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Thioflavin T derivatives are used in positron-emission tomography (PET) studies to 
detect amyloid protein deposits in patients with Alzheimer disease. These tracers bind 
extensively to white matter, which suggests that they may be useful in studies of multiple 
sclerosis (MS), and that proteins resulting from proteolytic processing of the amyloid 
precursor protein (APP) may contribute to MS. This article reviews data from both clinical 
and preclinical studies addressing the role of these proteins, whether they are detected 
in CSF studies or using PET imaging. APP is widely expressed in demyelinated axons 
and may have a protective effect in MS and in experimental allergic encephalomyelitis in 
animals. Several mechanisms associated with this increased expression may affect the 
degree of remyelination in MS. Amyloid-PET imaging may help determine the degree of 
demyelination and provide information on the molecular changes linked to APP proteo-
lytic processing experienced by patients with MS.

Keywords: multiple sclerosis, amyloid PeT, biomarkers, white matter, amyloid precursor protein, amyloid, myelin 
basic protein, positron emission tomography

BACKGROUND

Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS) 
that causes inflammatory lesions in the brain and spinal cord and ruptures the blood–brain barrier, 
leading to demyelination and axonal damage. In normal practice, MS is diagnosed based on clini-
cal symptoms, exclusion of other causes, and findings in cerebrospinal fluid (CSF) and magnetic 
resonance imaging studies. From a pathogenic point of view, MS is characterized by demyelination, 
which is attributed to inflammatory mechanisms and followed by neurodegeneration. In most 
cases, the disease initially presents a relapsing-remitting pattern (RRMS). Patients with this type of 
MS experience relapses followed by periods of partial or total recovery associated with incomplete 
remyelination. Remyelinating capacity decreases with time, especially in the secondary progressive 
form of the disease (1, 2).

Although β-amyloid protein (Aβ) is mainly linked to Alzheimer disease (AD), recent review 
articles suggest a connection between Aβ and MS (3, 4). One reason that led researchers to associ-
ate Aβ with MS was that white matter exhibits significant uptake of the PET tracers binding to 
this protein (5, 6), whereas white matter lesions associated with AD display lower uptake (7, 8). 
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TABLe 1 | Studies of amyloid-related measurements in MS.

Reference Participants Measures Significant findings

(30) 23 cases (14 definite 
MS, 9 CIS)

CSF Aβ Increased Aβ

40 controls Aβ1–42

(31) 21 cases (CIS) CSF Aβ No differences in Aβ
21 controls Aβ1–40

Aβ1–42

(32) 100 cases MS
100 controls
67 cases systemic 
lupus erythematosus

CSF-BACE
CSF sAPPβ
CSF sAPPα
CSF Aβ
Aβ1–42

Decreased BACE
No differences in sAPPβ, 
sAPPα, Aβ

(33) 37 cases (RR) CSF sAPPβ
CSF Aβ
Aβ1–40

Aβ1–42

Decreased sAPPβ
Decreased Aβ10 controls

(34) 42 cases  
(35 RR, 7 CIS, 5 PP)

CSF Aβ Decreased Aβ
Aβ1–42

12 controls

(35) 77 cases (42 MS,  
10 NMO, 25 CIS)

CSF sAPPα No differences in  
sAPPα, AβCSF Aβ

21 controls Aβ1–42

(27) 2 cases RR PiB Lower uptake in lesions 
in T1 

(36) 65 cases  
(45 RR, 20 CIS)

CSF Aβ No differences in Aβ, 
although normal values 
were less frequent in RR 
patients than in controls.

83 controls

(37) 74 cases (32 RR,  
32 CIS, 10 PP)

CSF Aβ No differences in Aβ
Aβ1–42

74 controls

(38) 87 cases  
(54 RR, 33 SP)
28 controls

CSF sAPPα
CSF sAPPβ
CSF Aβ
Aβ X38

Aβ X40

Aβ X42

Aβ1–42

Decreased sAPα
Decreased sAPPβ
Decreased Aβ

Aβ peptides 
by mass 
spectrometry

(28) 12 cases PiB Lower uptake in white 
matter lesions

(39) 14 cases  
(13 SP, 1 PP)

CSF  
anti-oligomer 
monoclonal 
antibodies

Detected

(29) 12 cases  
(5 RR, 5 SP, 2 PP)

18F-florbetaben Lower uptake in white 
matter lesions than in 
normal-appearing white 
matter
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Myelin loss and breakdown of myelin basic protein (MBP) in 
AD patients and animal models of AD are associated with aging, 
the ApoE4 allele, or head injury, all of which are risk factors 
for AD, as well as with increases in Aβ peptides (9). Several 
pathology studies of AD have found decreased expression of 
MBP in the areas presenting Aβ deposition, and decreased Aβ 
deposition in white matter areas exhibiting greater expression 
of MBP. MBP has not been detected in amyloid plaques in AD 
patients (10, 11).

AMYLOiD-PeT iN MS

Positron-emission tomography using different amyloid trac-
ers [Pittsburgh Compound-B (PiB), florbetapir, florbetaben, 
flutemetamol, and others under study] can detect fibrillar Aβ 
deposits with high sensitivity and specificity; fibrillar Aβ is 
therefore considered a biomarker for AD along with levels of 
Aβ in CSF. This technique enables an in vivo pathological and 
molecular diagnosis, and it is currently included in clinical trial 
protocols for early detection of AD. Amyloid-PET findings 
have been proven to correlate well with fibrillar Aβ in neuro-
pathology studies (12). Assessing amyloid tracer uptake in gray 
matter is a technique for diagnosing AD and for differential 
diagnosis of neurodegenerative cognitive disorders. Most stud-
ies using amyloid-PET aim to assess this imaging technique’s 
utility for confirming AD diagnosis and predicting progression 
of mild cognitive impairment to dementia (13, 14). It is also 
used to diagnose other pathologies presenting with cogni-
tive impairment and which are not linked to Aβ exclusively 
(15–17). However, changes in amyloid-PET images may also 
be indicative of other neurological diseases (18). These tracers 
are thioflavin T derivatives and have been proven more specific 
than previous compounds based on Congo red and whose 
chemical basis was the styrylbenzene molecule or Chrysamine 
G, a derivative of Congo red (19). Thioflavin T analogs bind to 
amyloid fibrils, unlike Congo red derivatives, which also bind to 
tau fibrils. Several molecules have been developed by modifying 
the original structure, giving rise to other tracers that may have 
different affinities for certain tissues (20–23). Other molecules 
now being developed may have an even greater affinity for  
yelin (24).

Molecules currently in use derive from Pittsburgh Compound-A 
(25), an alternative name for BTA-1 (26), which resulted in PiB. 
This compound was used to develop three different radioligands: 
(1) SB1, which gave rise to 18F-florbetaben (AV1) and subse-
quently 18F-florbetapir (AV45); (2) 18F-flutemetamol; and (3) 
AZD2184, and subsequently AZD4694 (renamed NAV4694). At 
present, PiB, florbetaben, florbetapir, and flutemetamol have been 
tested in clinical trials, and the last three tracers are approved and 
available for clinical use.

Amyloid tracers detect decreased activity in black hole areas 
in T1-weighted MR images (27) and in white matter lesions in 
T2-weighted MR images (28, 29), in both the relapsing-remitting 
and the progressive forms of MS (Tables  1 and 2; Figure  1). 
These results showed that amyloid tracers bind extensively to 
white matter and that uptake decreases with demyelination. 

This inevitably leads us to question whether the usefulness of 
amyloid tracers in MS is due to their non-specific binding to 
white matter, or whether there may be a connection between Aβ 
and myelination.
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FiGURe 1 | Amyloid-PeT and MRi image of a patient with RRMS using 
18F-florbetaben. Note the decreased uptake of the tracer in white matter 
lesions.

TABLe 2 | MRi correlations with measurements related to the amyloid cascade in MS.

Reference Participants Measure MRi-related finding

(35) 77 cases (42 MS, 10 NMO, 25 CIS) CSF sAPPα No correlation with MRI atrophy
CSF Aβ1–42

(34) 42 cases (35 RR, 7 CIS, 5 PP) CSF Aβ1–42 Aβ levels were lower in Gd + MS patients
No correlation was found with amyloid-β1–42 lesion load in T2 MRI sequences

(27) 2 cases (RR) PiB-PET Correlation between focal decreased amyloid uptake and T1 black holes
(29) 12 cases (5 RR, 5 SP, 2 PP) 18F-florbetaben No correlation between uptake in white matter lesions and total lesion volume in T2 images
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BiOMARKeRS OF APP PROTeOLYTiC 
PROCeSSiNG iN CSF iN  
PATieNTS wiTH MS

Different studies evaluating Aβ levels in CSF in patients with 
clinically isolated syndrome (CIS) or MS have yielded divergent 
results (30, 31, 36, 37). However, it seems that levels of interme-
diate products of proteolysis of the amyloid precursor protein 
(APP), such as soluble α-APP and β-APP, and one of the final 
products, Aβ1–42, are reduced in patients with both the RR and 
the primary progressive forms of MS (34, 35, 38, 39). Likewise, 
there is an inverse correlation between Aβ levels and presence of 
gadolinium-enhancing lesions. Low activity of β-site APP-cleaving 
enzyme 1 (BACE1), the enzyme participating in amyloidogenic 
APP proteolysis, has also been demonstrated in CSF in patients 
with MS (32). However, these data are challenging to interpret, 
since CSF Aβ levels fluctuate throughout the day. This biomarker 
is therefore difficult to assess and extrapolating changes observed 
in CSF to demyelinating plaques is not always possible (Table 1). 
Altered Aβ CSF levels seem to be linked to situations of lower 
activity as shown by gadolinium uptake in MR images. These find-
ings are not correlated with a greater degree of atrophy (Table 2).

eFFeCTS OF APP PROTeOLYTiC 
PROCeSSiNG iN MS

In patients with MS, β-APP accumulates in damaged axons (40). 
Experimental allergic encephalomyelitis (EAE), an experimental 

model for MS, is more severe in association with a genetic 
deletion of APP. Pathology studies have found increased Aβ 
expression in demyelinating plaques (41–43), which may even 
provide protection from damage (44); in fact, treatment with 
either Aβ42 or Aβ40 reduces motor paralysis and brain inflam-
mation and suppresses lymphocyte activation in animals with 
EAE. Similarly, decreased levels of pro-inflammatory cytokines 
and chemokines have been found in mice with EAE receiving 
Aβ peptides. Although these findings suggest that Aβ peptides 
are beneficial, we should not forget that they are neurotoxic and 
neuroinflammatory, and that APP proteolytic processing may 
provoke the opposite effect in demyelinated axons (45). This 
idea is consistent with studies describing increased Aβ42 levels in 
lesions and damaged axons. Several experimental studies report 
similar results: mice immunized with Aβ1–42 peptide experience 
symptoms whose presentation and pathological basis resemble 
those associated with EAE (46); Aβ injection in mice may damage 
the white matter (47) and induce oligodendrocyte death (48); and 
Aβ decreases the number of neurons in the subventricular zone 
and hippocampus and inhibits neurogenesis in the dentate gyrus 
of hippocampus, but not in the subventricular zone (49).

Amyloid precursor protein is extensively expressed in 
humans. Functions attributed to APP include neurite outgrowth 
and synaptogenesis, protein trafficking along axons, cell adhe-
sion, calcium metabolism, and signal transduction (50). Due to 
the activity of several successive proteolytic processes involving 
α- and β-secretases (depending on whether the process is amyloi-
dogenic), and subsequently γ-secretase, APP gives rise to soluble 
extracellular domains (sAPPα or sAPPβ) and the APP intracellular 
domain (AICD). Aβ is a protein with a great capacity to generate 
fibrils: it initially forms soluble monomers, and then oligomers, 
which remain soluble, until it ends up forming insoluble fibrils. 
Intracellular cascade of soluble peptides (β peptides, especially 
Aβ40 and Aβ42), which derive from APP proteolysis, may form 
oligomers and insoluble fibrillar deposits that become amyloid 
plaques (51). Another important fact is that APP is not an isolated 
protein, but rather one with two homologs: amyloid-like proteins 
1 and 2, or APLP1 and APLP2 (52). Although genetic deletion of 
APP in mice provokes minor impairment (53), triple-knockout 
mice show such problems as perinatal death, cranial abnormali-
ties, and cortical dysplasia (54, 55). The above suggests that APP 
family proteins fulfill essential yet partially redundant functions 
that can compensate for each other when several family members 
are present.

Although information on APP proteolytic processing in MS 
is scarce, we currently know that it is upregulated in damaged 
axons, which suggests that it may constitute a reliable marker 
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of axon demyelination (56). Increased APP expression has 
been observed following compression injury in spinal cord 
white matter in rats (57). In APP knockout mice, nodal length 
is greater, and sodium channels are clustered. Spinal cord 
myelin sheaths are thinner in both APP knockout and APP-
overexpressing transgenic mice (58). The potential impact of 
APP on MS may be related to coexpressing proteins. In fact, 
APP aggregates have been found in nodes of Ranvier, where 
APP expression colocalizes with tenascin-R, near the juxta-
paranodal potassium channels. Tenascin-R is an extracellular 
matrix glycoprotein of the tenascin family that is exclusive to 
the CNS. It acts on cell differentiation, migration, and adhesion. 
Tenascin-R expression increases following microglial activa-
tion (59). It is upregulated by platelet-derived growth factor 
(PDGF) and participates in oligodendrocyte differentiation 
and consequently in remyelination (60). Tenascin-R has been 
studied in connection with MS due to its role in myelination 
(61), and expression has been shown to be reduced in chronic 
demyelinating plaques and present in acute and subacute 
plaques. Some studies therefore suggest that Tenascin-R 
inhibits remyelination (62) and prevents repair (63). APP has 
also been associated with Tau and αB-crystallin proteins in MS 
lesions, and αB-crystallin (HspB5) and Aβ peptides appear 
to be beneficial in EAE (64). A small heat-shock protein, αB-
crystallin is highly immunogenic and associated with MS (65). 
It forms part of amyloid fibrils and improves EAE symptoms 
when administered systemically (66, 67). Other proteins that 
form part of amyloid fibrils are also beneficial, including Aβ A4, 
tau, amylin, and serum amyloid P (SAP). APP, αB-crystallin, 
and tau have been found in amyloid deposits in MS and they 
have demonstrated anti-inflammatory properties in MS animal 
models. The benefits of αB-crystallin are believed to be due to 
this protein’s ability to bind to pro-inflammatory proteins, and 
this ability increases in inflammatory processes. This activity 
takes place in a region of the molecule corresponding to the 
peptide that includes residues 73–92: in fact, this region alone 
is involved in EAE, and its activity is similar to that of the whole 
protein, which does not occur with other regions of the protein 
(68). This peptide can also form part of amyloid fibrils (69). 
At the same time, APP, αB-crystallin, SAP, and tau deficiencies 
in mice exacerbate EAE (70, 71). Furthermore, administration 
of the hexapeptide complex comprising the proteins included 
in amyloid fibrils rapidly decreases plasma levels of such pro-
inflammatory cytokines as IL-6 and IL-2 (72).

Another relevant enzyme is BACE1, a membrane-bound 
aspartyl protease (73). It is the only enzyme that directly breaks 
down APP to generate Aβ (74), and it accumulates in AD brains 
(75–79). BACE1-knockout mice also lack Aβ (80–82). Genetic 
deletion of BACE1 during development leads to hypomyelination 
in the central and peripheral nervous systems (83, 84), and the 
enzyme is necessary for sciatic nerve remyelination after an injury 
(85). The role of BACE1 in myelination may be explained by the 
fact that it processes neuregulin-1 and -3 (NRG1, NRG3) (86). 
Members of the NRG family of proteins are neurotrophic factors 
that act on ErbB receptors and trigger a biochemical cascade 
regulating several functions, including myelination. Decreased 
activity in this signaling pathway reduces myelin sheath thickness 

(87–90). This suggests that β secretase may play a crucial role in 
remyelination in MS.

On the other hand, Aβ peptides can trigger microglial 
activation (91–93). Microglial activation induced by Aβ in vivo 
is accompanied by decreased CD200 neuronal expression. The 
CD200 protein controls microglia and assists in inflammatory 
processes (94, 95).

PROTeiNS iNvOLveD iN APP PROTeOLYTiC 
PROCeSSiNG iN DeMYeLiNATiON

The role of APP and its homologs in demyelination may be due 
to APP proteolytic processing via substrates and enzymes. Both 
β- and γ-secretase are located in the lipid raft of the cell mem-
brane, which contains sphingolipids and cholesterol (96). This 
lipid composition of the membrane influences β- and γ-secretase 
activity (97–99). The potential role of lipid components in APP 
proteolytic processing has been extensively reviewed (100); Aβ 
production is modulated by sphingolipids. Demyelination leads 
to a release of myelin proteins (101): Nogo, myelin-associated 
glycoprotein, and oligodendrocyte myelin glycoprotein inhibit 
neuronal regeneration via Nogo and PirB receptors (102, 103), 
and MBP causes damage since it acts directly on the neuronal 
membrane (104). This protein, which has been regarded as 
one of the antigens for MS, performs many functions: it is 
involved in Aβ aggregation and inhibits Aβ fibril assembly 
(105), which affects Aβ levels. In experimental models, brain 
tissue inflammation followed by ischemia produces axonal and 
myelin damage with myelin aggregates that colocalize with 
APP and Aβ. In the 5XFAD mouse model, Aβ plaques were 
observed to colocalize with myelin aggregates (106). As shown 
by in vitro studies, MBP inhibits Aβ fibril assembly via residues 
1–64 (107), a fragment known as MBP1 (108). MBP1 has been 
proven to reduce pathological Aβ accumulation and clinical 
alterations in the 5XFAD mouse (109). This occurs in control 
animal models and has also been observed in models present-
ing mutant forms of Aβ (Dutch- and Iowa-type Aβ) that are 
responsible for cerebral amyloid angiopathy, in which MBP 
inhibits fibril formation (105). Although MBP1 may have a 
protective role in AD, it may be harmful in MS since it reduces 
amyloid fibril production, which favors the detrimental effect 
of Aβ peptides.

CONCLUSiON

Tracer uptake in white matter in amyloid PET imaging studies 
has raised questions about its utility as a biomarker of demyeli-
nation, specifically in white matter diseases such as MS. Several 
studies have aimed to determine how remyelination and MS are 
affected by APP and the proteins expressed via APP proteolytic 
processing, and whether amyloid-PET can provide an in  vivo 
molecular diagnosis of this process. Although further research 
on APP in MS is necessary, recent studies have demonstrated that 
(1) APP does play a role in MS; (2) APP proteolytic processing 
occurs as a result of demyelination, due to the action of myelin 
protein or lipid detritus; and (3) APP is involved in remyelination 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


5

Matías-Guiu et al. Amyloid in Multiple Sclerosis

Frontiers in Neurology | www.frontiersin.org March 2016 | Volume 7 | Article 53

ReFeReNCeS

1. Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Brück W. Differentiation 
block of oligodendroglial progenitor cells as a cause for remyelination failure 
in chronic multiple sclerosis. Brain (2008) 131:1749–58. doi:10.1093/brain/
awn096 

2. Lassmann H, Brück W, Lucchinetti C, Rodriguez M. Remyelination in mul-
tiple sclerosis. Mult Scler (1997) 3:133–6. doi:10.1177/135245859700300213 

3. Chandra A. Role of amyloid from a multiple sclerosis perspective: a liter-
ature review. Neuroimmunomodulation (2015) 22(6):343–6. doi:10.1159/j.
nrl.2012.03.015 

4. Gentile A, Mori F, Bernardini S, Centonze D. Role of amyloid-β CSF levels 
in cognitive deficit in MS. Clin Chim Acta (2015) 449:23–30. doi:10.1016/j.
cca.2015.01.035 

5. Niccolini F, Su P, Politis M. PET in multiple sclerosis. Clin Nucl Med (2015) 
40:e46–52. doi:10.1097/RLU.0000000000000359 

6. Fodero-Tavoletti MT, Rowe CC, McLean CA, Leone L, Li QX, Masters 
CL, et  al. Characterization of PiB binding to white matter in Alzheimer 
disease and other dementias. J Nucl Med (2009) 50:198–204. doi:10.2967/
jnumed.108.057984 

7. Glodzik L, Kuceyeski A, Rusinek H, Tsui W, Mosconi L, Li Y, et  al. 
Reduced glucose uptake and Aβ in brain regions with hyperintensities in 
connected white matter. Neuroimage (2014) 100:684–91. doi:10.1016/j.
neuroimage.2014.06.060 

8. Brun A, Englund E. A white matter disorder in dementia of the Alzheimer 
type: a pathoanatomical study. Ann Neurol (1986) 19:253–62. doi:10.1002/
ana.410190306 

9. Roher AE, Weiss N, Kokjohn TA, Kuo YM, Kalback W, Anthony J, et  al. 
Increased A beta peptides and reduced cholesterol and myelin proteins 
characterize white matter degeneration in Alzheimer’s disease. Biochemistry 
(2002) 41:11080–90. doi:10.1021/bi026173d 

10. Mitew S, Kirkcaldie MT, Halliday GM, Shepherd CE, Vickers JC, Dickson 
TC. Focal demyelination in Alzheimer’s disease and transgenic mouse mod-
els. Acta Neuropathol (2010) 119:567–77. doi:10.1007/s00401-010-0657-2 

11. Ou-Yang MH, Van Nostrand WE. The absence of myelin basic pro-
tein promotes neuroinflammation and reduces amyloid β-protein 
accumulation in Tg-5xFAD mice. J Neuroinflammation (2013) 10:134. 
doi:10.1186/1742-2094-10-134 

12. Driscoll I, Troncoso JC, Rudow G, Sojkova J, Pletnikova O, Zhou Y, et al. 
Correspondence between in  vivo (11)C-PiB-PET amyloid imaging and 
postmortem, region-matched assessment of plaques. Acta Neuropathol 
(2012) 124:823–31. doi:10.1007/s00401-012-1025-1 

13. Pike KE, Savage G, Villemagne VL, Ng S, Moss SA, Maruff P, et  al. Beta-
amyloid imaging and memory in non-demented individuals: evidence for 
preclinical Alzheimer’s disease. Brain (2007) 130:2837–44. doi:10.1093/
brain/awm238 

14. Resnick SM, Sojkova J, Zhou Y, An Y, Ye W, Holt DP, et  al. Longitudinal 
cognitive decline is associated with fibrillar amyloid-beta measured by [11C]
PiB. Neurology (2010) 74:807–15. doi:10.1212/WNL.0b013e3181d3e3e9 

15. Marchant NL, Reed BR, Sanossian N, Madison CM, Kriger S, Dhada R, et al. 
The aging brain and cognition: contribution of vascular injury and aβ to mild 
cognitive dysfunction. JAMA Neurol (2013) 70:488–95. doi:10.1001/2013.
jamaneurol.405 

16. Jack CR Jr, Wiste HJ, Vemuri P, Weigand SD, Senjem ML, Zeng G, et  al. 
Brain beta-amyloid measures and magnetic resonance imaging atrophy both 
predict time-to-progression from mild cognitive impairment to Alzheimer’s 
disease. Brain (2010) 133:3336–48. doi:10.1093/brain/awq277 

17. Matías-Guiu JA, Cabrera-Martín MN, Moreno-Ramos T, Valles-Salgado M, 
Fernández-Matarrubia M, Carreras JL, et al. Amyloid and FDG-PET study 
of logopenic primary progressive aphasia: evidence for the existence of two 
subtypes. J Neurol (2015) 262:1463–72. doi:10.1007/s00415-015-7738-z 

18. Catafau AM, Bullich S. Amyloid PET imaging: applications beyond 
Alzheimer’s disease. Clin Transl Imaging (2015) 3:39–55. doi:10.1007/
s40336-014-0098-3 

19. Mathis CA, Mason NS, Lopresti BJ, Klunk WE. Development of positron 
emission tomography β-amyloid plaque imaging agents. Semin Nucl Med 
(2012) 42:423–32. doi:10.1053/j.semnuclmed.2012.07.001 

20. Flaherty DP, Kiyota T, Dong Y, Ikezu T, Vennerstrom JL. Phenolic bis- 
styrylbenzenes as β-amyloid binding ligands and free radical scavengers. 
J Med Chem (2010) 53:7992–9. doi:10.1021/jm1006929 

21. Nakazono M, Obayashi K, Sasamoto K, Tomiyoshi K, Suenaga G, Ando Y. 
Novel styrylbenzene derivatives for detecting amyloid deposits. Clin Chim 
Acta (2014) 436:27–34. doi:10.1016/j.cca.2014.04.028 

22. Furukawa K, Ikeda S, Okamura N, Tashiro M, Tomita N, Furumoto S, et al. 
Cardiac positron-emission tomography images with an amyloid-specific 
tracer in familial transthyretin-related systemic amyloidosis. Circulation 
(2012) 125:556–7. doi:10.1161/CIRCULATIONAHA.111.045237 

23. Chen W, Dilsizian V. Molecular imaging of amyloidosis: will the heart be the 
next target after the brain? Curr Cardiol Rep (2012) 14:226–33. doi:10.1007/
s11886-011-0239-5 

24. Stankoff B, Wang Y, Bottlaender M, Aigrot MS, Dolle F, Wu C, et al. Imaging 
of CNS myelin by positron-emission tomography. Proc Natl Acad Sci U S A 
(2006) 103:9304–9. doi:10.1073/pnas.0600769103 

25. Klunk WE, Mathis CA. Whatever happened to Pittsburgh com-
pound-A? Alzheimer Dis Assoc Disord (2008) 22:198–203. doi:10.1097/
WAD.0b013e318188c0c8 

26. Mathis CA, Bacskai BJ, Kajdasz ST, McLellan ME, Frosch MP, Hyman BT, 
et al. A lipophilic thioflavin-T derivative for positron emission tomography 
(PET) imaging of amyloid in brain. Bioorg Med Chem Lett (2002) 12:295–8. 
doi:10.1016/S0960-894X(01)00734-X 

27. Stankoff B, Freeman L, Aigrot MS, Chardain A, Dolle F, Williams A, et al. 
Imaging central nervous system myelin by positron emission tomography 
in multiple sclerosis using [methyl-(1)(1)C]-2-(4′-methylaminophenyl)-
6-hydroxybenzothiazole. Ann Neurol (2011) 69(4):673–80. doi:10.1002/
ana.22320 

28. Bodini B, Veronese M, Garcia-Lorenzo D, Freeman L, Papeix C, Zalc B, et al. 
Positron emission tomography with [11C]-PIB: a clinically relevant tool 
for voxel-wise myelin quantification in multiple sclerosis. Mult Scler (2013) 
19(Suppl):174–5. 

29. Matias-Guiu JA, Cabrera-Martín MN, Matías-Guiu J, Oreja-Guevara C, 
Riola-Parada C, Moreno-Ramos T, et al. Amyloid PET imaging in multiple 
sclerosis: an (18)F-florbetaben study. BMC Neurol (2015) 15:243. doi:10.1186/
s12883-015-0502-2 

30. Valis M, Talab R, Stourac P, Andrys C, Masopust J. Tau protein, phosphor-
ylated tau protein and beta-amyloid42 in the cerebrospinal fluid of multiple 
sclerosis patients. Neuro Endocrinol Lett (2008) 29:971–6. 

31. Hein Née Maier K, Köhler A, Diem R, Sättler MB, Demmer I, Lange P, et al. 
Biological markers for axonal degeneration in CSF and blood of patients with 
the first event indicative for multiple sclerosis. Neurosci Lett (2008) 436:72–6. 
doi:10.1016/j.neulet.2008.02.064 

32. Mattsson N, Axelsson M, Haghighi S, Malmeström C, Wu G, Anckarsäter R, 
et al. Reduced cerebrospinal fluid BACE1 activity in multiple sclerosis. Mult 
Scler (2009) 15:448–54. doi:10.1177/1352458508100031 

33. Mitosek-Szewczyk K, Gordon-Krajcer W, Flis D, Stelmasiak Z. Some markers 
of neuronal damage in cerebrospinal fluid of multiple sclerosis in relapse. 
Folia Neuropathol (2011) 49:191–6.

34. Mori F, Rossi S, Sancesario G, Codecà C, Mataluni G, Monteleone F, et al. 
Cognitive and cortical plasticity deficits correlate with altered amyloid-β 
CSF levels in multiple sclerosis. Neuropsychopharmacology (2011) 36:559–68. 
doi:10.1038/npp.2010.187 

35. Mai W, Hu X, Lu Z, Peng F, Wang Y. Cerebrospinal fluid levels of soluble amy-
loid precursor protein and β-amyloid 42 in patients with multiple sclerosis, 

to a greater or lesser extent. In conclusion, amyloid-PET may 
serve as a tool for determining the degree of demyelination and 
remyelination as well as a means of studying molecular changes 
linked to remyelination in MS in vivo.

AUTHOR CONTRiBUTiONS

All authors listed, have made substantial, direct, and intellectual 
contribution to the work, and approved it for publication.

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive
http://dx.doi.org/10.1093/brain/awn096
http://dx.doi.org/10.1093/brain/awn096
http://dx.doi.org/10.1177/135245859700300213
http://dx.doi.org/10.1159/j.nrl.2012.03.015
http://dx.doi.org/10.1159/j.nrl.2012.03.015
http://dx.doi.org/10.1016/j.cca.2015.01.035
http://dx.doi.org/10.1016/j.cca.2015.01.035
http://dx.doi.org/10.1097/RLU.0000000000000359
http://dx.doi.org/10.2967/jnumed.108.057984
http://dx.doi.org/10.2967/jnumed.108.057984
http://dx.doi.org/10.1016/j.neuroimage.2014.06.060
http://dx.doi.org/10.1016/j.neuroimage.2014.06.060
http://dx.doi.org/10.1002/ana.410190306
http://dx.doi.org/10.1002/ana.410190306
http://dx.doi.org/10.1021/bi026173d
http://dx.doi.org/10.1007/s00401-010-0657-2
http://dx.doi.org/10.1186/1742-2094-10-134
http://dx.doi.org/10.1007/s00401-012-1025-1
http://dx.doi.org/10.1093/brain/awm238
http://dx.doi.org/10.1093/brain/awm238
http://dx.doi.org/10.1212/WNL.0b013e3181d3e3e9
http://dx.doi.org/10.1001/2013.jamaneurol.405
http://dx.doi.org/10.1001/2013.jamaneurol.405
http://dx.doi.org/10.1093/brain/awq277
http://dx.doi.org/10.1007/s00415-015-7738-z
http://dx.doi.org/10.1007/s40336-014-0098-3
http://dx.doi.org/10.1007/s40336-014-0098-3
http://dx.doi.org/10.1053/j.semnuclmed.2012.07.001
http://dx.doi.org/10.1021/jm1006929
http://dx.doi.org/10.1016/j.cca.2014.04.028
http://dx.doi.org/10.1161/CIRCULATIONAHA.111.045237
http://dx.doi.org/10.1007/s11886-011-0239-5
http://dx.doi.org/10.1007/s11886-011-0239-5
http://dx.doi.org/10.1073/pnas.0600769103
http://dx.doi.org/10.1097/WAD.0b013e318188c0c8
http://dx.doi.org/10.1097/WAD.0b013e318188c0c8
http://dx.doi.org/10.1016/S0960-894X(01)00734-X
http://dx.doi.org/10.1002/ana.22320
http://dx.doi.org/10.1002/ana.22320
http://dx.doi.org/10.1186/s12883-015-0502-2
http://dx.doi.org/10.1186/s12883-015-0502-2
http://dx.doi.org/10.1016/j.neulet.2008.02.064
http://dx.doi.org/10.1177/1352458508100031
http://dx.doi.org/10.1038/npp.2010.187


6

Matías-Guiu et al. Amyloid in Multiple Sclerosis

Frontiers in Neurology | www.frontiersin.org March 2016 | Volume 7 | Article 53

neuromyelitis optica and clinically isolated syndrome. J Int Med Res (2011) 
39:2402–13. doi:10.1177/147323001103900641 

36. Sladkova V, Mareš J, Lubenova B, Zapletalova J, Stejskal D, Hlustik P, et al. 
Degenerative and inflammatory markers in the cerebrospinal fluid of mul-
tiple sclerosis patients with relapsing–remitting course of disease and after 
clinical isolated syndrome. Neurol Res (2011) 33:415–20. doi:10.1179/0161
64110X12816242542535 

37. Szalardy L, Zadori D, Simu M, Bencsik K, Vecsei L, Klivenyi P. Evaluating 
biomarkers of neuronal degeneration and neuroinflammation in CSF of 
patients with multiple sclerosis-osteopontin as a potential marker of clinical 
severity. J Neurol Sci (2013) 331:38–42. doi:10.1016/j.jns.2013.04.024 

38. Augutis K, Axelsson M, Portelius E, Brinkmalm G, Andreasson U, Gustavsson 
MK, et al. Cerebrospinal fluid biomarkers of β-amyloid metabolism in mul-
tiple sclerosis. Mult Scler (2013) 19:543–52. doi:10.1177/1352458512460603 

39. David MA, Tayebi M. Detection of protein aggregates in brain and cerebro-
spinal fluid derived from multiple sclerosis patients. Front Neurol (2014) 
5:251. doi:10.3389/fneur.2014.00251 

40. Mangiardi M, Crawford DK, Xia X, Du S, Simon-Freeman R, Voskuhl RR, 
et al. An animal model of cortical and callosal pathology in multiple sclerosis. 
Brain Pathol (2011) 21:263–78. doi:10.1111/j.1750-3639.2010.00444.x 

41. Lassmann H. Mechanisms of neurodegeneration shared between multiple 
sclerosis and Alzheimer’s disease. J Neural Transm (2011) 118:747–52. 
doi:10.1007/s00702-011-0607-8 

42. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal tran-
section in the lesions of multiple sclerosis. N Engl J Med (1998) 338:278–85. 
doi:10.1056/NEJM199801293380502 

43. Ferguson B, Matyszak MK, Esiri MM, Perry VH. Axonal damage in acute mul-
tiple sclerosis lesions. Brain (1997) 120:393–9. doi:10.1093/brain/120.3.393 

44. Sun SW, Nishioka C, Labib W, Liang HF. Axonal terminals exposed to amy-
loid-β may not lead to pre-synaptic axonal damage. J Alzheimers Dis (2015) 
45:1139–48. doi:10.3233/JAD-142154 

45. Hohlfeld R, Wekerle H. β-Amyloid: enemy or remedy? Sci Transl Med (2012) 
4:145fs24. doi:10.1126/scitranslmed.3004586 

46. Furlan R, Brambilla E, Sanvito F, Roccatagliata L, Olivieri S, Bergami A, et al. 
Vaccination with amyloid-β peptide induces autoimmune encephalomyelitis 
in C57/BL6 mice. Brain (2003) 126:285–91. doi:10.1093/brain/awg031 

47. Sun SW, Liang HF, Mei J, Xu D, Shi WX. In vivo diffusion tensor imaging of 
amyloid-β-induced white matter damage in mice. J Alzheimers Dis (2014) 
38:93–101. doi:10.3233/JAD-130236 

48. Lee JT, Xu J, Lee JM, Ku G, Han X, Yang DI, et al. Amyloid-beta peptide induces 
oligodendrocyte death by activating the neutral sphingomyelinase-ceramide 
pathway. J Cell Biol (2004) 164:123–31. doi:10.1083/jcb.200307017 

49. Li X, Zuo P. Effects of Abeta25-35 on neurogenesis in the adult mouse 
subventricular zone and dentate gyrus. Neurol Res (2005) 27:218–22. doi:1
0.1179/016164105X35585 

50. Small DH, Nurcombe V, Moir R, Michaelson S, Monard D, Beyreuther K, 
et al. Association and release of the amyloid protein precursor of Alzheimer’s 
disease from chick brain extracellular matrix. J Neurosci (1992) 12:4143–50. 

51. Abramov E, Dolev I, Fogel H, Ciccotosto GD, Ruff E, Slutsky I. Amyloid-
beta as a positive endogenous regulator of release probability at hippocampal 
synapses. Nat Neurosci (2009) 12:1567–76. doi:10.1038/nn.2433 

52. Jacobsen KT, Iverfeldt K. Amyloid precursor protein and its homologues: 
a family of proteolysis-dependent receptors. Cell Mol Life Sci (2009) 
66:2299–318. doi:10.1007/s00018-009-0020-8 

53. Heber S, Herms J, Gajic V, Hainfellner J, Aguzzi A, Rülicke T, et al. Mice with 
combined gene knock-outs reveal essential and partially redundant functions 
of amyloid precursor protein family members. J Neurosci (2000) 20:7951–63. 

54. Herms J, Anliker B, Heber S, Ring S, Fuhrmann M, Kretzschmar H, et al. 
Cortical dysplasia resembling human type 2 lissencephaly in mice lacking 
all three APP family members. EMBO J (2004) 23:4106–15. doi:10.1038/
sj.emboj.7600390 

55. Von Koch CS, Zheng H, Chen H, Trumbauer M, Thinakaran G, van der Ploeg 
LH, et  al. Generation of APLP2 KO mice and early postnatal lethality in 
APLP2/APP double KO mice. Neurobiol Aging (1997) 18:661–9. doi:10.1016/
S0197-4580(97)00151-6 

56. Moore S, Khalaj AJ, Patel R, Yoon J, Ichwan D, Hayardeny L, et al. Restoration 
of axon conduction and motor deficits by therapeutic treatment with glati-
ramer acetate. J Neurosci Res (2014) 92:1621–36. doi:10.1002/jnr.23440 

57. Ward RE, Huang W, Kostusiak M, Pallier PN, Michael-Titus AT, Priestley 
JV. A characterization of white matter pathology following spinal cord 
compression injury in the rat. Neuroscience (2014) 260:227–39. doi:10.1016/j.
neuroscience.2013.12.024 

58. Xu DE, Zhang WM, Yang ZZ, Zhu HM, Yan K, Li S, et al. Amyloid precursor 
protein at node of Ranvier modulates nodal formation. Cell Adh Migr (2014) 
8:396–403. doi:10.4161/cam.28802 

59. Angelov DN, Walther M, Streppel M, Guntinas-Lichius O, Neiss WF, 
Probstmeier R, et al. Tenascin-R is antiadhesive for activated microglia that 
induce downregulation of the protein after peripheral nerve injury: a new 
role in neuronal protection. J Neurosci (1988) 18:6218–29. 

60. Pesheva P, Gloor S, Schachner M, Probstmeier R. Tenascin-R is an intrinsic 
autocrine factor for oligodendrocyte differentiation and promotes cell 
adhesion by a sulfatide-mediated mechanism. J Neurosci (1997) 17:4642–51. 

61. Gutowski NJ, Newcombe J, Cuzner ML. Tenascin-R and C in multiple scle-
rosis lesions: relevance to extracellular matrix remodelling. Neuropathol Appl 
Neurobiol (1999) 25:207–14. doi:10.1046/j.1365-2990.1999.00176.x 

62. Czopka T, Von Holst A, Schmidt G, Ffrench-Constant C, Faissner A. Tenascin 
C and tenascin R similarly prevent the formation of myelin membranes in 
a RhoA-dependent manner, but antagonistically regulate the expression 
of myelin basic protein via a separate pathway. Glia (2009) 7:1790–801. 
doi:10.1002/glia.20891 

63. Pesheva P, Probstmeier R. Association of tenascin-R with murine brain 
myelin membranes: involvement of divalent cations. Neurosci Lett (2000) 
283:165–8. doi:10.1016/S0304-3940(00)00900-9 

64. Kurnellas M, Adams CM, Sobel RA, Steinman L, Rothbard JB. Amyloid 
fibrils composed of hexameric peptides attenuate neuroinflammation. Sci 
Transl Med (2013) 5:179ra42. doi:10.1126/scitranslmed.3005681 

65. Van Noort JM, van Sechel AC, Bajramovic JJ, el Ouagmiri M, Polman 
CH, Lassmann H, et al. The small heat-shock protein alpha B-crystallin as 
candidate autoantigen in multiple sclerosis. Nature (1995) 375:798–801. 
doi:10.1038/375798a0 

66. Ousman SS, Tomooka BH, Van Noort JM, Wawrousek EF, O’Connor 
KC, Hafler DA, et  al. Protective and therapeutic role for αB-crystallin in  
autoimmune demyelination. Nature (2007) 448:474–9. doi:10.1038/
nature05935 

67. Han MH, Hwang S, Roy DB, Lundgren DH, Price JV, Ousman S, et  al. 
Proteomic analysis of active multiple sclerosis lesions reveals therapeutic 
targets. Nature (2008) 451:1076–81. doi:10.1038/nature06559 

68. Kurnellas MP, Brownell SE, Su L, Malkovskiy AV, Rajadas J, Dolganov G, 
et al. Chaperone activity of small heat shock proteins underlies therapeutic 
efficacy in experimental autoimmune encephalomyelitis. J Biol Chem (2012) 
287:36423–34. doi:10.1074/jbc.M112.371229 

69. Tanaka N, Tanaka R, Tokuhara M, Kunugi S, Lee YF, Hamada D. Amyloid 
fibril formation and chaperone-like activity of peptides from alphaA- 
crystallin. Biochemistry (2008) 47:2961–7. doi:10.1021/bi701823g 

70. Ji Z, Ke ZJ, Geng JG. SAP suppresses the development of experimental 
autoimmune encephalomyelitis in C57BL/6 mice. Immunol Cell Biol (2012) 
90:388–95. doi:10.1038/icb.2011.51 

71. Weinger JG, Davies P, Acker CM, Brosnan CF, Tsiperson V, Bayewitz A, 
et al. Mice devoid of tau have increased susceptibility to neuronal damage 
in myelin oligodendrocyte glycoprotein-induced experimental autoimmune 
encephalomyelitis. J Neuropathol Exp Neurol (2012) 71:422–33. doi:10.1097/
NEN.0b013e3182540d2e 

72. Steinman L, Rothbard JB, Kurnellas MP. Janus faces of amyloid proteins 
in neuroinflammation. J Clin Immunol (2014) 34:S61–3. doi:10.1007/
s10875-014-0034-3 

73. Yan R, Han P, Miao H, Greengard P, Xu H. The transmembrane domain of the 
Alzheimer’s β-secretase (BACE1) determines its late Golgi localization and 
access to β-amyloid precursor protein (APP) substrate. J Biol Chem (2001) 
276:36788–96. doi:10.1074/jbc.M104350200 

74. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, et al. 
Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the 
transmembrane aspartic protease BACE. Science (1999) 286:735–41. 
doi:10.1126/science.286.5440.735 

75. Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, Pauley AM, et  al. 
Membrane-anchored aspartyl protease with Alzheimer’s disease β-secretase 
activity. Nature (1999) 402:533–7. doi:10.1038/990107 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive
http://dx.doi.org/10.1177/147323001103900641
http://dx.doi.org/10.1179/016164110X12816242542535
http://dx.doi.org/10.1179/016164110X12816242542535
http://dx.doi.org/10.1016/j.jns.2013.04.024
http://dx.doi.org/10.1177/1352458512460603
http://dx.doi.org/10.3389/fneur.2014.00251
http://dx.doi.org/10.1111/j.1750-3639.2010.00444.x
http://dx.doi.org/10.1007/s00702-011-0607-8
http://dx.doi.org/10.1056/NEJM199801293380502
http://dx.doi.org/10.1093/brain/120.3.393
http://dx.doi.org/10.3233/JAD-142154
http://dx.doi.org/10.1126/scitranslmed.3004586
http://dx.doi.org/10.1093/brain/awg031
http://dx.doi.org/10.3233/JAD-130236
http://dx.doi.org/10.1083/jcb.200307017
http://dx.doi.org/10.1179/016164105X35585
http://dx.doi.org/10.1179/016164105X35585
http://dx.doi.org/10.1038/nn.2433
http://dx.doi.org/10.1007/s00018-009-0020-8
http://dx.doi.org/10.1038/sj.emboj.7600390
http://dx.doi.org/10.1038/sj.emboj.7600390
http://dx.doi.org/10.1016/S0197-4580(97)00151-6
http://dx.doi.org/10.1016/S0197-4580(97)00151-6
http://dx.doi.org/10.1002/jnr.23440
http://dx.doi.org/10.1016/j.neuroscience.2013.12.024
http://dx.doi.org/10.1016/j.neuroscience.2013.12.024
http://dx.doi.org/10.4161/cam.28802
http://dx.doi.org/10.1046/j.1365-2990.1999.00176.x
http://dx.doi.org/10.1002/glia.20891
http://dx.doi.org/10.1016/S0304-3940(00)00900-9
http://dx.doi.org/10.1126/scitranslmed.3005681
http://dx.doi.org/10.1038/375798a0
http://dx.doi.org/10.1038/nature05935
http://dx.doi.org/10.1038/nature05935
http://dx.doi.org/10.1038/nature06559
http://dx.doi.org/10.1074/jbc.M112.371229
http://dx.doi.org/10.1021/bi701823g
http://dx.doi.org/10.1038/icb.2011.51
http://dx.doi.org/10.1097/NEN.0b013e3182540d2e
http://dx.doi.org/10.1097/NEN.0b013e3182540d2e
http://dx.doi.org/10.1007/s10875-014-0034-3
http://dx.doi.org/10.1007/s10875-014-0034-3
http://dx.doi.org/10.1074/jbc.M104350200
http://dx.doi.org/10.1126/science.286.5440.735
http://dx.doi.org/10.1038/990107


7

Matías-Guiu et al. Amyloid in Multiple Sclerosis

Frontiers in Neurology | www.frontiersin.org March 2016 | Volume 7 | Article 53

76. Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, et  al. 
Identification of a novel aspartic protease (Asp 2) as β-secretase. Mol Cell 
Neurosci (1999) 14:419–27. doi:10.1006/mcne.1999.0811 

77. Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, et  al. 
Purification and cloning of amyloid precursor protein beta-secretase from 
human brain. Nature (1999) 402:537–40. doi:10.1038/990114 

78. Lin X, Koelsch G, Wu S, Downs D, Dashti A, Tang J. Human aspartic protease 
memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein. Proc 
Natl Acad Sci U S A (2000) 97:1456–60. doi:10.1073/pnas.97.4.1456 

79. Yang LB, Lindholm K, Yan R, Citron M, Xia W, Yang XL, et  al. Elevated 
β-secretase expression and enzymatic activity detected in sporadic Alzheimer 
disease. Nat Med (2003) 9:3–4. doi:10.1038/nm0103-3 

80. Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, et al. BACE1 
is the major beta-secretase for generation of Abeta peptides by neurons. Nat 
Neurosci (2001) 4:233–4. doi:10.1038/85064 

81. Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, et  al. Mice 
deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype 
and abolished beta-amyloid generation. Nat Neurosci (2001) 4:231–2. 
doi:10.1038/nn1101-1158 

82. Roberds SL, Anderson J, Basi G, Bienkowski MJ, Branstetter DG, Chen KS, 
et  al. BACE knockout mice are healthy despite lacking the primary beta- 
secretase activity in brain: implications for Alzheimer’s disease therapeutics. 
Hum Mol Genet (2001) 10:1317–24. doi:10.1093/hmg/10.12.1317 

83. Hu X, Hicks CW, He W, Wong P, Macklin WB, Trapp BD, et al. Bace1 modu-
lates myelination in the central and peripheral nervous system. Nat Neurosci 
(2006) 9:1520–5. doi:10.1038/nn1797 

84. Willem M, Garratt AN, Novak B, Citron M, Kaufmann S, Rittger A, et al. 
Control of peripheral nerve myelination by the beta-secretase BACE1. 
Science (2006) 314:664–6. doi:10.1126/science.1132341 

85. Hu X, He W, Diaconu C, Tang X, Kidd GJ, Macklin WB, et al. Genetic deletion 
of BACE1 in mice affects remyelination of sciatic nerves. FASEB J (2008) 
22:2970–80. doi:10.1096/fj.08-106666 

86. Lazarov O, Morfini GA, Lee EB, Farah MH, Szodorai A, DeBoer SR, 
et  al. Axonal transport, amyloid precursor protein, kinesin-1, and the 
processing apparatus: revisited. J Neurosci (2005) 25:2386–95. doi:10.1523/
JNEUROSCI.3089-04.2005 

87. Nave KA, Salzer JL. Axonal regulation of myelination by neuregulin 1. Curr 
Opin Neurobiol (2006) 16:492–500. doi:10.1016/j.conb.2006.08.008 

88. Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B, Birchmeier 
C, et  al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 
(2004) 304:700–3. doi:10.1126/science.1095862 

89. Taveggia C, Thaker P, Petrylak A, Caporaso GL, Toews A, Falls DL, et  al. 
Type III neuregulin-1 promotes oligodendrocyte myelination. Glia (2008) 
56:284–93. doi:10.1002/glia.20612 

90. Luo X, Prior M, He W, Hu X, Tang X, Sheng W, et al. Cleavage of neuregulin-1 
by BACE1 or ADAM10 produces differential effects on myelination. J Biol 
Chem (2011) 286:23967–74. doi:10.1074/jbc.M111.251538 

91. Lyons A, Griffin RJ, Costelloe CE, Clarke RM, Lynch MA. IL-4 attenuates 
the neuroinflammation induced by amyloid-beta in  vivo and in  vitro. 
J Neurochem (2007) 101:771–81. doi:10.1111/j.1471-4159.2006.04370.x 

92. Hensley K. Neuroinflammation in Alzheimer’s disease: mechanisms, patho-
logic consequences, and potential for therapeutic manipulation. J Alzheimers 
Dis (2010) 21:1–14. doi:10.3233/JAD-2010-1414

93. Combs CK, Karlo JC, Kao SC, Landreth GE. β-amyloid stimulation of 
microglia and monocytes results in TNF α-dependent expression of inducible 
nitric oxide synthase and neuronal apoptosis. J Neurosci (2001) 21:1179–88. 

94. Lyons A, Downer EJ, Crotty S, Nolan YM, Mills KH, Lynch MA. CD200 
ligand-receptor interaction modulates microglial activation in  vivo 
and in  vitro: a role for IL-4. J Neurosci (2007) 27:8309–13. doi:10.1523/
JNEUROSCI.1781-07.2007 

95. Lyons A, Downer EJ, Costello DA, Murphy N, Lynch MA. Dok2 mediates the 
CD200Fc attenuation of Aβ-induced changes in glia. J Neuroinflammation 
(2012) 9:107. doi:10.1186/1742-2094-9-107 

96. Vetrivel KS, Thinakaran G. Membrane rafts in Alzheimer’s disease beta- 
amyloid production. Biochim Biophys Acta (2010) 1801:860–7. doi:10.1016/j.
bbalip.2010.03.007 

97. Kalvodova L, Kahya N, Schwille P, Ehehalt R, Verkade P, Drechsel D, et al. 
Lipids as modulators of proteolytic activity of BACE: involvement of cho-
lesterol, glycosphingolipids, and anionic phospholipids in vitro. J Biol Chem 
(2005) 280:36815–23. doi:10.1074/jbc.M504484200 

98. Osenkowski P, Ye W, Wang R, Wolfe MS, Selkoe DJ. Direct and potent 
regulation of γ-secretase by its lipid microenvironment. J Biol Chem (2008) 
283:22529–40. doi:10.1074/jbc.M801925200 

99. Holmes O, Paturi S, Ye W, Wolfe MS, Selkoe DJ. The effects of membrane 
lipids on the activity and processivity of purified γ-secretase. Biochemistry 
(2012) 51:3565–75. doi:10.1021/bi300303g 

100. Grimm MO, Rothhaar TL, Hartmann T. The role of APP proteolytic pro-
cessing in lipid metabolism. Exp Brain Res (2012) 217:365–75. doi:10.1007/
s00221-011-2975-6 

101. Gendelman HE, Pezeshkpour GH, Pressman NJ, Wolinsky JS, Quarles RH, 
Dobersen MJ, et  al. A quantitation of myelin-associated glycoprotein and 
myelin basic protein loss in different demyelinating diseases. Ann Neurol 
(1985) 18:324–8. doi:10.1002/ana.410180309 

102. Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 
(2006) 7:617–27. doi:10.1038/nrn1956 

103. Atwal JK, Pinkston-Gosse J, Syken J, Stawicki S, Wu Y, Shatz C, et al. PirB is 
a functional receptor for myelin inhibitors of axonal regeneration. Science 
(2008) 322:967–70. doi:10.1126/science.1161151 

104. Zhang J, Sun X, Zheng S, Liu X, Jin J, Ren Y, et  al. Myelin basic protein 
induces neuron-specific toxicity by directly damaging the neuronal  
plasma membrane. PLoS One (2014) 9:e108646. doi:10.1371/journal.pone. 
0108646 

105. Hoos MD, Ahmed M, Smith SO, Van Nostrand WE. Inhibition of familial 
cerebral amyloid angiopathy mutant amyloid β-protein fibril assembly by 
myelin basic protein. J Biol Chem (2007) 282:9952–61. doi:10.1074/jbc.
M603494200 

106. Zhan X, Cox C, Ander BP, Liu D, Stamova B, Jin LW, et al. Inflammation 
combined with ischemia produces myelin injury and plaque-like aggregates 
of myelin, amyloid-β and AβPP in adult rat brain. J Alzheimers Dis (2015) 
46:507–23. doi:10.3233/JAD-143072 

107. Kotarba AME, Aucoin D, Hoos MD, Smith SO, Van Nostrand WE. Fine 
mapping of the amyloid β-protein binding site on myelin basic protein. 
Biochemistry (2013) 52:2565–73. doi:10.1021/bi4001936 

108. Liao MC, Hoos MD, Aucoin D, Ahmed M, Davis J, Smith SO, et al. Amino 
terminal domain of myelin basic protein inhibits amyloid β-protein fibril 
assembly. J Biol Chem (2010) 285:35590–8. doi:10.1074/jbc.M110.169599 

109. Ou-Yang MH, Xu F, Liao MC, Davis J, Robinson JK, Van Nostrand WE. The 
N-terminal region of myelin basic protein reduces fibrillar amyloid-β depo-
sition in Tg-5xFAD mice. Neurobiol Aging (2015) 36:801–11. doi:10.1016/j.
neurobiolaging.2014.10.006 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

The reviewers, CE and RD, and the handling Editor, declared their shared affilia-
tion, and the handling Editor states that the process nevertheless met the standards 
of a fair and objective review.

Copyright © 2016 Matías-Guiu, Oreja-Guevara, Cabrera-Martín, Moreno-Ramos, 
Carreras and Matías-Guiu. This is an open-access article distributed under the terms 
of the Creative Commons Attribution License (CC BY). The use, distribution or 
reproduction in other forums is permitted, provided the original author(s) or licensor 
are credited and that the original publication in this journal is cited, in accordance 
with accepted academic practice. No use, distribution or reproduction is permitted 
which does not comply with these terms.

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive
http://dx.doi.org/10.1006/mcne.1999.0811
http://dx.doi.org/10.1038/990114
http://dx.doi.org/10.1073/pnas.97.4.1456
http://dx.doi.org/10.1038/nm0103-3
http://dx.doi.org/10.1038/85064
http://dx.doi.org/10.1038/nn1101-1158
http://dx.doi.org/10.1093/hmg/10.12.1317
http://dx.doi.org/10.1038/nn1797
http://dx.doi.org/10.1126/science.1132341
http://dx.doi.org/10.1096/fj.08-106666
http://dx.doi.org/10.1523/JNEUROSCI.3089-04.2005
http://dx.doi.org/10.1523/JNEUROSCI.3089-04.2005
http://dx.doi.org/10.1016/j.conb.2006.08.008
http://dx.doi.org/10.1126/science.1095862
http://dx.doi.org/10.1002/glia.20612
http://dx.doi.org/10.1074/jbc.M111.251538
http://dx.doi.org/10.1111/j.1471-4159.2006.04370.x
http://dx.doi.org/10.3233/JAD-2010-1414
http://dx.doi.org/10.1523/JNEUROSCI.1781-07.2007
http://dx.doi.org/10.1523/JNEUROSCI.1781-07.2007
http://dx.doi.org/10.1186/1742-2094-9-107
http://dx.doi.org/10.1016/j.bbalip.2010.03.007
http://dx.doi.org/10.1016/j.bbalip.2010.03.007
http://dx.doi.org/10.1074/jbc.M504484200
http://dx.doi.org/10.1074/jbc.M801925200
http://dx.doi.org/10.1021/bi300303g
http://dx.doi.org/10.1007/s00221-011-2975-6
http://dx.doi.org/10.1007/s00221-011-2975-6
http://dx.doi.org/10.1002/ana.410180309
http://dx.doi.org/10.1038/nrn1956
http://dx.doi.org/10.1126/science.1161151
http://dx.doi.org/10.1371/journal.pone.0108646
http://dx.doi.org/10.1371/journal.pone.0108646
http://dx.doi.org/10.1074/jbc.M603494200
http://dx.doi.org/10.1074/jbc.M603494200
http://dx.doi.org/10.3233/JAD-143072
http://dx.doi.org/10.1021/bi4001936
http://dx.doi.org/10.1074/jbc.M110.169599
http://dx.doi.org/10.1016/j.neurobiolaging.2014.10.006
http://dx.doi.org/10.1016/j.neurobiolaging.2014.10.006
http://creativecommons.org/licenses/by/4.0/

	Amyloid Proteins and Their Role in Multiple Sclerosis. Considerations in the Use of Amyloid-PET Imaging
	Background
	Amyloid-PET in MS
	Biomarkers of APP Proteolytic Processing in CSF in Patients with MS
	Effects of APP Proteolytic Processing in MS
	Proteins Involved in APP Proteolytic Processing in Demyelination
	Conclusion
	Author Contributions
	References


