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introduction: Glycogen storage disease V (GSDV, McArdle disease) and GSDVII (Tarui 
disease) are the most common of the rare disorders of glycogen metabolism. Both are 
associated with low lactate levels on exercise. Our aim was to find out whether lactate 
response associated with exercise testing could distinguish between these disorders.

Methods: Two siblings with Tarui disease, two patients with McArdle disease and eight 
healthy controls were tested on spiroergometric exercise tests with follow-up of venous 
lactate and ammonia.

results: A late increase of lactate about three times the basal level was seen 10–30 min 
after exercise in patients with Tarui disease being higher than in McArdle disease and 
lower than in the controls. Ammonia was increased in Tarui disease.

discussion: Our results suggest that follow-up of lactate associated with exercise 
testing can be utilized in diagnostics to distinguish between different GSD diseases.

Keywords: ammonia, Mcardle disease, lactate, muscle phosphofructokinase, pentose phosphate pathway, 
spiroergometry, tarui disease, muscle metabolism

introdUCtion

Tarui disease or glycogen storage disease VII (GSDVII) and McArdle disease (GSDV) are char
acterized by exercise intolerance, cramps and myoglobinuria or rhabdomyolysis, and very low 
lactate levels during exercise (1–5). In Tarui disease, reduced enzyme activity of muscle phospho
fructokinase (PFKM) is detected resulting in impaired phosphorylation of fructose 6phosphate to 
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taBLe 1 | the main results of spiroergometric exercise testing as well as 
the venous lactate and ammonia results associated with exercise testing 
in patients with tarui disease (tarui 1 and tarui 2), patients with Mcardle 
disease (Mcardle 1 and 2) and the controls.

tarui 1 tarui 2 Mcardle 1 Mcardle 2 Controls,  
N = 8, 

mean (sd)

Gender (m/f) M F M M M/F 6/2
Age (y) 58 59 35 20 42.1 (15.9)
Height (cm) 177 155 174 163 176.4 (10.4)
Weight (kg) 71 76 64 57 74.9 (11.4)
Heart rate maximum 
(1/s)

173 155 182 176 176.0 (14.3)

Heart rate  
maximum percent 
of predicteda (%)

98.3 88.3 96.8 90 92.6 (11.5)

Borg subjective  
scale 6–20

19 17 20 19 18.4 (1.3)

Breathing frequency 
(1/min)

68 29 34 30 32.0 (12.0)

RQ max 0.96 0.96 0.66 0.78 1.13 (0.07)
Wmax/3 min (maximal 
working capacity) (W)

93 50 50 80 246.5 (102.2)

Wmax/3 min percent 
or predictedb (%)

56 37 21.8 38 115.9 (30.8)

V’O2max (maximal 
oxygen uptake)  
(L/min)

2.05 1.13 1.28 1.36 3.3 (1.36)

V’O2max% of 
predictedc (%)

84.6 64.6 43 42 121.13 (37.2)

V’O2/kgmax (maximal 
oxygen uptake/
weight) (ml/min/kg)

28.8 14.9 20 23.9 43.5 (14.3)

V’O2/kg max% of 
predictedc (%)

91 62 51 52 121.5 (30.2)

Wmax/V’O2max (%) 13.1 12.7 11.2 13.3 21.2 (1.3)
Lactate at rest 
(mmol/l)

1.1 1.3 0.8 1.1 1.3 (0.45)

Maximal lactate 
(mmol/l)

3.2 2.4 0.9 1 11.7 (3.3)

Ammonia rest (μmol/l) 36 32 14 54 20.4 (11.0)
Maximal ammonia 
(μmol/l)

409 185 75 243 79.3 (33.7)

RQ, (V’CO2/V’O2) respiratory quotient; V’O2max, maximal oxygen uptake; V’O2maxkg, 
maximal oxygen uptake per body weight; Wmax/V’O2max, mechanical efficiency.
a205 − 0.5 × age.
bNordesjö and Landelius (8).
cSeliger et al. (9).
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fructose 1,6bisphosphate. In McArdle disease, a more proximal 
defect in the glycolysis chain is present based on the defect of 
glycolytic enzyme myophosphorylase.

We studied the lactate and ammonia profiles in two siblings 
with Tarui disease associated with symptomlimited maximal 
spiroergometric exercise testing. For comparison, two patients 
with McArdle disease and eight controls were studied. In defects 
of muscle metabolism, the level of lactate and/or ammonia asso
ciated with exercise may be altered depending on the character 
and location of the metabolic defect in the energy chain (5, 6). We 
report here the differences found in exerciseinduced metabolites 
in these different study groups.

MateriaLs and MetHods

patients and Controls
Patient Tarui 1 was a 58yearold otherwise healthy man 
without regular medication. After age of 12 years, he began to 
experience strong attacks of muscle pain, weakness, cramping, 
and vomiting during extensive physical activity associated 
with increased CK levels. Mild muscle weakness was observed 
concentrating on hip flexors and extensors on both sides and 
ankle flexors and extensors on right side. No muscle atrophy 
was evident.

Patient Tarui 2, the 57yearold younger sister of patient Tarui 
1 had similar symptoms as her brother since the age of 10.

Both patients with Tarui disease showed in muscle electron 
microscopic analysis extra lysosomal glycogen accumulations. 
Although phosphofructokinase staining was normal, the whole
exome sequencing revealed a causative homozygous PFKM 
gene defect, R39Q, in both siblings establishing the diagnosis of 
GSDVII. Additionally, in biochemical studies, phosphofructoki
nase activity was reduced to 3–4% of normal activity in muscle 
tissue. A closer description of the biochemical, genetic, histo
logical, and clinical findings of the patients has been reported 
previously (7).

For comparison, two male patients with McArdle disease, aged 
35 (McArdle 1) and 20 years (McArdle 2) were studied. In both 
patients with McArdle disease, clinical symptoms, spiroergomet
ric findings, and muscle biopsy analysis showing nonlysosomal 
glycogen accumulations and a total lack of myophosphorylase 
staining were consistent with McArdle disease. In line, a homozy
gous mutation of PYGM gene was detected in both of them 
(c.2056G > A; p.G686R in McArdle 1 and c.1A > G in McArdle 2).

For comparative analyses, eight healthy gender and age
matched control subjects were studied, the anthropometric 
characteristics are given in Table 1.

Informed consent was signed by the patients and controls 
and the study has been performed in accordance with the ethical 
standards laid down in the 1964 Declaration of Helsinki and its 
later amendments (The Medical Ethics Committee of Helsinki and 
Uusimaa Hospital District, Finland; 3.8.2011, 199/13/03/01/11).

spiroergometry
A workconducted maximal spiroergometric testing, i.e., bicy
cle ergometric testing with collection and analysis of breathing 

gases breath by breath during exercise was performed (10). 
A cannula was inserted in the left cubital vein, and the blood 
specimen for venous ammonia and lactate were drawn at fol
lowing points: rest, first exercise step, maximal exercise, and 2, 
4, 6, 10, 20, and 30 min after exercise. The workload was adjusted 
on the basis of subjects, previous exercise habits and reported 
exercise performance: in patient Tarui 1, McArdle 2, and the 
female control, the test was started with 40 W workload with 
increase of 40 W in 3min steps (40 W/3 min) in patient Tarui 
2 and McArdle 1 20  W/2  min and in the male controls with 
50 W/3 min steps. The maximal subjective level of at least 17/20 
was attained in all participants. The parameters measured are 
presented in Table 1.
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FiGUre 1 | (a) The blood lactate levels associated with spiroergometric 
exercise testing in patients with Tarui disease and the results of two patients 
with McArdle disease are given, as well as the mean values of eight healthy 
controls matched to the age and gender of the patients. The blood samples 
were taken at rest, light exercise, maximal exercise, and 2, 4, 6, 10, 20, and 
30 min after exercise. (B) The blood ammonia (NH4

+) levels associated with 
spiroergometric exercise testing in patients with Tarui disease. For 
comparison, the results of two patients with McArdle disease are given, as 
well as the mean values of eight control subjects matched to the age and 
gender of the patients. The blood samples were taken at rest, light exercise, 
maximal exercise, and 2, 4, 6, 10, 20, and 30 min after exercise.
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Laboratory specimen associated with 
exercise testing
The lactate and ammonia specimens were taken into fluoride 
oxalate and EDTA syringes, respectively, centrifuged and ana
lyzed with a Cobas Integra 400 + analyzer (Roche Diagnostics, 
Mannheim, Germany), and lactate and ammonia ions were 
assayed by enzymatic methods using lactate dehydrogenase and 
glutamate dehydrogenase, respectively.

resULts

The spiroergometric results are presented in Table 1.
In patient Tarui 1, at maximum exercise a subjective strain 

of 19/20 was reached but the maximal working capacity for last 
3 min (Wmax/3 min) was decreased (93 W, 56% of predicted). 
Although the breathing frequency was high (68/min) the res
piratory quotient (RQ) (V’CO2/V’O2) remained below 1 (0.96). 
The oxygen uptake was normal but the mechanical efficiency 
(Wmax/V’O2 max) was reduced (13.1%). The venous lactate was 
at rest normal and remained at basic levels during the exercise 
but began to increase about 10 min after exercise with maxi
mum at 20 min (Figure 1A). The ammonia level was normal 
at rest but exceptionally high after exercise (about 400 μmol/l) 
(Figure 1B).

Patient Tarui 2 showed also reduced exercise perfor
mance (Wmax/3  min 50  W, 37% of predicted) and oxygen 
uptake (14.9  ml/min/kg, 62% of predicted) (Table  1). Her 
RQ (V’CO2/V’O2) was similar as in her brother (0.96). Her 
mechanical efficiency was also reduced (12.7%). She showed 
a similar lactate response as patient Tarui 1, with a delayed 
increase beginning 10 min after exercise with a maximum at 
20  min after exercise (Figure  1A). Also her ammonia level 
associated with exercise testing was higher than that in healthy 
controls (Figure 1B).

In the patients with McArdle disease, the maximal exercise 
capacity (22% of predicted values in patient McArdle 1 and 
38% in patient McArdle 2), maximal oxygen uptake (20 and 
24  ml/min/kg; 51 and 52% of predicted values, respectively), 
and mechanical efficiency (11.2 and 13.3%, respectively) were 
reduced. The RQ (V’CO2/V’O2) value remained lower than that 
in the patients with Tarui disease (0.66 in patient McArdle 1 and 
0.78 in patient McArdle 2) and there were no signs of increased 
ventilation during exercise. The venous lactate level in the 
patients with McArdle disease remained low during the whole 
followup, and did not increase after exercise (Figure 1A). The 
ammonia level increased almost similarly as in the controls in 
patient McArdle 1 but was higher than in controls in patient 
McArdle 2 (Figure 1B).

The healthy controls had normal exercise performance and 
oxygen uptake (Table 1), and their RQ values at maximal exercise 
were clearly higher than 1. Their mechanical efficiencies were 
normal, with mean value of 21.2%.

The lactate and ammonia values of the control subjects 
increased normally with a maximal increase of lactate and ammo
nia 2–6 min after exercise.

disCUssion

In Tarui disease, the utilization of glycogen during anaerobic 
exercise is interrupted by the lack of PFKM leading to very low 
levels of lactate during exercise. However, in spiroergometric test
ing a late increase of lactate two to three times the basal value was 
seen at time points 10–30 min after exercise. As far as we know, 
this study demonstrates for the first time that exercise lactate 
profile distinguishes Tarui disease from McArdle disease.

At rest and during low exercise, adenosine triphosphate (ATP) 
molecules are generated through aerobic oxidative phosphoryla
tion. Exercise requires increase of energy that can be attained by 
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using anaerobic metabolism mainly through glycogen storages, 
which causes that lactate begins to accumulate in blood and 
elimination of lactate generates carbon dioxide (CO2) increasing 
minute ventilation and exhaled CO2 (V’CO2) related to oxygen 
uptake (V’O2) (11). Simultaneously, catabolism of nucleic acids 
as an energy source produces ammonia (12, 13).

Normally, glycogen is metabolized via glucose 6phos
phate to fructose 6phosphate, but in Tarui disease fructose 
1,6 bisphosphate cannot be produced. In our patients with Tarui 
disease, a slight residual PFKM activity of 3–4% out of normal 
was found in enzyme activity analyses, which might lead to a 
slight increase of lactate during exercise. However, if the residual 

phosphofructokinase production would increase the lactate level, 
the lactate raise should start during exercise with a maximum 
level of lactate 2–4  min after exercise, and not at time points 
10–30 min exercise as we here demonstrate.

The late increase of lactate could arise a question whether the 
so called “second wind” phenomenon would be experienced by 
the patients Tarui 1 and 2. Second wind phenomenon occurs 
often in McArdle disease and is characterized by the patient’s 
better tolerance for aerobic exercise after a cumbersome initial 
exercise period with muscle pain and stiffness. Usually, second 
wind is explained by the muscle tissue adaptation, increased 
blood flow, and metabolic swift to utilize alternative sources of 

FiGUre 2 | schematic presentation of the pathways of glycolysis modified from ref. (18). The main points of the glycolysis chains involved in Tarui disease 
and McArdle disease are presented. The pathways may pass forward or backward. The black arrow indicates that glycolysis disrupted by Tarui disease can 
continue through pentose phosphate pathway (PPP) at glyceraldehyde-3 phosphate. The dotted arrow: fructose 6-phosphate accumulates because of Tarui 
disease, and its metabolism may continue in the PPP pathway, from where it may enter in protein or nucleic acid synthesis. Increase of synthesis of proteins or 
nucleotides means also increase of products of their metabolism, increasing, e.g., the production of ammonia. Some enzyme names and products of the glycolysis 
chain have been left away to get the figure more feasible to the present purpose. UDPG, uridine diphosphoglucose.
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energy, such as free fatty acids (14, 15). Second wind phenom
enon is not usually seen in patients with Tarui disease (16), 
although some opposing reports exist (17). In our patients, 
second wind phenomenon was observed only in patient 
McArdle 2. Therefore, it is not likely that the late increase of 
lactate in Tarui disease would be associated with second wind 
phenomenon.

Our results suggest that in patients with Tarui disease an alter
native route of glycogen metabolism is introduced. In the pentose 
phosphate pathway (PPP) (18) (Figure  2), the metabolism of 
glucose 6phosphate continues to glyceraldehyde 3phosphate, 
which may enter the glycolysis chain distally to the PFKM step 
leading to lactate production. The complicated route could prob
ably explain the late increase of lactate beginning 10–20 min after 
exercise seen in Tarui disease compared to controls, in whom 
the maximal lactate increase was present 2–4 min after exercise. 
However, in McArdle disease, the defect of muscle phosphorylase 
disrupts the metabolism of glycogen at the beginning of the gly
cogenolytic cycle causing that no increase of lactate level occurs 
during or after exercise (4, 5).

In some previous studies on Tarui disease, suggestions of a 
late lactate increase after exercise have been recorded, confirming 
our results (19, 20). In addition, findings that suggest increased 
glyceraldehyde3 phosphate levels and alteration into the PPP 
route in Tarui disease during exercise have been published (3). 
We report here for the first time a fulllength spiroergometry 
study with followup of lactate and ammonia, as well as extended 
followup after exercise, comparing the results also with healthy 
controls.

During exercise, the patients with Tarui disease showed excep
tionally high ammonia levels that has previously been explained 
by overuse of proteins because of decreased glycogen metabolism 
(21–23). We suggest that also the activation of PPP route and the 
raise in ribose 5phosphate could boost the ammonia levels by 
influencing the aminoacid synthesis. The deamination of AMP, 
as well as of various amino acids and the metabolites of citric acid 
cycle generate ammonia (13, 24).

In McArdle disease, increased ammonia during exercise has 
previously been reported (4, 25–28), as also we found in patient 
McArdle 2. Compared to patient McArdle 2, patient McArdle 1 
showed only slight increase of ammonia in exercise even though 

he reached maximal subjective level of 19/20. Earlier, Mineo 
et al. (19) have found corresponding slight ammonia responses 
in McArdle disease. Heterogeneity of McArdle disease might be 
one explanation for the observed variances in ammonia level. 
In addition, it is difficult to assess objectively the maximality of 
exercise in McArdle disease because the absent lactate response 
causes that ventilation is not stimulated normally during exercise, 
and also the RQ value remains low.

In conclusion, we show that Tarui disease is associated with 
low lactate levels during exercise with a late increase of lactate 
after exercise and exceptionally high ammonia levels during and 
after exercise. The particular lactate profile differentiates patients 
with Tarui disease from patients with McArdle disease and helps 
the clinician to choose proper genetic tests. As far as we know, this 
phenomenon has not reported earlier, and it suggests that further 
study should be performed on exercise glucose metabolism in 
patients with rare glycogen storage disorders. In diagnostic set
ting, we recommend to utilize maximal bicycle spiroergometry 
with sufficiently long (30–40  min) followup of ammonia and 
lactate levels after exercise.
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