-injury (7, 8) are 
related to brain atrophy and to what extend. The central aim of 
this study, therefore, was to begin to shed light on the question 
of the relationship between brain volume and cognitive outcome 
during the chronic stages of moderate–severe TBI.

Most previous research that investigated the chronic effect of 
TBI on brain volume and its relationship with cognitive outcome 
are complicated by the confounding effects of rehabilitation. 
Systematic post-injury rehabilitation has been shown to improve 
cognitive functioning of patients with TBI (6, 29, 30). For exam-
ple, Till et  al. (8) showed that regardless of injury severity, the 
amount of rehabilitation received at 5 months post-injury was the 
best predictor of cognitive outcome. It is, therefore, important to 
gain an understanding of the true chronic effect of TBI on brain 
volume and its relationship to cognitive outcome: what is the true 
extent of brain atrophy and how does it relate to cognitive func-
tioning in the absence of systematic post-acute rehabilitation? For 
instance, if only a subset of TBI patients demonstrates significant 
brain atrophy during the chronic stages that is related to cognitive 
deficits, this will direct future research (and clinicians) to assess 
and evaluate specific risk factors that include type of injury and 

specific mechanisms (e.g., contusions, diffuse axonal injury, blast, 
or repeat concussions). On the other hand, if brain atrophy and 
the associated cognitive deficits are ubiquitous, this will suggest 
that TBI itself is a degenerative disorder. In order to address this 
question and gain a more accurate understanding of the true 
chronic effect of TBI on brain volume and its relationship to 
cognitive outcome, the present study, therefore, included partici-
pants who had not received systematic post-acute comprehensive 
rehabilitation.

Sex differences in cognitive outcomes present another con-
founding factor of previous research investigating the chronic 
effects of TBI on the relationship between brain volume and 
cognitive outcome. Animal studies of TBI demonstrated better 
outcomes among females than males. These findings supported 
the idea that gonadal steroids (e.g., estrogen and progesterone) 
may have a neuroprotective role after TBI (31–34). However, 
research on sex differences in humans with TBI is limited and 
often contradictory (35–37). In order to avoid such possible con-
founds due to sex differences and due to the higher prevalence of 
male over female TBI patients (38), the current study investigated 
a homogeneous group of male participants.

The present study is the first part of a larger project that is 
aiming to establishing a TBI cohort with moderate–severe TBI in 
order to investigate the neurophysiological substrates of cognitive 
deficits associated with the chronic stages of moderate–severe 
TBI. The project utilizes an array of different designs, such as 
group comparisons and case studies, using a range of magnetic 
resonance imaging (MRI) data, including volumetric measures 
[e.g., voxel-based morphometry (VBM)], diffusion tensor imag-
ing for characterization of WM tracts, and resting-state fMRI for 
assessing the effects of TBI on brain connectivity. Here, we focused 
on the relationship between cognitive outcome and brain volume 
in different types of brain tissue. We also examined the scale and 
spatial pattern of such brain atrophy by comparing a group of 
male participants with chronic TBI who were well beyond the 
spontaneous recovery phase to a group of neurologically healthy 
males matched on age and education.

First, we calculated percent brain volume change between the 
control group and the participants with TBI. Next, we examined 
whether such atrophy is widespread or localized on specific brain 
areas. We employed VBM for assessing local GM and WM volume 
at individual locations in the brain and performed statistical com-
parisons between the participants with TBI and the non-injured 
controls. Finally, we investigated the relationship between brain 
volume and cognitive outcome, on a comprehensive set of neuro-
cognitive measures. We employed individual differences analysis 
to examine whether global measures of brain volume [GM, WM, 
and cerebrospinal fluid (CSF)] and the volume of regions-of-
interest (ROIs) that exhibited volumetric differences between the 
TBI and the control groups in the VBM analysis hold any predic-
tive value regarding the cognitive outcome of TBI patients. It was 
hypothesized that participants with moderate–severe TBI would 
demonstrate significantly reduced whole-brain GM and WM 
volume and increased CSF as compared to matched non-injured 
participants. The atrophy would not be widespread, but localized 
in specific regions. Finally, greater degree of atrophy was expected 
to be associated with lower performance on neuropsychological 
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TaBle 1 | Demographic information of the TBi patient group.

Patient iD age (years) education (years) Tsi (months) Mechanism of injury gOse

1 37 16 139 Assault 6
2 23 13 63 Motor vehicle accident 6
3 24 13 24 Motorcycle accident 6
4 24 14 84 Pedestrian with vehicle collision 3
5 41 8 36 Fall (work or other non-sports related) 4
6 60 11 156 Motor vehicle accident 5
7 24 15 60 Motorcycle accident 4
8 35 17 27 Fall (work or other non-sports related) 7
9 32 16 60 Motor vehicle accident 6

10 47 12 274 Motor vehicle accident 6
11 30 18 179 Motorcycle accident 6
12 21 12 40 Motorcycle accident 4
13 29 12 166 Fall (work or other non-sports related) 8
14 29 16 24 Object falling 8
15 24 12 72 Motor vehicle accident 3
16 33 12 228 Motor vehicle accident 3
17 29 14 76 Fall (work or other non-sports related) 5

(M = 31.88; SD = 10.04) (M = 13.59; SD = 2.53) (M = 53.38; SD = 74.73) (M = 5.29; SD = 1.61)

TSI, time since injury.
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measures assessing memory performance, executive functioning, 
and attention/organization.

MaTerials anD MeThODs

Participants
The participants with TBI were compared to a group of healthy 
volunteers matched on age, education, and socioeconomic status 
(all TBI participants except two were pair-matched with par-
ticipants in the control group). All participants were males. The 
Cyprus Bioethics Committee approved all study procedures and 
a consent form was obtained from every participant. Following is 
a description of each group (see Table 1).

Participants with TBI
Nineteen participants with brain injury met the study criteria 
and were included in the study. Participants were recruited from 
collaborating physicians using a rolling admission process. Two 
participants were subsequently excluded from the analysis due 
to difficulties with the MRI procedures (one participant had 
claustrophobia and the MR images from the second participant 
yielded significant motion artifacts rendering the imaging data 
unusable). The ages of the remaining 17 participants ranged from 
21 to 60 years with a mean age of 31.9 years (SD = 10 years). 
Education ranged from 8 to 18 years, with a mean of 13.6 years 
(SD  =  2.5  years). Participants were recruited on an average 
8.36 years post-injury (range = 2–22.8 years, SD = 6.34 years, 
Mdn  =  6  years). None of the TBI participants had sustained 
blast or repeated concussions. All of the TBI participants had 
sustained diffuse axonal injury with contusions as evidenced by 
their MRI scans.

Functional outcome was also assessed during the neuro-
cognitive assessment indicating the presence of significant  
(moderate–severe) disability several years post-injury. Specifically, 
Glasgow Outcome Scale Extended (GOSE) analysis indicated 

the following distribution of recovery: three participants had 
achieved good recovery (18%), eight were rated with moderate 
disability (47%), and six with severe disability (35%).

Following are the inclusion/exclusion criteria for participants 
with TBI, which are consistent with the Constantinidou et  al. 
criteria (6, 39): age between 18 and 60 years; native speaker of 
the Greek language; primary diagnosis of moderate–severe 
closed head injury (CHI) at least 12 months prior to the study 
recruitment. The indication of an initial moderate–severe head 
injury was determined by the presence of three or more of the 
following severity indices: (1) initial Glasgow Coma Scale score 
<12, (2) abnormal initial computed tomography (CT) or MRI 
findings indicating acute central nervous system pathology, (3) 
length of impaired consciousness >20  min as specified by the 
emergency records, (4) length of post-traumatic amnesia >24 h 
as specified in the acute hospital/emergency records, (5) length of 
acute hospital stay >3 days, (6) abnormal neurological examina-
tion on hospital admission and discharge indicating focal sensory 
and motor deficits, or changes in mental status attributed to brain 
injury, (7) medical complications secondary to the injury, and (8) 
head injury severity classification according to hospital records. 
Other inclusion/exclusion criteria consisted of the Rancho Los 
Amigos Scale Level VI or higher (which indicates appropriate 
goal-oriented behavior, and post-traumatic amnesia resolution); 
no aphasia present with the exception of mild-to-moderate word-
finding problems due to cognitive deficits.

Participants were excluded if they had a penetrating head 
injury, if they were diagnosed with stroke at the time of injury, if 
they had a premorbid central nervous system disorder or learn-
ing disability, if they had a premorbid major depression or other 
significant psychiatric disorder as defined by the Diagnostic and 
Statistical Manual of Mental Disorders (40), and if they had an 
active or current alcohol, drug, or other controlled substance 
abuse that would interfere with participation in the study.

Primary causes of TBI were consistent with those reported 
in industrialized nations (22, 38): 50% of the participants were 
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FigUre 1 | response competition task. Trials started with a 2-s fixation 
cross. Next, six letters appeared in a circular arrangement (2° in radius) 
containing one of two target letters (“X” or “Z” subtending 0.6°× 0.4°) and five 
non-target letters (all Os). Participants searched for the target letter among 
the non-target letters. The target letter was equally likely to appear on any of 
the six positions of the circle. A distractor-letter (subtending 1°× 0.6°) that 
was equally likely to be congruent (e.g., distractor “X” when target was “X”) or 
incongruent (distractor “Z” when the target was “X”) with the target letter 
appeared 3.5° to the left or to the right of the fixation point. A display with “?” 
at the center appeared after the stimulus display for 1.85 s during which 
participants responded to the target letter by pressing 0 for “X” or 2 for “Z” 
using the numerical keypad. An auditory tone (“beep”) was used as feedback 
for incorrect responses. An example trial sequence in the incongruent 
condition is shown here. Display durations appear above each display. Stimuli 
are not drawn to scale.
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injured in motor vehicle accidents and another 25% were injured 
as a result of work-related falls. The remaining 25% were injured 
as a result of assaults, falling of objects, and pedestrian–vehicle 
collision. None of the participants had received systematic and 
comprehensive post-acute comprehensive rehabilitation in the 
past or at the time of study recruitment. Some of the participants 
received inpatient rehabilitation services and fragmented indi-
vidualized outpatient treatment during the acute phase of their 
recovery. All participants were residing at home at the time of 
study participation.

Control Group
Sixteen non-injured males were recruited for the study. These 
participants were volunteers from the greater Nicosia and 
Limassol areas who met the study’s inclusion/exclusion criteria. 
One participant was unable to complete the MRI examination 
due to claustrophobia and was subsequently excluded from the 
present analysis. All of the remaining participants were Greek-
speaking adults ages 21–60 years (M = 33.8 years, SD = 10.3 years) 
with no history of a neurological condition or brain trauma, 
documented psychiatric history, learning disability, or substance 
abuse. Education ranged from 8 to 18  years (M  =  13.4  years, 
SD = 2.6 years).

Tests and Materials
The testing protocol consisted of the MRI acquisition, neuro-
cognitive, and experimental testing protocols. The entire battery 
of neurocognitive tests and experimental tasks lasted approxi-
mately 2  h and was administered over two sessions. Testing 
included scheduled breaks in order to avoid mental fatigue of 
participants.

Neurocognitive Tests
The neurocognitive battery included widely used tests of verbal 
memory, visual memory, executive functions, and attention/
organization.

The verbal memory test battery included the Greek adaptation 
of the Auditory Verbal Learning Test [total score in trials 1–5, 
difference score between trial 5 and trial 1, short delay free recall, 
long delay free recall, and list A true positive recognition score 
(41)], the Digit Span Forward and Backwards total score [adapted 
Wechsler Memory Scale-Revised (WMS-R)] (42), the adapted 
paragraphs from the WMS-R Logical Memory I and II free recall 
subtests (sum of the score and the sum of the delay recall).

The visual memory test battery included the Rey Complex 
Figure Test [immediate recall, delayed recall, recognition total 
score (43)], the Visual Span Forward and Backwards [adapted 
from WMS-R (42)], the spatial visual short-term memory 
(VSTM) experimental task threshold, and the object VSTM 
experimental task threshold (see task description below).

The executive functions tests battery included the Symbol 
Digits Modalities Test (ref), the Trail Making Tests A and B (44), 
and the phonological (letter F) and category recall (Animal recall) 
from the Control Oral Word Association Test [COWAT; (45)].

Tests of attention/organization included the Rey Complex 
Figure Test [copy and time to copy (43)], as well as the 

Distractibility index and the mean reaction time (RT) in the 
experimental response competition task (see description below). 
Outcome measures were also obtained in terms of the GOSE (46).

Experimental Tasks
The experimental tasks were controlled using the Cogent Toolbox1 
for Matlab (MathWorks, Inc.) on a Lenovo PC running Microsoft 
Windows 7 attached to a 15”CRT monitor (60-Hz refresh rate).

Participants performed a response competition task [e.g., Ref. 
(47)] for assessing both speed of processing and distractibility 
for each participant, as well as a delayed match-to-sample task 
for assessing VSTM capacity separately for objects and for spatial 
locations.

The response competition task required participants to make 
speeded responses to a target letter in the presence of a peripheral 
distractor that was either congruent (same as target letter e.g., 
distractor “X” when the target was an “X”) or incongruent (e.g., 
distractor “Z” when the target was an “X”; see Figure 1). Slower 
RTs to the target letter in the incongruent versus the congruent 
condition indicated a failure to ignore the distractor letter (48). 
Each participant’s mean RT in trials with a correct response 
(correct identification of the target letter) and the distractibility 
index (the mean RT difference between correct congruent and 
correct incongruent trials) were used in the constructed measure 
of attention/organization.

1 http://www.vislab.ucl.ac.uk/cogent.php
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FigUre 2 | Visual short-term memory task. Each trial had a duration of up to 5.8 s. Trials started with fixation cross for 1 s, followed by eight sample displays 
with a duration of 100 ms each (total sample displays duration was 800 ms), a blank delay interval (1 s), and a test display/response period (up to 3 s). An auditory 
tone (“beep”) was used as feedback for incorrect responses. Each item in the memory-set appeared in one of the eight sample displays in random order (e.g., in a 
trial with a set size of three items shown here, each of the three items was randomly assigned to one of the eight sample displays). Participants were instructed to 
maintain the memory-set items in VSTM throughout the retention interval by visually projecting them on the screen while avoid verbalizing them. During the response 
period, participants pressed a button to respond whether the memory probe item was of the same identity as any of the memory-set items (a) or it appeared at the 
same location as any of the memory-set items (B). In order to minimize load on object VSTM, all items in the spatial memory-set task were of the same identity. 
Responses were made on a standard QWERTY keyboard with the right index and middle fingers pressing the numeric keypad buttons 1 for “same” and 2 for 
“different”, respectively. The memory probe was a match on half of the trials, and appeared at a different location (for the spatial VSTM task) or was of a different 
shape (for the object VSTM task) on the other half.
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Participants also performed a delayed match-to-sample 
VSTM task, as shown in Figure 2, maintaining a set of shapes in 
VSTM throughout a 1-s retention interval by visually projecting 
them on the screen while avoiding verbalizing them. During 
the response period of the task, participants pressed a button to 
respond whether the memory probe item appeared at the same 
location as any of the memory-set items for the spatial VSTM task 
or whether the memory probe item appearing at fixation was of 
the same identity as any of the memory-set items. This design 
enabled us to assess separately the two distinct mechanisms of 
spatial and object VSTM (49, 50). In order to discourage partici-
pants from verbalizing the shapes used in the memory set, these 
were drawn from a pool of meaningless symbols that are difficult 

to verbalize [see Ref. (48, 51, 52)], for similar manipulations of 
VSTM load. Using these items of irregular shapes in a task of 
very rapid presentation (100 ms each) allowed participants very 
little time for verbalizing, thus ensuring that the task taxed visual 
memory instead of verbal memory resources.

Each participant’s VSTM capacity was calculated using a 
3-up/1-down staircase. Specifically, participants started with a 
practice block of 12 trials used to familiarize them with the task. 
Following practice, each participant completed a block of trials 
for each of the object and the spatial VSTM tasks that contained 
a memory set of two items in the first trial. For consecutive trials, 
the size of the memory set depended on the response given in 
the previous trials. The number of items in the memory set was 
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increased by one item after three consecutive correct responses or 
decreased by one item after an incorrect response. The staircase 
was terminated after 10 reversals, with a reversal defined as any 
change in the direction of the staircase. Individual VSTM capacity 
estimates were calculated as the mean memory-set size at each of 
the last eight staircase reversals.2

Standard Score Transformation
Scores from the full set of neurocognitive and experimental tests 
were combined into four composite scores representing the con-
ceptually motivated constructs of verbal memory, visual memory, 
executive functions, and attention/organization. Specifically, 
each participant’s score on each of the individual measures was 
transformed into a standard score (z-score) using the following 
method: first, each participant’s score on the individual measures 
was subtracted from the mean score of the healthy control group 
on the corresponding measure and divided by the SD of the 
control group. Next, each standard score was balanced such that 
higher scores indicated better performance. The resulting indi-
vidual standard scores (z-scores) were then averaged together to 
derive an individual score for each constructed measure.

Image Acquisition
MR images were acquired with a 3.0-T scanner (Achieva, Philips 
Medical Systems, Best, The Netherlands). The built-in quadrature 
RF body coil and a phased array 8-channel head coil were used for 
proton excitation and signal detection, respectively. An isotropic, 
three-dimensional (3D), T1-weighted rapid acquisition gradient-
echo sequence (fast field echo; repetition time  =  25  ms; echo 
time = 1.85 ms; flip angle = 30°) was utilized to acquire whole 
brain, transverse MR images with an acquisition/reconstruction 
voxel of 1.0 mm × 1.0 mm × 1.0 mm (data interpolation was not 
implemented in any direction to improve resolution and reduce 
partial volume effects). The scanning session also included other 
standard pulse sequences (e.g., T2-weighted turbo spin echo, dif-
fusion weighted imaging, and fluid-attenuated inversion recov-
ery) to exclude significant brain pathology of a different etiology.

Volumetry
We hypothesized that there would be overall group differences in 
the volume of GM, WM, and CSF. Specifically, we expected that 
compared to the control group, the TBI group would demonstrate 
significant GM and WM volume loss but significant increase in 
CSF volume.

Individual brain volume calculation was performed using the 
Individual Brain Atlases Statistical Parametric Mapping toolbox 
[IBASPM; (53)] under MATLAB 8.1 (MathWorks, Natick, 
MA, USA). IBASPM uses the segmentation routines of SPM5 
(Wellcome Department of Cognitive Neurology, Institute of 
Neurology, University College London, London, UK). The MR 
images were segmented into GM, WM, and CSF and individual 
volumes for each tissue type were then extracted. Percent vol-
ume change between the control group and the TBI group was 

2 The first two trials of the staircase were treated as practice trials and omitted from 
the threshold calculation. However, the results pattern and significance did not 
change when we included the first two trials in the threshold calculation.

calculated using the formula (mean control group volume − mean 
TBI group volume)/(mean control group volume)  ×  100. This 
index allows quantification of tissue volumetric changes between 
the two matched groups.

Voxel-Based Morphometry Pre-Processing and 
Analysis
We also hypothesized that the TBI group would demonstrate vol-
ume reduction in specific brain regions, manifested as significant 
differences in a VBM comparison.

Pre-processing steps for VBM were performed using SPM8 
and included segmentation of the MR images into GM and WM, 
followed by a Diffeomorphic Anatomical Registration Through 
Exponentiated Lie Algebra (DARTEL) for inter-subject regis-
tration of the GM and WM images (54, 55). During this co-
registration pre-processing, local GM and WM volumes were 
conserved by modulating the image intensity of each voxel by 
the Jacobian determinants of the deformation fields computed 
by DARTEL. The registered images were smoothed with a 
Gaussian kernel (full width at half maximum = 8 mm) and were 
then transformed to Montreal Neurological Institute (MNI) 
stereotactic space using affine and non-linear spatial normali-
zation implemented in SPM8 for statistical comparisons.

The pre-processed images were entered into two-samples 
t-test models in SPM5. A statistical threshold of p < 0.05, cor-
rected for the whole-brain volume at a cluster level using the 
“Non-Stationary Cluster Extent Correction” toolbox for SPM53 
(56), was used as an indicator of regions with significant differ-
ences in GM volume or WM volume between the TBI and the 
healthy control groups. The design matrix included the study 
group (TBI and control) and the age and years of education of the 
participant as covariates of no-interest. Since all participants were 
males, gender was not included in the design matrix.

resUlTs

group comparisons
Demographics
The TBI and the control groups were very similar in terms of 
age and education, as expected [age, t(30)  =  0.238, p  =  0.814; 
education, t(30)  =  0.544, p  =  0.590; two-tailed two-samples 
t-tests]. Any significant differences in subsequent comparisons 
cannot, thus, be attributed to sample differences in terms of age 
or education.

Neurocognitive Performance
Pairwise comparisons were conducted in order to compare the 
performance of the two groups on the constructed measures 
of verbal memory, visual memory, executive functions, and 
attention/organization. As shown in Table  2, compared to the 
non-injured control participants, the performance of participants 
with TBI was significantly lower on all four constructed measures, 
indicating significant neurocognitive impairment at several years 
post-TBI.

3 http://fmri.wfubmc.edu/cms/NS-General
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FigUre 3 | Brain tissue volumes (milliliters) as a function of 
participant group and brain tissue type. GM, grey matter. WM, white 
matter. CSF, cerebrospinal fluid; *p = 0.05.

TaBle 2 | Performance on neurocognitive constructed measures.

Measure TBi group control 
group

statistics

Mean (sD) t df p cohen’s d

Verbal memory −0.35 (0.85) 0.41 (0.60) 2.90 30 0.001 0.92
Visual memory −0.27 (0.71) 0.29 (0.46) 2.61 30 0.007 0.85
Executive 
functions

−0.39 (0.85) 0.44 (0.35) 3.48 30 0.001 1.05

Attention/
organization

−0.21 (0.56) 0.23 (0.30) 2.73 30 0.005 0.88

df, degrees of freedom; p, one-tailed.
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Volumetry
As shown in Figure  3, mean GM volume was significantly 
reduced in the TBI group (M = 666 ml, SD = 50 ml) compared 
to the control group (M = 736 ml, SD = 103 ml), t(30) = 2.51, 
p = 0.018, Cohen’s d = 0.82.

White matter was also found to be significantly reduced in the 
TBI group (M = 454 ml, SD = 43 ml) compared to the control 
group (M = 489 ml, SD = 56 ml), t(30) = 1.96, p = 0.03 (one-
tailed), Cohen’s d = 0.66. In contrast to the consistent reduction 
of both GM and WM volumes, the TBI group exhibited higher 
CSF volume (M = 440 ml, SD = 76 ml) compared to the control 
group (M = 385 ml, SD = 67 ml), t(30) = 2.16, p = 0.039, Cohen’s 
d = 0.72.

Voxel-Based Morphometry
Voxel-based morphometry analysis was used to identify brain 
regions with significant GM and WM volume reduction in the 
TBI group compared to the control group. As shown in Table 3, 
reduced GM volume in the TBI group compared to the control 
was found in orbitofrontal cortex in a large coherent cluster 
extending over the superior and middle orbital gyrus, left and 
right thalamus, left and right temporal lobe, left inferior frontal 

gyrus, left and right putamen, and left and right insula (see also 
Figure 4). No brain areas were found with significantly greater 
GM volume in the TBI compared to the control group.

Table 3 also shows brain areas with reduced WM volume in 
the TBI group compared to the control group (see also Figure 4). 
Brain areas with reduced WM volume in the TBI group (com-
pared to the control group) were found in bilateral frontal cortex, 
the thalamus, and the cerebellum.

individual-Differences analysis
Pearson product-moment correlation analysis was employed 
for the individual differences analysis in order to investigate 
the relationship of GM, WM, and CSF volume with variables 
of interest.

Relationship between Tissue Volumes
First, we sought to examine whether there was a relationship 
between the volumes of GM, WM, and CSF. An initial analysis that 
included all participants from both groups revealed a significant 
positive correlation between GM and WM volume, r(32) = 0.64, 
p  <  0.001. CSF did not exhibit a significant relationship with 
either GM, r(32) = −0.04, p = 0.830, or with WM, r(32) = 0.04, 
p = 0.826.

However, when the analysis was repeated separately for each 
group, for the TBI group none of the comparisons exhibited 
significant relationships (all r  <  0.12). The same comparisons 
for the control group showed a significant positive correlation 
between GM volume and WM volume, r(15) = 0.80, p < 0.001. 
CSF volume was unrelated to the volume of GM or WM in the 
Control group, GM, r(15) = 0.27, p = 0.33, and WM, r(15) = 0.26, 
p = 0.349.

This finding indicates that, in neurologically healthy individu-
als, there is a close positive relationship between the volume of 
GM and WM, whereby greater volume of GM is associated with 
greater volume of WM. However, TBI seems to affect GM and 
WM in such a way that their volumetric relationship is abolished.

Neurocognitive Performance
Next, we sought to examine the relationship of GM, WM, and 
CSF volume with neurocognitive performance, as assessed by the 
constructed measures of verbal memory, visual memory, execu-
tive functions, and attention/organization.

As shown in Table  4, both GM and WM volume exhibited 
a significant positive correlation with all four neurocognitive 
measures, whereby greater volume was associated with higher 
performance. By contrast, CSF exhibited a significant negative 
correlation with verbal memory and visual memory where higher 
CSF volume was associated with lower performance (a trend for 
a negative correlation with the constructed measures of execu-
tive functions and attention/organization did not reach statistical 
significance, see Table 4).

In order to further investigate the relationship between brain 
volume and neurocognitive performance, we investigated whether 
brain regions that exhibited significant differences between the 
TBI and the control groups in the VBM analysis hold any predic-
tive value for neurocognitive performance. Individual normalized 
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TaBle 3 | Brain regions with significantly less gray matter and white matter volume in the TBi compared to control group and their Pearson  
product-moment correlations with neurocognitive measures.

anatomical region Tissue type side Mni coordinates Peak-z Verbal memory Visual memory executive functions attention

x y z

1 Middle frontal gyrus GM L −30 53 25 4.49 0.26 0.13 −0.07 0.08
2 Middle orbital gyrus GM L −2 53 −3 4.06 0.54** 0.40* 0.31* 0.38*
3 Middle orbital gyrus GM R 36 56 −8 3.93 0.30* 0.18 0.16 0.24
4 Thalamus GM L −3 −15 3 4.47 0.58** 0.48** 0.63** 0.55**
5 Thalamus GM R 12 −10 4 4.35 0.45** 0.29 0.52** 0.34**
6 Temporal pole GM L −52 14 −2 4.34 0.16 0.26 0.03 −0.04
7 Insula GM L −45 15 −6 3.97 0.30* 0.39* 0.13 0.17
8 Putamen GM L −18 8 −5 3.78 0.62** 0.60** 0.57** 0.53**
9 Putamen GM R 32 2 −3 4.27 0.44** 0.34* 0.35* 0.35*

10 Putamen GM R 18 15 −3 4.08 0.62** 0.61** 0.48** 0.51**
11 Insula/temporal pole GM R 45 12 −8 3.91 0.36* 0.17 0.14 0.25
12 Superior medial WM R 9 56 15 4.19 0.47** 0.38* 0.33* 0.29
13 Midle orbital WM R 14 48 −3 4.07 0.38* 0.34* 0.39* 0.22
14 Middle frontal WM R 30 36 16 3.96 0.24 0.22 0.24 0.12
15 Cerebellum WM L −9 −42 −17 3.99 0.17 0.10 0.38* 0.14
16 Cerebellum WM R 4 −48 −30 3.87 0.41* 0.43** 0.56** 0.38*
17 Cerebellum WM R 3 −52 −18 3.47 0.32* 0.28 0.43** 0.32*
18 Middle frontal WM L −26 38 13 3.86 0.51** 0.53** 0.49** 0.39*
19 Middle frontal WM L −18 39 −0 3.82 0.58** 0.58** 0.56** 0.45**
20 Anterior cingulate WM L −10 48 13 3.79 0.62** 0.59** 0.51** 0.43**

GM, gray matter. WM, white matter. L, left. R, right.
n = 32.
*Significant at the 0.05 level (one-tailed).
**Significant at the 0.01 level (one-tailed).

March 2016 | Volume 7 | Article 298

Konstantinou et al. Brain Atrophy in Chronic TBI

Frontiers in Neurology | www.frontiersin.org

brain volume values from those regions were extracted in 6-mm 
diameter spherical ROIs from each participant.

The results of this analysis are presented in Table 3. Given the 
number of comparisons per ROI, the α level was lowered to 0.01 
in order to avoid a Type I error. Of the 20 ROIs that exhibited sig-
nificant volumetric differences between the TBI and the control 
groups, some may hold significant predictive value regarding the 
performance of the participants in the neurocognitive measures. 
All significant correlations were positive, indicating that higher 
volume was predictive of better neurocognitive performance. 
Specifically, bilateral thalamus and putamen exhibited a sig-
nificant correlation with performance in all four neurocognitive 
measures, indicating that higher GM volume in these ROIs is 
associated with better performance. Left middle frontal gyrus 
(lMFG) exhibited a significant correlation with verbal memory. 
Of the nine WM ROIs, left Frontal areas were significantly cor-
related with all four neurocognitive measures, whereas the right 
Frontal areas exhibited a relevant trend but did not reach statisti-
cal significance.

This finding demonstrates that the volume of brain regions 
that exhibit significant differences between TBI and control 
participants are predictive of neurocognitive performance. 
Moreover, ROI correlations with neurocognitive performance 
indicate that the correlations between whole-brain tissue volume 
(GM and WM) and neurocognitive performance are perhaps 
driven by focal differences in these ROIs.

Functional Outcome
A significant correlation between GOSE scores and WM vol-
ume, as shown in Table 5, indicates that higher WM volume is 

predictive of better functional outcome. No significant correla-
tions were observed between GOSE scores and either GM volume 
or CSF volume. This finding, taken together with the finding 
that whole-brain GM volume and whole-brain WM volume are 
significantly reduced in the TBI compared to the control group, 
suggests that functional outcome, as measured by GOSE, is more 
closely related to whole-brain WM rather than GM volume.

Correlations with ROIs indicated that functional outcome of 
the TBI participants is also related to volume of subcortical struc-
tures. Specifically, significant positive correlations were found 
with the volume of the thalamus [left, r(17)  =  0.63, p  <  0.01; 
right, r(17) = 0.57, p = 0.01] and the putamen [left, r(17) = 0.56, 
p = 0.01; right, r(17) = 0.41, p = 0.02].

Time Since Injury
A significant positive correlation between CSF volume [cal-
culated using IBASPM; (53)] and time since injury indicated 
that CSF volume is increased with increasing time since injury, 
r(17) = 0.40, p = 0.05. By contrast, whole-brain GM and WM 
volume did not exhibit a significant relationship with time since 
injury, GM, r(17) = 0.18, p = 0.24, WM, r(17) = 0.09, p = 0.36. No 
significant correlations were found between the volume of ROIs 
and time since injury.

DiscUssiOn

The current study investigated the chronic outcomes of  
 moderate–severe TBI in a homogeneous group of male survivors 
of TBI that had not received any systematic post-acute rehabilita-
tion and were recruited several years post-injury.
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FigUre 4 | Brain areas with significant volume reduction in the TBi group compared to the control group overlaid on an Mni template brain. Gray 
matter is color-coded red. White matter is color-coded cyan. Results are overlaid onto the MNI152 T1 standard template. Axial views on first row, coronal views on 
second and third rows, sagittal views on fourth and fifth rows. L, left. A, anterior.

TaBle 4 | Pearson product-moment correlations of brain volume with 
neurocognitive measures.

neurocognitive measure gray matter White matter csF

Verbal memory 0.47** 0.57** −0.34*
Visual memory 0.51** 0.39* −0.34*
Executive functions 0.34* 0.46** −0.23 (p = 0.10)
Attention/organization 0.41* 0.49** −0.28 (p = 0.058)

CSF, cerebrospinal fluid.
n = 32.
*Significant at the 0.05 level (one-tailed).
**Significant at the 0.01 level (one-tailed).

TaBle 5 | Pearson product-moment correlations of brain volume with 
time since injury and functional outcome.

gray matter White matter csF

Time since injury 0.18 0.19 0.66**
GOSE −0.03 0.51* −0.11

CSF, cerebrospinal fluid; GOSE, Glasgow Outcome Scale-Extended.
n = 16. The data of one participant with outlier CSF values were excluded from this 
analysis.
*Significant at the 0.05 level (two-tailed).
**Significant at the 0.01 level (two-tailed).
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group comparisons
Participants with TBI, when compared to a matched group 
of neurologically healthy participants, exhibited significant 

cognitive deficits on measures of verbal memory, visual memory, 
executive functioning, and attention/organization. They also 
exhibited substantial reduction in both GM and WM volumes. 
Specifically, GM volume was reduced by a mean of 9.60% and 
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WM volume was reduced by a mean of 7.04% in the TBI group 
compared to the control group. In contrast to the reduction of GM 
and WM volumes, the TBI group exhibited higher CSF volume 
by 14.29% compared to the control group. These results extend 
previous findings by demonstrating the true scale of brain volume 
loss in a homogeneous group of male TBI participants that were 
examined several years post-injury and had not received any sys-
tematic neurocognitive post-acute rehabilitation. The substantial 
volumetric differences between the TBI and the control groups 
suggest that the injured brain remains vulnerable to the effects of 
the injury for many years following the initial insult (57). Taken 
together with recent evidence demonstrating that brain atrophy 
is a significant predictor of dementia (58), these findings have 
significant clinical implications and can inform treatment and 
rehabilitation of TBI.

Our findings are consistent with a plethora of previous evi-
dence on the extent of brain atrophy in the acute and subacute 
phases of TBI (5, 7, 14, 16, 17, 19, 59–67). Several studies that 
have used structural brain imaging in individuals with TBI for 
assessing brain atrophy employed a longitudinal design (data 
were collected at more than one point in time) and showed 
consistent effects of brain volume loss over several months post-
injury (2, 14, 16, 20, 21, 28, 65, 67–69). However, to the best of 
our knowledge, no outer limit has yet been set on the time period 
during which the brain atrophies due to the TBI (64). The present 
findings indicate that significant brain atrophy is evident many 
years post-injury, but future research needs to determine the rate 
of TBI-induced atrophy and its relationship to the aging process.

Previous research has suggested that reduction of brain 
volume in the acute and subacute phases may reflect either 
resolution of edema or the development of brain atrophy (3, 28). 
Our findings of significant brain volume loss for many years post-
injury clearly show that the existence of brain atrophy long after 
the injury and after acute or subacute pathophysiology has been 
resolved. As such, our findings complement these studies and 
contribute to our understanding of the progression of atrophy 
by demonstrating the true extent of brain volume loss for many 
years post-injury in individuals with TBI who had not received 
any systematic post-acute rehabilitation. These findings support 
the hypothesis that TBI is the initiation of a chronic disease with 
long-lasting implications, rather than a single event with a static 
course (1, 3, 5).

An additional purpose of the study was to characterize the 
spatial pattern of this atrophy by identifying specific brain 
regions with significant volume reductions in participants with 
TBI compared to the control group. Using VBM, such significant 
volumetric differences were found to be mainly concentrated 
in a fronto-thalamic network, the cerebellum, and other areas 
connected to the thalamic network (i.e., putamen and insula). 
This finding indicates that this brain network is most vulnerable 
during the chronic stages of TBI.

individual Differences
Individual differences analyses indicated that whole-brain GM 
and WM volume may hold predictive information regarding the 
level of neurocognitive functioning in verbal and visual memory, 

executive functioning, and attention/organization abilities. This 
finding in a group of survivors tested many years post-injury is 
consistent with previous reports that greater whole-brain GM 
and WM volume is associated with better neurocognitive perfor-
mance at up to 4 years post-injury (57).

The volume of CSF also exhibited negative correlations with 
the neurocognitive measures of visual memory and verbal 
memory. We note that due to the opportunistic nature of CSF, 
such correlations may be due to either GM or WM volume loss. 
However, because both GM and WM loss may be related to verbal 
and visual memory deficits, correlations of CSF volume with 
neurocognitive measures need to be interpreted with caution.

In addition to whole-brain correlations with neurocognitive 
measures, region-specific correlations indicated that poorer 
performance on all neurocognitive measures was associated 
with GM volume loss in the thalamus and the putamen, as well 
as WM loss in left frontal areas. Although the subcortical loca-
tion of the thalamus is thought to provide some protection from 
direct injury (70), in chronic TBI significant volume loss has been 
observed as a result of damaged afferent–efferent connections 
(28). Due to the widespread and diffuse network of these afferent 
and efferent connections of the thalamus, even slight atrophy has 
the potential to disrupt large neuronal networks with significant 
and widespread cognitive and behavioral implications, as is the 
case in our study.

The current study also provides evidence of significant brain 
volume atrophy in the cerebellum and other areas connected to the 
thalamus (i.e., frontal areas, putamen, insula). Previous research 
demonstrated that anatomical connections exist between frontal 
and thalamic areas (71–73), linking atrophy in fronto-thalamic 
networks to widespread cognitive impairments, including mem-
ory and executive functioning (74). Furthermore, our findings 
demonstrate that WM volume and the volume of the thalamus 
are correlated to the functional outcome of  moderate–severe 
TBI as measured by GOSE. Future work should aim to further 
investigate the potential connection between the thalamus and 
WM shown here to be associated with functional outcome.

Interestingly, significant correlations were also observed 
between time since injury and CSF volume, but no relationship 
was found between time since injury and either whole-brain 
or ROI GM and WM volume. Taken together, these findings 
indicate that although CSF volume is very sensitive to time 
since injury, time since injury alone cannot predict GM and WM 
volume in line with previous research showing that GM and WM 
volume in TBI is affected by a complex combination of other 
factors (3, 5, 14–18).

Individual differences analysis was also employed to examine 
the relationship between whole-brain GM and WM volume reveal-
ing a strong positive correlation between these two types of brain 
tissue in the non-injured brain. However, this strong relationship 
between the volumes of GM and WM is not observed in the TBI 
brain. This finding, when taken together with the finding that 
both GM and WM volumes in the TBI brain are reduced, suggests 
that perhaps the rate of atrophy, due to TBI, is different for GM 
and WM. Indeed, starting in the first hours following an injury, 
a gradual diffused degeneration of WM has been observed (75) 
without related damage to GM (76–78). Our findings support this 
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interpretation of different rates of atrophy, demonstrating a dif-
ference in the mean percent volume reduction of GM versus WM 
in the TBI group, compared to the matched control group (i.e., 
TBI volume reduction: GM = 9.60% and WM = 7.04%). It should 
be noted, however, that the aforementioned interpretation should 
be viewed with caution. An array of possible interpretations for 
this finding exists (79, 80) and further research is essential to 
understand the mechanisms behind it, which is beyond the scope 
of the present study. For example, GM volume consists of neural 
cell bodies, together with their dendrites, local ramifications 
of axons, glial cells, and blood vessels; WM consists mostly of 
bundles of axons (81). It is, therefore, possible that the relation-
ship between the volume of neural cell bodies and their axons 
remains unaffected by TBI but the relationship between GM and 
WM volume is abolished in MRI-based volumetric calculations 
because TBI affects other types of tissue present in GM (e.g., glial 
cells, blood vessels, etc.). Future research should specifically aim 
to test this interpretation in a longitudinal design where partici-
pants with TBI are tested at different time points in order to assess 
the rate of atrophy for each tissue type. Such an understanding is 
necessary for developing treatment and rehabilitation protocols 
to counteract brain atrophy.

conclusion, limitations, and Future 
research
The findings reported in the current study support the hypoth-
esis that moderate–severe TBI results in significant brain 
atrophy that lingers several years post-injury. While the acute 
biomechanics of the injury and associated neurobiological 
cascade may cause diffuse axonal injury, the observed volume 
reductions in GM and WM during the chronic phases of 
the injury are clustered in the fronto-thalamic network with 
associated neurocognitive deficits. One of the advantages of 
the current study is the ability to capture the true effects of the 
injury in the absence of systematic post acute comprehensive 
rehabilitation. Due to the limited rehabilitation services in 

Cyprus, our TBI participants had not received any systematic 
residential post-acute neurocognitive rehabilitation or any 
post-acute outpatient services. However, the current study 
design does not allow for assessment of the progression of 
brain atrophy and for this reason, future studies should follow 
patients prospectively and longitudinally in order to link MRI 
findings and neurocognitive changes across time and contribute 
to the growing body of literature aiming at developing predictor 
models of recovery. The development of predictor models based 
on MRI and clinical biomarkers could also shed some light on 
the link between significant TBI and pathological aging associ-
ated with high incidence neurodegenerative conditions, such as 
Alzheimer’s and Parkinson’s disease.
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