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As a part of the central nervous system, the retina may reflect both physiological 
processes and abnormalities related to pathologies that affect the brain. Amyloidosis 
due to the accumulation of amyloid-beta (Aβ) was initially regarded as a specific and 
exclusive characteristic of neurodegenerative alterations seen in the brain of Alzheimer’s 
disease (AD) patients. More recently, it was discovered that amyloidosis-related alter-
ations, similar to those seen in the brain of Alzheimer’s patients, also occur in the retina. 
Remarkably, these alterations were identified not only in primary retinal pathologies, 
such as age-related macular degeneration (AMD) and glaucoma, but also in the retinas 
of Alzheimer’s patients. In this review, we first briefly discuss the biogenesis of Aβ, a 
peptide involved in amyloidosis. We then discuss some pathological aspects (synaptic 
dysfunction, mitochondrial failure, glial activation, and vascular abnormalities) related to 
the neurotoxic effects of Aβ. We finally highlight common features shared by AD, AMD, 
and glaucoma in the context of Aβ amyloidosis and further discuss why the retina, due 
to the transparency of the eye, can be considered as a “window” to the brain.

Keywords: Alzheimer’s disease, age-related macular degeneration, glaucoma, neurodegeneration, synaptic and 
mitochondrial dysfunction, micoangiopathy, neuroinflammation

iNTRODUCTiON

Pathological alterations, such as synaptic dysfunctions, neuronal cell loss, inflammatory responses, 
microvasculature abnormalities, mitochondrial failure, and oxidative stress, have been associ-
ated with amyloid-beta (Aβ) in the brain. However, similar pathological alterations have more 
recently also been reported in the retina where they may mirror analogous events occurring in 
the brain (1). The present review will focus on these aforementioned aspects of Aβ’s deleterious 
effects but does not have the ambition to cover all aspects of Aβ cytotoxicity. For instance, the 
issues related to aberrant Aβ clearance will not be discussed here since they have been recently 
extensively reviewed elsewhere [e.g., Ref. (2)].

Retinal accumulation of Aβ is broadly recognized as being involved in amyloidosis-associated 
neurodegeneration. Pathological hallmarks of amyloidosis are related to the accumulation of specific 
types of proteins, including Aβ, prone to oligomerize with a high content of beta (β)-sheet structures 
(3). Among the neurodegenerative diseases related to Aβ amyloidosis, Alzheimer’s disease (AD) 
is certainly the best known and the most studied. More recently, it has been recognized that 
Aβ-related amyloidosis also occurs during glaucoma and age-related macular degeneration (AMD). 
Historically and up to very recently, AD was considered as an exclusively cerebral disorder, while 
glaucoma and AMD were regarded as neurodegenerative disorders specific to the retina. However, 
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it is increasingly clear that AD-like pathological alterations seen 
in the brain also occur in the retina (4), where they may even 
start earlier. Conversely, the pathological phenomena observed 
in glaucoma, for example, are associated with neurodegeneration 
of selected brain areas (5). Altogether, this new evidence suggests 
that the retina may be used as the “window” to the brain for 
the study of the earliest pathophysiological changes involved 
in neurodegeneration. This attractive idea is behind different 
aspects of amyloidosis that will be discussed here.

Parkinson’s disease (PD), which shares many features of Aβ-
amyloidosis with AD, glaucoma, and AMD, will not be discussed 
here, and we recommend a number of excellent and exhaustive 
reviews on this topic (6, 7). Indeed, although PD is considered 
an amyloidosis-associated disease, involving the accumulation of 
both Aβ and α-synuclein, the relevant fibrils have not been identi-
fied in the PD retina (8). This is in sharp contrast with the presence 
of Aβ plaques, identical to those found in AD-vulnerable brain 
areas that have been identified in the retina (9, 10). Furthermore, 
Aβ-amyloidosis seen in PD is sometimes considered as an epi-
phenomenon to the oligomerization of α-synuclein into struc-
tures known as Lewy bodies. Consequently, rigorous analysis of 
alterations specific to Aβ-amyloidosis in PD would require a sys-
tematic comparative follow-up of cohorts composed of “mixed” 
PD (displaying both α-synuclein and Aβ-amyloidosis) and “pure” 
PD (displaying exclusively α-synuclein amyloidosis). Such stud-
ies, similar to the one reported by Bertrand and colleagues (11), 
are still relatively scarce. Finally, there is no consensus about the 
precise type of pathological alterations in the PD retina, since 
thickening (12), thinning (13), and absence of change (14) in 
the retinal nerve fiber layer (RNFL) have all been reported. The 
analysis of retinal Aβ-amyloidosis in PD would therefore be more 
complicated. By consequence, this review will focus only on AD, 
glaucoma, and AMD.

BiOLOGY OF AMYLOiD-β AND 
iTS PReCURSOR APP

Amyloid precursor protein (APP), a type 1 transmembrane 
glycoprotein, belongs to a family of proteins, which in mammals 
include APP-like protein-1 (APLP1) and APP-like protein-2 
(APLP2) (15). Despite the widespread expression of the APP 
gene in mammalian and non-mammalian cells, the physiological 
role of APP is still unclear. APP-related mRNA has been found 
not only in the nervous system but also in the immune system, 
muscles, and other organs, such as the pancreas, lung, and kidney 
(16, 17). Alternative splicing of APP mRNA gives rise to multiple 
isoforms, which are differentially expressed among various tissues 
and different stages of development. In particular, APP is upregu-
lated during brain development, and specific APP variants are 
associated with neurite outgrowth and synaptogenesis (18, 19).

There are three major APP isoforms, APP770, APP751, and 
APP695, which are all generated from the alternative splicing of 
exons 7 and/or 8. APP695 is mainly neuronal, whereas the other 
two variants are principally non-neuronal (20). APP polypeptides 
undergo posttranslational modifications (such as glycosyla-
tion and phosphorylation) and are subsequently addressed to 
the plasma membrane via the constitutive secretory pathway 

(Figure 1A). Successively, APP is internalized through clathrin-
mediated endocytosis and reaches the endosomal system. Part of 
endosomal APP is recycled to the cell surface, whereas another 
conspicuous part is degraded in lysosomes (21, 22). In the steady 
state, APP is preferentially localized in the Golgi and in the trans-
Golgi network, and only a tiny fraction is localized on the cell 
surface.

Amyloid precursor protein can be posttranslationally pro-
cessed through two distinct pathways [reviewed in Ref. (23)] 
(Figure  1B). The amyloidogenic pathway involves sequential 
cleavage steps by β-secretase and γ-secretase, which gener-
ates Aβ. The second pathway, which is predominant, involves 
sequential cleavage steps by α-secretase and γ-secretase but does 
not yield Aβ. Indeed, α-secretase cleavage occurs within the Aβ 
peptide region, preventing Aβ formation. It has been shown that 
proteases belonging to the A-disintegrin and metalloproteinase 
(ADAM) family have α-secretase activity (24–26). Since ADAMs 
are cell surface proteins, α-secretase cleavage likely occurs at the 
level of the plasma membrane and involves the membrane pool 
of APP (27). α-secretase cleavage leads to the formation of an 
amino-terminal fragment called secreted APP (sAPP)α and a 
carboxy-terminal fragment called CTF83. β-secretase is a type 
1 transmembrane protease, and its cleavage leads to the forma-
tion of sAPPβ and CTF99. In converse to α-secretase cleavage, 
β-secretase cleavage occurs mainly in endocytic vesicles and not 
at the cell surface, where both β-site APP cleaving enzyme-1 
(BACE1) and APP are swiftly recycled. The first cleavage step is 
followed by γ-secretase cleavage in both pathways. The latter is 
a protein complex composed of at least four proteins: presenilin 
(PS) 1 or 2, nicastrin, presenilin enhancer 2 (Pen 2), and anterior 
pharynx defective 1 (Aph-1) (28). γ-secretase processes CTF83 
and CTF99, yielding the APP intracellular domain (AICD) plus 
the fragment p3 and AICD plus Aβ, respectively. Aβ peptides of 
different lengths, from 38 to 43 amino acids, can be generated by 
γ-secretase cleavage; however, Aβ1–42 and Aβ1–40 are consid-
ered to be the most relevant forms to amyloidosis.

Since APP undergoes sequential cleavage steps, it has been 
difficult to distinguish the physiological role of APP from those 
of its cleavage products. Generally, the role of APP in the brain 
is regarded as beneficial and often associated with its cleavage 
product, sAPPα. It has been shown that APP promotes cell pro-
liferation, neuronal stem cell differentiation, neurite outgrowth, 
synaptogenesis, cell adhesion, and regulates long-term potentia-
tion (LTP). APP-KO mice are viable and fertile, suggesting that 
APP – or its products – are not essential for development or alter-
natively, are part of a network of proteins with redundant functions 
(29). However, APP-deficient mice present various abnormalities, 
such as reduced body and brain size, hypersensitivity to seizures, 
and impaired learning and LTP. These phenotypes are rescued 
by the introduction of sAPPα in APP-deficient mice, suggesting 
that sAPPα may play an important role in brain development and 
function (30).

Compared with sAPPα, little is known about the putative 
physiological roles of other cleavage products from the non-
amyloidogenic and amyloidogenic pathways. However, it has 
been proposed that Aβ may regulate synaptic activity, although 
controversial results have been reported on its beneficial versus 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


FiGURe 1 | APP processing. (A) Once the APP mRNA is translated, the nascent polypeptide undergoes posttranslation modifications (e.g., glycosylation and 
phosphorylation) in the endoplasmic reticulum and Golgi apparatus. Afterward, the mature APP protein is addressed to the cell surface through the constitutive 
secretion pathway. At this point, APP is internalized in endocytic vesicles. Endosomal APP can be recycled to the cell surface or degraded through the lysosomal 
system. (B) APP can be processed through two distinct pathways. The amyloidogenic pathway involves cleavage by β-secretase, which leads to the formation of the 
carboxy-terminal fragment 99 (CTF99) and soluble APPβ (sAPPβ). This cleavage is followed by a second cleavage mediated by γ-secretase that leads to the formation 
of the APP intracellular domain (AICD) and Amyloid-β (Aβ). On the other hand, the non-amyloidogenic pathway involves the sequential cleavage first by α-secretase, 
which leads to the formation of the carboxy-terminal fragment 83 (CTF83) and soluble APPα (sAPPα), followed by γ-secretase cleavage, which leads to the formation of 
AICD and P3.
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deleterious effects (31, 32). In addition, Aβ may be involved in 
the control of cholesterol transport (33) and lipid homeostasis 
(34). For instance, direct activation of sphingomyelinase and 
inhibition of hydroxymethylglutaryl-CoA reductase (HMGR) by 
Aβ1–42 and Aβ1–40 have been demonstrated (35). The question 
of the physiological role of Aβ remains open, and further studies 
are clearly needed in this field.

AMYLOiD-β AND iTS PReCURSOR  
iN THe eYe AND ReTiNA

The retina is a highly specialized neurosensory tissue, which lines 
the back of the eye. It is an integral part of the brain comprising 
six different types of neuronal cells and two types of macroglia 

cells: retinal Müller glial cells and astrocytes. Retinal and central 
nervous system (CNS) neurons are derived from common pro-
genitors (36). Differentiated retinal neurons are organized into a 
well-defined laminar structure and are distributed into three cell 
and two synaptic layers. The outer segment of the retina is popu-
lated by two different types of photoreceptors: cones and rods, 
which are able to detect light and form the outer nuclear layer 
(ONL). The detected light signal is transmitted to the cells located 
at the inner nuclear layer (INL), mainly the bipolar cells followed 
by retinal ganglion cells (RGCs), either directly or indirectly via 
type II amacrine cells. The latter, together with horizontal cells, 
modulate glutamatergic neurotransmission along the main syn-
aptic axis comprising photoreceptors, bipolar, and ganglion cells. 
The principal function of the INL cells is to integrate and regulate 
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the signal input. The RGC axons converge into the optic nerve 
fibers, which convey the signal to the visual cortex (37).

To date, the physiological roles of APP in the retina have not 
been extensively investigated, although a consensus has been met 
about its expression by retinal pigmented epithelial (RPE) cells 
in the healthy retina (38). The role of APP in the development of 
the mouse retina has been recognized such that APP is required 
for the full differentiation of the AII subtype of amacrine cells. 
Similar to its role in the brain, APP may be implicated in retinal 
synaptogenesis. Indeed, APP participates in the developmental 
determination of the inner plexiform layer (IPL), where amacrine 
cells synapse to bipolar and ganglion cells (39). Concerning the 
physiological role of APP in adult mice, it has been shown that 
APP regulates inner retinal layer function. Indeed, APP-KO mice 
display alterations in the rod and cone pathways. However, these 
mice do not present any major deficits in visual function; there-
fore, APP is not likely a required factor (40). Among all retinal 
neurons, at least in the rabbit, ganglion cells are the sole cells able 
to synthesize and express APP on their plasma membrane in the 
absence of any pathological insult (41). In the human retina, APP 
expression is age-dependent and was revealed in RGC neurons 
and the RNFL (42).

Concerning Aβ, there is no published data on its putative 
physiological role in the retina. Of interest, the expression of 
BACE1 has been recently reported in the blood–brain barrier 
endothelial cells of mouse, bovine, and human origin, thus sug-
gesting putative local production of Aβ in cerebral blood vessels 
(43). It remains unknown whether retinal vessel endothelial 
cells display analogous BACE1 expression. By contrast, BACE1 
expression has been reported in the plexiform layer of the rat 
retina pointing to its synaptic localization (44).

The other parts of the eye have been much less studied in 
terms of the expression and function of APP and its cleavage 
products. However, both APP and the proteolytic enzymes 
involved in its cleavage were found to be expressed in some other 
eye compartments. For instance, APP and the secretases involved 
in its processing were identified in the lens (45). Similarly, Aβ 
was identified both in the lens (46) and in the vitreous fluid (47).

PATHOLOGiCAL ACCUMULATiON 
OF AMYLOiD-β: AMYLOiDOSiS, 
AMYLOiDOPATHY, AND 
AMYLOiDOGeNeSiS

Different terms have been associated with the pathological 
accumulation of Aβ, with amyloidosis historically being used 
first. Amyloidosis is a broad term designating a metabolic 
disease characterized by the extracellular accumulation of 
globular or natively unfolded or misfolded amyloidogenic 
polypeptides. Amyloidogenic polypeptides contain a high 
proportion of β-sheets and have a great propensity to aggregate 
into highly organized and kinetically stable amyloid fibrils, 
amorphous aggregates, or oligomers. To date, more than 20 
precursor proteins of fibrils (including APP) have been identi-
fied in systemic and localized amyloidosis (3). A remarkable 
property of these fibrils is that, independent of the type of the 

precursor protein, they are all 80–100Å in width. Furthermore, 
these fibrils organize in a tridimensional β-pleated sheet 
conformation with the direction of the polypeptide backbone 
perpendicular to the fibril axis (cross-beta structure). Another 
remarkable characteristic of amyloidogenic peptides and 
derived aggregates is their affinity for the Congo red stain (48). 
The Aβ-related amyloidopathies consist of increased intra- and/
or extracellular accumulation of Aβ and deposition of Aβ in the 
form of insoluble material, such as amyloid plaques or drusens. 
Several disorders are associated with amyloidopathies, and 
most of them are neurodegenerative diseases (e.g., AD, PD, 
polyglutamine diseases, prion disorders, and AMD).

Amyloid-beta is produced via the amyloidogenic pathway 
of APP processing. However, the mechanisms by which this 
pathway may take over the non-amyloidogenic pathway are 
poorly understood, especially considering that both pathways 
coexist in physiological conditions (49). Many genetic and 
epigenetic factors may be involved, but the evidence points to 
an increase in the ratio of β- over α-secretase activity as a trigger. 
This change in the subtle balance between secretase activities in 
physiological conditions might be associated with the positive 
control of β-secretase activity by its substrate APP and directly 
related to APP overexpression and subsequent increase in 
Aβ production (50). Over the course of normal aging, Aβ is 
deposited subretinally in the mouse and human retina (51). 
With age, Aβ accumulates at the interface of the RPE and the 
photoreceptor outer segment tips. This finding is consistent with 
increased Aβ1–42 secretion by aged human RPE cells (52). As 
Aβ accumulates subretinally, microglial cells in normal aged 
mice become bloated with cellular debris and Aβ (51). The 
accumulation of Aβ in the subretinal space might contribute to 
the 23–30% reduction in photoreceptors that occurs over human 
lifetimes (53).

AMYLOiD-β AGGReGATiON 
AND TOXiCiTY

An increase in Aβ production above normal physiological levels 
yields cytotoxicity. Among most common Aβ species (i.e., 1–40 
and 1–42 amino acid-containing isoforms), Aβ1–42 is considered 
the most neurotoxic as it is more prone to oligomerization (54). 
The amyloid aggregation pathway is still poorly understood 
and several intermediates are likely involved. Small soluble Aβ 
monomers can interact to form Aβ oligomers in the extracellular 
space. Aβ oligomers aggregate to form larger fibrils, which in turn 
aggregate to form extracellular plaques. The mechanisms of Aβ 
toxicity are still unclear, and different hypotheses have been pro-
posed. According to the original “amyloid-β cascade hypothesis,” 
insoluble amyloid fibrils are the main molecular culprit underly-
ing toxicity (55). More recently, this hypothesis has been revised 
to the “oligomeric amyloid-β hypothesis” (56). It is currently 
believed that the most toxic intermediates are small oligomers 
(with degree of polymerization lower than 10), also known as 
amyloid-β diffusible ligands (ADDL) or protofibrils. The latter 
have a bigger diffusivity and a larger surface-to-volume ratio 
that leads to the exposure of hydrophobic patches (57). However, 
it is not yet clear which oligomeric species is “the most” toxic 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


5

Masuzzo et al. Amyloid-Beta and Retina

Frontiers in Neurology | www.frontiersin.org August 2016 | Volume 7 | Article 127

since dimers/trimers (58), tetramers (59), and duodecamers such 
as Aβ*56 (60) have all been considered as plausible candidates 
depending on the paradigm (in vivo, in vitro) or species (murine, 
human) studied.

Soluble Aβ oligomers, although they are certainly not involved 
in all the aspects of AD, are still regarded as key initial triggers 
of pathogenesis (61). The bioactive pool of soluble Aβ comprises 
two fractions: the first is generated in the endosomal compart-
ment and secreted into the extracellular space by exocytosis 
and the second is intracellular and has been found in both AD 
patients and animal models of the disease (62, 63). Cellular 
mechanisms by which soluble oligomers exert neurotoxic effects 
are multifaceted, involving synaptotoxicity and mitochondrial 
dysfunction likely related to oxidative stress and metabolic 
impairment. Insoluble Aβ aggregates also contribute to Aβ toxic-
ity either directly through the release of soluble oligomers (64) 
or indirectly via adaptive cellular responses, such as glial and 
endothelial activation, which can yield neuroinflammation (65) 
and Aβ-related angiopathy (66), respectively.

Amyloid-β and Synaptic Dysfunction
One of the prominent facets of Aβ toxicity concerns synaptic 
loss (67). This toxicity may be related to a deviation from the 
Aβ-associated modulation of synaptic excitability under physi-
ological conditions (31). Indeed, increased synaptic activity may 
enhance Aβ release at the synaptic level, reducing excitatory 
postsynaptic transmission. In particular, it has been shown both 
in  vitro and in  vivo, that Aβ oligomers reduce glutamatergic 
synaptic transmission by decreasing the number of α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and 
N-methyl d-aspartate (NMDA) receptors at the synapse (68–71) 
(Figure  2A). A decrease in AMPA receptors by Aβ has been 
related to increased phosphorylation of the Ca2+-permeable 
subunit, GluR2, and a subsequent increase of intracellular Ca2+ 
levels (72). A decrease in NMDA receptors by Aβ involves a 
similar mechanism via dephosphorylation of the NR2B subunit 
and subsequent increase in receptor endocytosis (73). Thus, Aβ 
is part of a refined regulatory circuit in which intermediate levels 
of Aβ are correlated with a physiological increase in presynaptic 
activity, whereas lower or higher Aβ levels are correlated with 
reduced presynaptic and postsynaptic transmission, respectively 
(74). Likely, Aβ differentially affects synaptic activity, depending 
on synapse type, neuron type, and/or brain region, leading to the 
imbalance and instability of neuronal networks (75). At the cellu-
lar level, Aβ-mediated alterations involve a shift toward increased 
excitability manifesting in a decreased resting potential of the 
neuronal membrane (76). Similarly, the addition of exogenous 
Aβ oligomers to hippocampal neurons induced hyperpolariza-
tion of the action potential (AP) threshold and decreased after-
hyperpolarization (AHP), both compatible with an increase in 
neuronal excitability (77).

Of note, the vast majority of the above-discussed data has been 
obtained in vitro, by treating cerebral (hippocampal or cortical 
primary) neurons with soluble Aβ oligomers. Analogous data 
for retinal neurons are scarce, although it has been reported that 
intravitreal injection of Aβ triggers acute photoreceptor cell death 
and delayed RGC apoptosis (78). The latter likely involves an 

indirect mechanism via the activation of Müller cells (78). Finally, 
a similar Aβ challenge by intravitreal injection resulted in an 
impaired pattern of acetylcholine, γ-aminobutyric acid (GABA), 
and serotonin neurotransmitter expression with catecholaminer-
gic markers being relatively unaffected (79).

Amyloid-β and Mitochondrial Dysfunction
Mitochondrial dysfunction is a common feature of various neu-
rodegenerative diseases and causes alterations in mitochondrial 
respiratory enzyme complex activities, oxidative stress, opening 
of mitochondrial permeability transition pores (mPTPs), and 
enhanced apoptosis (80). In the brain, intracellular Aβ has been 
associated with axonopathy and apoptosis initiation (81, 82). 
Moreover, in neurons, mitochondrial dysfunction is also associ-
ated with increased susceptibility to excitotoxicity (i.e., cell death 
caused by excessive stimulation of neurons by excitatory amino 
acids, such as glutamate) (83).

Soluble Aβ peptides have been found in different organelles, 
and their deleterious effects are largely due to their accumulation 
within mitochondria. Indeed, intracellular Aβ inhibits the activity 
of different mitochondrial respiratory enzymes, causes decreased 
ATP production, and increases the production of reactive oxygen 
species (ROS) (84–87) (Figure 2B). Moreover, Aβ induces mito-
chondrial dysfunction by interacting with the Aβ-binding protein 
known as Aβ-binding alcohol dehydrogenase (ABAD), which is 
present on the mitochondrial membrane (88). In addition, Aβ 
accumulation impairs the permeability of mitochondrial mem-
branes leading to the opening of mitocholdrial Ca2+ channels 
and mPTPs as well as the enhancement of cytochrome c (Cytc) 
release (89). At the structural level, accumulation of soluble Aβ 
impairs mitochondrial fusion and fission and triggers abnormali-
ties in mitochondrial trafficking, morphology, and degradation 
[reviewed in Ref. (90)].

In the retina, intraocular injection of respiratory complex 
(I, III, and IV) inhibitors or Aβ fibrils yields induction of BACE1 
expression and activity, suggesting that Aβ-mediated mito-
chondrial respiratory inhibition and oxidative stress facilitate 
BACE1 expression (44). Interestingly, subretinal injection of Aβ 
oligomers resulted in RPE cell hypertrophy without triggering 
apoptosis but yielded a significant amount of delayed photore-
ceptor death (91).

Amyloid-β and Glial Activation
The presence of misfolded proteins and their aggregates causes 
an alteration in the receptor–ligand interactions that modulate 
both microglia and astroglia activity. Both microglia and 
astroglia release cytokines, nitric oxide, and other cytotoxic 
molecules after Aβ exposure (Figure  2C). Astroglia regulate 
synapse formation and function in addition to participating in 
the tripartite synapse (92). It was shown that Aβ upregulates 
NFκB in astrocytes, leading to C3 release (93). The latter binds 
the neuronal G-protein-coupled receptor C3aR, inducing den-
dritic structural alterations and synaptic dysfunction. C3 also 
interacts with microglial C3aR causing alterations in cognitive 
function and impairment of Aβ phagocytosis (94). Moreover, the 
exposure of astroglia to Aβ, favors astrogliosis, a process that 
leads to molecular and functional changes in astrocytes and is 
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FiGURe 2 | Overview of Aβ cellular effects. (A) Aβ is implicated in synapse loss. Increased Aβ at the synapse reduces excitatory postsynaptic transmission. 
Indeed, Aβ oligomers reduce glutamatergic synaptic transmission by decreasing the number of both AMPA and NMDA receptors at the postsynaptic membrane.  
(B) Aβ accumulation within the mitochondria causes impairments in fusion and fission and abnormalities in mitochondrial trafficking, morphology, and degradation. 
Both APP and Aβ can interact with mitochondrial membranes. Aβ, by interacting with mitochondrial respiratory enzymes, causes decreased ATP production and 
increased reactive oxygen species (ROS) production. In addition, Aβ binds the Aβ-binding alcohol dehydrogenase (ABAD), increasing its deleterious effects in 
mitochondrial function. Mitochondrial Ca2+ channels are impaired by Aβ, and mitochondrial permeability transition pore (mPTP) opening gives rise to the 
enhancement of cytochrome c (Cytc) release. (C) Aβ accumulation induces glial activation. Astrocytes and microglia release cytokines, chemokines, and nitric oxide 
(NO) after exposure to Aβ. Increased levels of NFκB in astrocytes induce the release of C3, which binds the C3a receptor, impairing microglia-mediated Aβ 
phagocytosis. Both microglia and astrocytes release Aβ-degrading proteases, such as neprilysin and insulin-degrading enzyme. Aβ fibrils are degraded through 
microglia-dependent phagocytosis, triggered by the ligation of Aβ to microglia receptors (e.g., CD36 and TLR-6).
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implicated in different brain diseases (95). Furthermore, astro-
glia play an important role in Aβ clearance. Indeed, astrocytes 
are able to bind to and degrade Aβ and release extracellular Aβ-
degrading proteases (e.g., neprilysin, insulin-degrading enzyme, 
angiotensin-converting enzyme-1, and endothelin-converting 
enzyme-2) (96, 97). On the other hand, microglia are phagocytic 
cells ubiquitously distributed in the brain. Microglia play impor-
tant roles in the maintenance and plasticity of neuronal circuits, 
in the surveillance for pathogens or cell debris, and in tissue 
maintenance (98–100). Aβ oligomers and fibrils are able to bind 
microglia surface receptors, such as cluster of differentiation-36 
(CD36), toll-like receptor (TLR)-4, and TLR-6, leading to their 

activation (101, 102). Activated microglia release proinflam-
matory cytokines and chemokines (102, 103). Consequently, 
extracellular proteases (in particular, neprylysin and the insulin-
degrading enzyme) are released and give rise to enzymatic 
degradation of soluble Aβ (104). In addition, receptor ligation 
triggers the activation of microglial-dependent phagocytosis 
of Aβ fibrils and their degradation through the endolysosomal 
pathway. Aβ accumulation itself leads to increased release of 
proinflammatory cytokines, such as tumor necrosis factor-alpha 
(TNFα), interleukin (IL)-1α, and IL-1β (105, 106). The mas-
sive release of proinflammatory cytokines might be associated 
with impairment of synaptic transmission by suppressing LTP 
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(100). It has also been shown that there is a positive feedback 
loop between TNFα and Aβ, since TNFα is able to induce Aβ 
production by increasing BACE1 expression and γ-secretase 
activity (107, 108). In addition, the use of TNFα inhibitors leads 
to a decrease in APP processing and Aβ (109). Similarly, IL-1β 
increases Aβ production by increasing γ-secretase activity (107). 
Even though the early activation of astroglia and microglia is 
beneficial and leads to Aβ clearance, in a pathological context, 
the sustained activation of these cells may induce a positive feed-
back loop between APP processing and inflammation, which is 
deleterious (100). Indeed, inflammation is a consequence of Aβ 
accumulation, and as a result, inflammation contributes directly 
to the pathogenesis and progression of the disease.

Amyloid-β and Blood vessels
The pathophysiological cause and consequence of the accumu-
lation of Aβ and/or its precursor APP in the brain and the 
retina remain poorly understood. Twenty years ago, it was 
reported that coincident APP and B-cell lymphoma-2 (Bcl-2) 
induction may play a role in rat retinal cell survival after optic 
nerve and vascular injury. The underlying mechanism involves 
APP induction selectively in either activated astrocytes (Müller 
cells) or neurons (110). Microinjection of Aβ into the adult 
zebrafish eye triggers an increase in endothelial tip cells and 
a subsequent increase in the capillary bed density without 
affecting larger arterial vessels (111). In this light, the recent 
discovery of BACE1 expression in endothelial cells (indicating 
local cleavage of APP to Aβ in the blood–brain barrier in mice, 
bovine, and humans) has attracted much interest (43). Indeed, 
BACE1 appears to be a critical regulator of retinal homeostasis 
since genetic invalidation of BACE1 in mice yields retinal thin-
ning, apoptosis, reduced retinal vascular density, and increased 
accumulation of the age pigment, lipofuscin (112). The use of 
BACE1 inhibitors for therapeutic purposes should therefore 
be carefully evaluated for the putative impairment of retinal 
homeostasis.

Some aspects of endothelial BACE1 regulation have been 
elucidated, such as its induction in the presence of reduced 
levels of microRNA-195 (miR-195) in hypoperfusion/hypoxic 
conditions (113). This BACE1 induction is associated with 
reduced occludin expression in tight junctions of cerebral 
blood vessels (114). The cellular mechanism behind the delete-
rious effects of Aβ on cerebral vessel endothelial cells involves 
activation of the cationic Ca2+-permeable channel transient 
receptor potential melastatin-2 (TRPM-2) and intracellular 
Ca2+ overload (115). In fact, the Aβ-mediated decrease in 
zonula occludin-1 (ZO-1) expression is attenuated by neutral-
izing antibodies against receptor for advanced glycation end-
products (RAGE) and inhibitors of calcineurin, suggesting that 
the Aβ–RAGE interactions disrupt tight junction proteins via 
the Ca2+-calcineurin pathway (116).

Aβ AMYLOiDOSiS-ReLATeD ReTiNAL 
NeURODeGeNeRATive DiSeASeS

Accumulation and aggregation of Aβ is a common denomina-
tor of a number of neurodegenerative diseases. Some of them 

primarily affect the eye/retina (AMD, glaucoma), while others 
display more specific cerebral manifestations, such as AD and 
PD. However, evidence is accumulating in support of retinal 
alterations that may reflect the cerebral neurodegeneration seen 
in AD and PD patients.

Alzheimer’s Disease
Alzheimer’s disease is the main cause of dementia and the most 
common neurodegenerative disorder in the elderly. It is charac-
terized by cognitive, memory, and language impairments leading 
to a complete loss of executive functions at the advanced stages 
(https://www.alz.co.uk/research/WorldAlzheimerReport2015.
pdf). From a histophatological point of view, two main hall-
marks of AD are Aβ plaques and neurofibrillary tangles (NFTs). 
The latter are mainly composed of hyperphosphorylated tau 
protein, a microtubule-associated protein (MAP) essential for 
the maintenance of neuronal polarity and structure (117). It has 
been shown that Aβ accumulation leads to disassembly of tau 
from the microtubules and promotes its hyperphosphorylation 
(118, 119). The hyperphosphorylation of tau and its subsequent 
oligomerization results in the formation of intracellular NFTs. 
Ultimately, cytotoxic NFTs act in synergy with oligomeric Aβ and 
lead to synaptic dysfunction and axonal loss (120, 121).

AD Pathology in the Brain
Functional alterations associated with AD have been extensively 
studied in the brain at different levels (network/circuit, cellular, 
subcellular, and molecular) of organization.

Synaptic Dysfunction
Amyloid-beta oligomers reduce glutamatergic synaptic trans-
mission by decreasing the number of both AMPA and NMDA 
postsynaptic receptors (68–71). Besides, a small increase in Aβ 
has been correlated with increased presynaptic transmission, 
implicating the activation of α7-nicotinic acetylcholine receptors 
(nAChR) (32, 122). These synaptic dysfunctions coincide with 
dysregulation of both LTP and long-term depression (LTD), 
which are attenuated and enhanced, respectively. Such functional 
impairments are accompanied with a collapse of dendritic spines 
and synaptic loss (69, 70, 123). Importantly, AD is characterized 
by aberrant excitatory network activity and synchronization, 
which leads to dysfunction of learning and memory circuits and 
subsequent cognitive decline (124).

Mitochondrial Dysfunction and Oxidative Stress
Mitochondrial dysfunction is an early event in AD pathogenesis 
(87). Both APP (125) and Aβ (126) are targeted to mitochondria. 
Mitochondrial Aβ accumulation has been clearly demonstrated 
both in AD patients and in transgenic AD mouse models 
(127,  128). However, the precise mitochondrial actions of Aβ 
are still poorly understood. In particular, it is unknown whether 
mitochondrial translocation of intracellular Aβ is required for the 
inhibitory effects on mitochondrial membrane potential (MMP) 
and ATP levels recently demonstrated in a transgenic mouse 
AD model (TgAPP/PS1) (129). Besides, it has been suggested 
that Aβ cooperates synergistically with tau in the impairment of 
oxidative phosphorylation (86). Indeed, several mitochondrial 
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respiratory enzymes were found to be altered in AD, leading to 
impairments in energy metabolism (130), but the cause–effect 
relationship between these impairments and Aβ has not been 
entirely elucidated.

Neuroinflammation
Prominent glial cell activation and related neuroinflammation are 
seen at the advanced stages of AD and likely play a pivotal role 
in AD progression (100). The aggregation of both Aβ and tau 
protein leads to the activation of microglia and astroglia, which 
are consistently found surrounding Aβ deposits in postmortem 
AD brains (131–133). More recently, positron emission tomogra-
phy (PET) brought additional in vivo evidence for AD-associated 
cerebral microgliosis (134).

Accordingly, evidence of neuroinflammation was present in 
all studied AD mouse models (65). In particular, a prominent 
induction of TNFα and shift from phagocytic M2 toward the 
cytotoxic-like M1 microglia phenotype has been reported in the 
hippocampus at the overt stages of AD pathology in TgAPP/PS1 
mice, and this effect was reproduced by treating microglia cul-
tures with oligomeric Aβ (135). This upregulation is accompanied 
by the coincident induction of another major proinflammatory 
cytokine, IL-1β, not only in the TgAPP/PS1 mouse (136, 137) 
but also in Tg2576 (138), 3xTg (139), and TgCRND8 (140) mice. 
Most importantly, all these studies confirmed consistent and 
concomitant microglia and astrocyte activation.

The microglia M1-like activation state is characterized by 
uncontrolled proinflammatory cytokine and chemokine secre-
tion, inefficient Aβ phagocytosis, and TLR activation, which fur-
ther fuels neuroinflammation (65). Among the relevant cytokines 
and chemokines, monocyte chemoattractant protein (MCP-1) 
was repeatedly implicated. The membrane pore-forming capac-
ity of Aβ oligomers has also been related to neuroinflammation 
(141). Classically, deleterious neuroinflammatory environments 
exacerbate AD-related pathological alterations and have been 
consistently involved in AD progression. However, evidence is 
mounting to suggest that neuroinflammation likely also occurs 
before significant Aβ accumulation (142). Moreover, proinflam-
matory alterations related to the upregulation of TNFα in the 
context of partial microglia activation may occur even before Aβ 
accumulation (143).

Amyloid Microangiopathy
Microangiopathy, which comprises a host of pathological altera-
tions in the small blood vessels (arterioles, venules, and capillar-
ies), is closely related to cerebral small vessel disease (CSVD). 
These are heterogeneous pathological conditions that include 
cerebral blood flow deregulation, endothelial activation, and 
blood–brain barrier disruption (144).

Such pathological alterations are also found in cerebral 
amyloid microangiopathy (145). This particular form of micro-
angiopathy results from Aβ deposition within the walls of 
capillaries or immediately in the adjacent brain parenchyma 
(145, 146). According to an emerging concept, these lesions 
may play a causal role in cerebral dysfunction and precede 
AD-related cognitive impairments (146). Remarkably, although 
Aβ accumulates selectively in arterioles, the cortical vasculature 

network appears to be altered in TgCRND8 mice. Extensive 
structural and functional alterations were observed, including 
vessel coiling and looping, increased tortuosity of the venules 
(but not arterioles), and altered microvascular network cerebral 
blood flow response to hypercapnia (147).

Another prominent feature of AD-related amyloid micro-
angiopathy is the presence of microbleeds. In the Tg2576 
mouse model of AD, these microbleeds are due to leakage 
or rupture of microvasculature in brain regions affected by 
vascular amyloid deposits (148). Such microbleeds may be 
related to the upregulation of BACE1 observed in endothelial 
cells of the blood–brain barrier in another mouse AD model 
(43) as well as AD patients (114). The knockdown of miR-195, 
which regulates BACE1 expression at least in endothelial cells, 
yields increased tau phosphorylation at Ser202/Thr205, Ser262, 
Thr231, and Ser422, as well as Cdk5/p25 activation in the rat 
hippocampus (113).

AD Pathology in the Retina
The accumulation of Aβ and its deposition into Aβ plaques 
have been found in postmortem retinas from AD patients (9). 
In addition, visual disturbances are common in AD, and they 
may be due to local retinal abnormalities rather than exclusively 
related to central, visual cortex alterations (149). However, the 
molecular mechanisms underlying these visual disturbances and 
the role that Aβ may play in the retina are still largely unknown. 
Structural abnormalities identified in retinas of AD patients 
include reduced number of optic nerve fibers and altered thick-
ness of the parapapillary and macular RNFL (150, 151). These 
structural changes likely reflect retinal neurodegeneration, such 
as RGC death (152), and are further associated with optic nerve 
damage (153).

Consistently, Aβ plaques have also been found in the retina of 
AD transgenic mouse models (9). Retinas from APP transgenic 
mouse strains contain 18–70 kDa proteolytic products from APP. 
The proportion of α-secretase generated C-terminal fragments 
in transgenic retinas was higher than the fragments generated 
from β-secretase. However, in ELISA assays, retinal Aβ1–42 was 
75 times lower than in transgenic brains and remains undetect-
able by western blot, indicating that much less Aβ is generated 
in the retina compared with the brain (154). The age-dependent 
increase in plaques in the outer and inner plexiform layers (OPL/
IPL), INL/ONL, and ganglion cell layer (GCL) (155) coincides 
only partly with the upregulation of APP, which is seen only in the 
RGC and INL regions (149). In line with these data, transgenic 
AD mice display both neuroinflammation and neurodegenera-
tion mostly in the GCL (152, 156), where they correlate with APP 
induction and Aβ accumulation (149).

Interestingly, a recent study showed that amyloidopathy occurs 
in the retina prior to the brain in TgAPP/PS1 mice, suggesting 
that in AD patients, Aβ deposits may also be detected in the retina 
prior to the brain (10). The study of retinal amyloidopathy may 
be useful, not only to understand the molecular mechanisms 
involved in AD but also to search for early-stage AD-related 
biomarkers. This prospect is even more interesting, considering 
the possibility of developing a non-invasive method to diagnose 
early-stage AD through direct retinal imaging.
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Synaptic Dysfunction in the Retina
Available data concerning AD-related retinal synaptic dysfunc-
tions come exclusively from electroretinogram (ERG) record-
ings, which give insight into the global electrical response of the 
retina to a light stimulus. ERGs performed in AD patients at the 
advanced stages of pathology revealed a significant reduction in 
the amplitudes of a- and b-waves as well as an increased latency 
of the response (156, 157). Analogous data have been reported in 
the aged TgAPP/PS1 mouse model (155). However, while ERG 
recordings provide a rough estimate of the AD-dependent impair-
ments in glutamate-mediated excitatory neurotransmission in 
the retina, they do not decipher the underlying mechanisms. 
Cellular electrophysiology studies (field-recording, patch-clamp) 
are needed in order to precisely define the neurochemical type of 
synapses and neurons that are the main targets of Aβ.

Neuroinflammation in the Retina
The accumulation of Aβ deposits with age in the retina of a 
transgenic mouse model of AD is accompanied by an increase 
in immunoreactivity for MCP-1 and F4/80, which suggests that 
resident microglia are activated, as well as an increase in terminal 
deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-
positive profiles in the GCL (149). These results suggest that 
Aβ-induced neurodegeneration is associated with neuroinflam-
mation (149).

The subretinal microinjection of Aβ yields an adaptive, local 
inflammatory response, which consists of altered expression 
patterns of cyclooxygenase-2 (COX-2), glutamine synthetase 
(GS), inwardly rectifying potassium (Kir) channel Kir4.1, and 
aquaporin (AQP)-4 water channels in retinal Müller glia cells 
and of AQP-1 in photoreceptors. Activation of the CCL2/CCR2 
chemokine axis, along with microglia activation and migra-
tion, is also detectable in this paradigm, whereas its inhibition 
provides neuroprotection against the deleterious actions of Aβ 
(158). Moreover, Aβ triggers gliosis characterized by glial fibril-
lary acidic protein (GFAP), vimentin, and nestin upregulation 
in Müller cells (159). These alterations are similar to those seen 
during neuroinflammation in the brain.

The upregulation of GFAP was further confirmed after Aβ 
injection into the vitreous fluid (160) in both acute (48 h) and 
delayed (5 months) settings. Remarkably, this study demonstrated 
a concomitant and selective loss of parvalbumin-expressing neu-
rons in the INL and, to a lower extent, in the GCL (160). The latter 
finding suggests that, as in the AD brain (161) and transgenic AD 
mouse models (162, 163), parvalbumin-expressing inhibitory 
neurons in the retina may be the most vulnerable to Aβ.

Mitochondrial Dysfunction and Oxidative Stress  
in the Retina
The neuroinflammation triggered by subretinal injection of 
Aβ was accompanied by oxidative stress in the inner and outer 
retinal segments with an increase in highly reactive unsaturated 
aldehydes 4-hydroxy 2-non-enal (HNE) and acrolein as well 
as in 8-hydroxy-2′-deoxyguanosine (8-OHdG), a measure of 
oxidative damage to DNA (159), which culminated in photore-
ceptor cell death (158, 159). Accordingly, an inverse approach 
consisting of intravitreous injection of mitochondrial respiratory 

complex inhibitors confirmed that inhibition of mitochondrial 
function and associated oxidative stress resulted in increased 
APP processing and Aβ accumulation. The latter alterations were 
also found to be accompanied with GFAP upregulation and glial 
activation (44).

Amyloid Microangiopathy
Amyloid-beta accumulation has been found in the retinal and 
choroidal vasculature of AD mouse models, suggesting that 
Aβ may be implicated in alterations in local blood flow (149). 
Moreover, retinal veins in AD patients are narrowed, and the 
retinal blood flow is decreased (164). Most importantly, a very 
large case-controlled study (213 AD patients and 294 cognitively 
normal controls) of retinal microvasculature networks reported 
a significant decrease in the branching pattern index (fractal 
dimension) of the retinal venular tree and arteriolar tortuosity 
in patients (165). Taken together, recent studies in the brain 
and retina point to similar alterations in the microvasculature 
in mouse models and AD patients. Furthermore, retinal micro-
vasculature alterations, accessible to non-invasive imaging, may 
reflect those occurring in the brain. In line with this assumption, 
abnormal retinal blood flow has been correlated with degree of 
cognitive impairment (AD versus MCI versus control subjects), 
suggesting that blood flow abnormalities may precede AD-related 
neurodegeneration (166).

Age-Related Macular Degeneration
Age-related macular degeneration is an age-related retinal degen-
erative disease that causes irreversible vision loss. It is estimated 
that up to 50 million people worldwide are affected by AMD, 
and in western countries 5–10% of individuals over 60 years of 
age suffer from this disorder (167). AMD is characterized by the 
build-up of drusen deposits between the Bruch’s membrane (BM) 
and the RPE, which lead to RPE cell abnormalities, dysfunction 
of the choroidal blood–eye barrier, and photoreceptor death (168, 
169). The most common form of AMD is dry AMD, character-
ized by thickening of the BM, formation of drusen deposits, and 
activation of the innate immune response (170). The dry form 
may progress into the exudative (or wet) form, which is char-
acterized by choroidal neovascularization and retinal edema 
(171). In some cases, drusen deposits continue to expand and 
can coalesce, giving rise to the degeneration of a large area of RPE 
and photoreceptors in a process known as geographic atrophy. 
Drusen is extracellular deposits composed of different proteins, 
including Aβ and complement members (172). The mechanism 
leading to drusen formation is still unclear but may involve the 
accumulation of toxic by-products of the phototransduction 
cycle (173). These toxic by-products cause oxidative stress and 
inflammation, which play a central role in AMD progression 
(42, 174–177). Drusen-associated amyloidogenic proteins have 
recently been identified as oligomers (172).

Retinal cells that overlie both soft and hard drusen display 
numerous structural and molecular abnormalities. Normally 
detectable only in the outer segments of rod photoreceptors, rod 
opsin immunolabeling was also observed in the inner segment, 
cell body, axon, and axon terminal of photoreceptors that overlie 
drusen (178).
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Similar to AD, the risk of developing AMD is also linked to 
some apolipoprotein E (APOE) polymorphisms. However, in 
contrast to AD, it has been shown that the e4 allele of the gene 
encoding APOE is associated with a lower risk of developing 
AMD, while the e2 allele is associated with a higher risk. Other 
polymorphisms associated with the development of AMD are 
linked to genes encoding components of the complement system 
(170). The polymorphism Y402H in complement factor H (CFH), 
for example, is the first genetic risk factor for both forms of AMD 
(179–181). It occurs in 33% of individuals and is associated with 
a 48% risk for developing AMD (182). CFH is the main inhibitor 
of the alternative pathway, a key component of the innate immune 
response. cfh KO mice also show features of AMD (183). The 
mechanisms by which CFH and polymorphisms in the gene affect 
AMD remain unknown. In 2016, the CFH Y402H polymorphism 
was identified as a risk factor for AD in a very large cohort of 
patients (184), confirming previous studies (185).

Synaptic Dysfunctions
There is currently no data on putative synaptic dysfunctions in 
AMD. This may be related to the fact that the main target of 
neurodegeneration in AMD is the RPE, which is not part of the 
neuronal network sensu stricto. However, RPE cells are excitable, 
and it would be interesting to explore Aβ-related effects on their 
excitability.

Drusen-associated abnormalities in the synaptic terminals of 
photoreceptor neurons have been reported. In AMD-afflicted 
retinas, but not in normal aged human retinas, a large number 
of photoreceptor synapses across the entire retina retract into the 
ONL. This event evokes the subsequent outgrowth of dendrites 
from postsynaptic bipolar cells, again across the entire retina, 
and the subsequent rearrangement of synaptic contacts between 
the photoreceptor and bipolar cells. In addition, an increase in 
intermediate filament protein immunoreactivity (vimentin and 
GFAP) is observed within Müller glial cells in areas of the retina 
overlying drusen. However, other types of retinal neurons (i.e., 
bipolar, horizontal, amacrine, and ganglion cells) are all, at least 
structurally, unaffected (186).

Mitochondrial Dysfunction and Oxidative Stress
In AMD, the accumulation of lipofuscin, i.e., cross-linked pig-
mentary deposits from photoreceptor membranes, favors RPE 
degeneration. Lipofuscin has damaging oxidant properties and 
has been associated with mitochondrial dysfunction. Similar to 
what happens within the brain, Aβ accumulation may further 
exacerbate this state of metabolic and oxidative stress (170). 
Analogously, Aβ accumulation may contribute to mitochondrial 
dysfunction in RGCs. Indeed, intracellular Aβ has also been 
observed in these cells, and it is likely that Aβ interferes with 
mitochondrial function, following the mechanisms characterized 
in AD (37).

Neuroinflammation
Drusen formation leads to activation of the innate immune 
system and also to oxidative and metabolic stress, which pro-
gressively leads to neurodegeneration. Increased deposition of 
Aβ has been found in photoreceptor outer segments and in the 

membrane between the RPE and the BM, in the retinas of both 
aging humans and mice (51). It has been proposed that along 
with aging, gradual accumulation of debris may initiate the for-
mation of drusen, which encapsulates different types of proteins, 
lipids, and inflammatory molecules (176). Among these proteins, 
extracellular Aβ derived from injured RPE may be included in 
drusen. Still, the role Aβ plays in this context is unclear. It has 
been shown that the oligomeric form of Aβ1–42 is implicated 
in the increased production of ROS, the alteration of RPE cell 
structure, and transepithelial permeability (91). In addition, Aβ 
may enhance the release of vascular endothelial growth factor 
(VEGF) and pigment epithelium-derived factor from RPE cells, 
favoring angiogenesis (187).

Amyloid Microangiopathy
Amyloid microangiopathy has not been extensively studied in 
AMD. However, it has been proposed that microvascular leaki-
ness may be caused by the promoting effect that amyloidogenesis 
may exert on neoangiogenesis. VEGF-mediated angiopathy plays 
a key role in choroidal neovascularization, which is a hallmark of 
exudative AMD (188). On the other hand, increased VEGF levels 
may be triggered by members of the complement system, such as 
C3a and C5a (189). It remains to be determined what triggers the 
activation of the complement system. Similar to what happens in 
AD, Aβ may promote its activation (190).

The activated complement system may in turn lead to 
increased vascular permeability and hypervascularization. This 
scenario has been experimentally verified in aged Tg2576 mice 
and postmortem AD brain tissue (191). Neovascularization is 
a major hallmark of exudative AMD, and by consequence, this 
form of AMD and AD may share pathological mechanisms in 
the context of blood–brain barrier impairments. However, a 
recent study (including 107 individuals diagnosed with AMD) 
reported no difference between venular and arteriolar calibers in 
the macula region, at least during the early stages of AMD (192) 
in agreement with a previous study (193).

Glaucoma
Glaucoma is a progressive optic neuropathy that represents one 
of the leading causes of blindness worldwide. It is characterized 
by the loss of RGC neurons and their axons, with consequent 
structural changes in the optic nerve and visual field defects. The 
entire visual pathway, including intracranial optic nerve, lateral 
geniculate nucleus, and visual cortex, is affected (5,  194, 195). 
Therefore, glaucoma can be associated with other neurodegen-
erative disorders, such as AD, since the most vulnerable neuronal 
target (i.e., RGCs) is common for both pathologies.

One of the major risk factors for developing glaucoma is 
chronically elevated intraocular pressure (IOP). Accordingly, it 
has been shown that elevated IOP leads to ganglion cell changes 
that promote caspase activation and abnormal APP processing 
(196). Reducing IOP is the only therapy available to limit disease 
progression; however, the correlation between glaucoma and IOP 
has only been partially elucidated, and other factors clearly con-
tribute to its pathogenesis (197, 198). Indeed, reducing IOP does 
not always stop disease progression (199), and some primary 
open-angle glaucoma patients show normal IOP (200).
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It is presently unknown if Aβ is among the additional fac-
tors involved in the observed changes in IOP during glaucoma. 
Nevertheless, Aβ does appear to be a common denominator for 
glaucoma and AD. Indeed, in glaucoma patients, the level of Aβ 
in the vitreous fluid is decreased, while tau protein is increased 
(201). Similarly, in AD patients, the level of Aβ in the cerebro-
spinal fluid (CSF) is decreased, because of its reduced clearance, 
whereas tau protein is increased (202). In addition, increased 
levels of Aβ have been observed in RGCs in rat models of acute 
ocular hypertension (196, 203). Moreover, inhibiting Aβ produc-
tion or improving its clearance reduced RGC death (203).

Synaptic Dysfunction
Mechanisms of synaptic dysfunction in glaucoma have not yet 
been investigated.

Mitochondrial Dysfunction and Oxidative Stress
Glaucoma has been shown to involve mitochondrial dysfunction 
(204), and oxidatively modified DNA, proteins, and lipids have 
been identified in affected patients (205). Importantly, the plasma 
level of F2-isoprostane lipid was correlated with heat shock pro-
tein 72 (HSP72) and heme-oxygenase-1, which are both known 
to be involved in the defense response against oxidative stress and 
are increased in glaucoma patients (206).

Neuroinflammation
Transcripts of TNFα, IL-2, and IL-6 have been identified in the iris 
of neovascular glaucoma patients (207). The role of retinal glia-
derived proinflammatory cytokines, notably IL-1β and TNFα, in 
glaucoma has been broadly recognized (208). Important insights 
into neuroinflammation-related mechanisms of glaucoma have 
been recently obtained in an elegant study using a rat model of 
glaucoma. The dominant-negative TNFα inhibitor, XPro1595, 
which selectively inhibits soluble TNFα, rescued Müller cell 
and microglia/macrophage activation after induction of ocular 
hypertension. Moreover, XPro1595 also prevented the TNFα-
mediated induction of the Ca2+-permeable GluR2 subunit of 
AMPA glutamate receptors, which are known to be causal in the 
cytotoxic effects of TNFα, as well as in the death of RGC neurons 
(209). These data formally demonstrate the causal link between 
neuroinflammation and neurodegeneration in glaucoma.

Amyloid Microangiopathy
To date, putative Aβ-related structural and functional alterations 
of microvessels have not been investigated in glaucoma. Indeed, 
a host of publications (more than 2000 referenced in PubMed) 
deal with hemodynamic alterations that are consistently found in 
glaucoma (210). However, endothelin-1 and nitric oxide, known 
to be released by endothelial cells upon activation, are increased 
in open-angle glaucoma, suggesting the possible involvement of 
microvasculature in this pathology (210).

CONCLUSiON

Based on the evidence discussed in this review, it is increasingly 
clear that, at least in the case of Aβ-amyloidosis, the deleterious 
effects that Aβ exerts on both cerebral and retinal neurons are very 

similar. These similarities concern alterations at both the cellular 
and molecular levels, such as cytokine induction and mitochon-
drial failure, regardless of the particular disease. Furthermore, 
Aβ-related alterations, such as oxidative stress, microvasculature 
abnormalities, and neuroinflammation, are more related to amy-
loidosis than to the pathological context specific to each disorder 
(e.g., the different composition of Aβ plaques and drusen in AD 
and AMD).

Amyloid-beta may therefore be an attractive common target 
for immunotherapy in both AMD and AD. Encouraging results 
were obtained after administration of anti-Aβ antibodies in 
mouse models of AMD (211) and AD (212) that motivated 
human clinical trials, in spite of some secondary effects. Although 
the first-generation of Aβ vaccines in AD was interrupted because 
of severe cerebral hemorrhage (213), new molecules are currently 
in clinical trials. In particular, GSK933776 was effective in both 
AMD phase II (214) and AD phase I (215) trials. These clinical 
data further point to common mechanisms in AD and AMD. 
Consistently, treatment with an anti-Aβ antibody in a mouse 
model of AMD yielded a decrease in Aβ deposits both in the 
retina and the brain (211).

At this stage, many challenges remain for the future. For 
example, it is of utmost importance to determine whether a 
coincident oligopathy, such as the PD-associated α-synuclein 
amyloidosis, may affect Aβ-amyloidosis output in the retina. 
Understanding whether these two amyloidoses yield additive 
or synergistic pathological alterations may be very helpful for 
designing new and more global therapeutic approaches for all 
relevant diseases.

It is now largely recognized that neurodegenerative alterations 
in the retina reflect those occurring in the brain, thus raising the 
hope of using the retina as a source of diagnostic biomarkers for 
cerebral neurodegeneration. The retina has attracted much inter-
est since, when compared with the brain, it displays the advantage 
of being relatively less complex structurally and more accessible 
to non-invasive exploration. Indeed, it may 1 day be possible to 
use the retina as a proxy to diagnose early neurodegenerative 
alterations in the brain to target them before neurodegeneration 
becomes irreversible.
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