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Astrocytes play an important role in physiological, metabolic, and structural functions, 
and when impaired, they can be involved in various pathologies including Alzheimer, 
focal ischemic stroke, and traumatic brain injury. These disorders involve an imbalance 
in the blood flow and nutrients such as glucose and lactate, leading to biochemical and 
molecular changes that cause neuronal damage, which is followed by loss of cognitive 
and motor functions. Previous studies have shown that astrocytes are more resilient 
than neurons during brain insults as a consequence of their more effective antioxidant 
systems, transporters, and enzymes, which made them less susceptible to excitotox-
icity. In addition, astrocytes synthesize and release different protective molecules for 
neurons, including neuroglobin, a member of the globin family of proteins. After brain 
injury, neuroglobin expression is induced in astrocytes. Since neuroglobin promotes 
neuronal survival, its increased expression in astrocytes after brain injury may represent 
an endogenous neuroprotective mechanism. Here, we review the role of neuroglobin 
in the central nervous system, its relationship with different pathologies, and the role of 
different factors that regulate its expression in astrocytes.

Keywords: astrocytes, neuroglobin, mitochondria, neuroprotection, brain injury

iNTRODUCTiON

The brain has about 170 billion cells (1), which consume an average of 516 kcal of energy per day, 
representing 22% of total energy demand of an organism (2). This energy demand is required to carry 
out essential functions such as synaptic transmission, uptake and metabolism of neurotransmitters, 
and maintenance of ion gradients (3). For this reason, it is of pivotal importance to maintain optimal 
conditions of the intra- and extracellular environment targeting nerve cells needs. However, in dis-
eases such as ischemic and traumatic brain injuries, an energy imbalance induced by the interruption 
of blood flow leads to metabolic stress, ionic disturbance, and activation of a complex cascade of 
biochemical and molecular events that can cause neuronal death (4). Moreover, there are other 
diseases such as hypoglycemia and diabetes, in which a misbalance in glucose levels can trigger brain 
damage (5, 6). In this context, traumatic brain injury has become a global public health problem, and 
it is the leading cause of death in individuals under 45 years of age and recurrent in young people, 
adolescents, and elders (7). Brain trauma induces cognitive and motor dysfunction (8). In a study 
reported by Quijano et al., cognitive abilities were assessed in subjects who suffered moderate head 
trauma and a control non-injured group. The results revealed significant differences in orientation, 
attention, memory, language, reading, and writing abilities (9). Despite the enormous efforts and 
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progress in research, treatment strategies for traumatic brain 
injury are still limited, and currently, there are no effective treat-
ments against their consequences. It has been described that after 
injury, the first phase involves focal hematoma and diffuse edema 
that results in white matter damage. The second phase involves 
additional pathological cellular and molecular events such as the 
abnormal release of neurotransmitters, the generation of free 
radicals, Ca2+-signaling abnormalities, apoptotic factors activa-
tion, and mitochondrial dysfunction leading to neuronal dam-
age, neuroinflammation, and brain dysfunction (10). Moreover, 
changes that occur in this second phase trigger the death of 
neurons and astrocytic reactivity. Therefore, it is necessary to 
search for therapeutic alternatives to prevent further neurological 
damage and restore CNS homeostasis upon injury.

Neurons are usually affected to a greater extent during injuries, 
since they have less antioxidant mechanisms than astrocytes 
being more affected by increased excitotoxicity than glial cells 
(11). Astrocytes have an active and critical role in the nervous 
system under normal and pathological conditions. During brain 
injury and neurodegenerative conditions, astrocytes participate 
in the removal of toxic molecules and promote neuronal survival 
throughout the release of trophic factors and antioxidant mol-
ecules (12). For example, astrocytes produce various antioxidant 
molecules, such as glutathione transferase (GSH), superoxide 
synthase (SOD), and catalase, providing further antioxidant 
protection to neurons (13). Also, astrocytes integrate the blood–
brain barrier (BBB) (13, 14), thus providing active support in the 
formation of neural connections and brain activity (15). These 
cells are key regulators of neuronal energy by providing them with 
lactate (16–18). For all these reasons, astrocytes are vital to restore 
brain function after injury. In different neurodegenerative condi-
tions such as ischemia–reperfusion injury, a key role is played by 
mitochondria in the generation of reactive oxygen species (ROS), 
dysfunctional energy metabolism, and mitochondria-induced 
apoptosis (19). Likewise, the disruption of synaptic regulation by 
astroglia seems to play an important role in neurodegeneration 
and brain damage (20).

It is considered that a transient or permanent impairment 
of astrocytic functions may negatively impact neurons during 
pathological conditions. For this reason, it is important to expand 
the knowledge about the neuroprotective mechanisms mediated 
by astrocytes during brain injury to find alternatives to prevent 
altered responses affecting neuroprotection and recovery (21). In 
this context, neuroglobin (Ngb), a protein expressed astrocytes 
and neurons, of the central nervous system (CNS) and the 
peripheral nervous system (PNS) (22, 23) has often been linked 
to neuroprotection in different neuropathological conditions 
(24, 25) through antioxidant and antiapoptotic mechanisms 
(26, 27). The expression of Ngb is induced in human astrocytes 
during brain injury, possibly as a neuroprotective mechanism 
(28). Interestingly, Ngb is expressed in astrocytes and neurons 
of whales and seals as a mechanism to withstand long periods of 
hypoxia (29). However, more research is needed to completely 
address the importance of Ngb protective mechanisms and its 
relationship with astrocyte functions. In the present review arti-
cle, we explore the role of Ngb in the CNS, focusing on astrocytes 
and its relationship with different pathologies.

ASTROCYTeS AND BRAiN PATHOLOGieS

Astrocytes are responsible for glucose uptake and release of 
lactate to neurons (16, 17, 30), which are involved in memory 
and cognition, glutamate recycling, and synthesis of antioxidant 
glutathione (31). Furthermore, astrocytes have a unique cellular 
structure that allows them to detect any change in the environ-
ment and dynamically respond to extracellular changes or 
metabolic requirements, providing sources of energy from the 
glucose taken from blood flow (32) or from energy reserves such 
as glycogen (33). In addition to glutathione, astrocytes have a 
special antioxidant system that includes glutathione peroxidase, 
heme oxygenase I, and catalase, which are able to detoxify ROS in 
the brain (32, 34). Astrocytes are also considered polyfunctional 
cells because they also contribute to the elimination of glutamate 
(Glu), the major excitatory neurotransmitter in the CNS (35). 
Moreover, Bergmann glia from the cerebellum express the EAAT1 
and EAAT2 transporters (36). In this respect, the EAAT2 (GLT1) 
is responsible for 90% of glutamate uptake through the astrocyte 
endfeet that make direct contact with the synapses (37). However, 
this mechanism of Glu uptake and transport becomes affected 
during brain pathologies, and the increased levels of Glu in the 
extracellular space might induce excitotoxicity and the severity 
of brain injury (38, 39). Other astrocytic functions include the 
remodeling of the blood brain barrier (14) and production of 
growth factors (18, 40, 41), which in turn promote cell repair 
during episodes of injury. Faced with an insult or injury, astro-
cytes adopt a reactive metabolic phenotype (16, 17, 42–44). This 
phenotype has a beneficial effect on the preservation of neural 
tissue and in the restriction of moderate focal inflammation (17, 
45, 46). However, when this response is maintained and general-
ized, it can become counterproductive because astrocytic efforts 
are redirected toward defensive and repair tasks at the expense 
of providing adequate metabolic support to neurons and also 
by blocking axonal regeneration (47). Despite this controversial 
harmful role of reactive astrocytes, a recent study indicated 
that astrocyte scar formation might help axon regeneration by 
augmenting multiple axon-growth-supporting molecules (48), 
demonstrating that inhibiting glial scar might reduce axon 
regrowth and worsen CNS damage.

According to Sofroniew (49–51), reactive astrogliosis covers 
some key characteristics: (1) molecular, cellular, and functional 
changes in astrocytes related to the severity of injury in the CNS; 
(2) changes are regulated by specific context of molecules via 
inter- and intracellular signaling; and (3) astrogliosis can exert an 
alteration in normal astrocytic activities, which in turn can lead 
to positive or harmful effects in surrounding cells. Additionally, 
astrocyte gap junctions can remain open after brain injury (52), 
allowing the entrance of pro-apoptotic factors and immune cells 
that exacerbate cellular injury (53).

Astrocytes, as other CNS cells, are affected by decreased levels 
of ATP. This decrease in ATP levels is associated with two fun-
damental aspects: (i) decreased cerebral blood flow to the range 
of 100  g−1 (5–8.5  ml  min−1), which leads to irreversible tissue 
damage by the small amount of glucose and oxygen available (8), 
and (ii) increased intracellular calcium that leads to damaging 
calcium levels in mitochondria (54). These facts suggest the 
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importance of astrocytic protection as a potential therapeutic 
target for  neuroprotection and preservation of CNS functions 
following injury.

Mitochondrial Function and  
Dysfunction in Astrocytes
Mitochondria are essential organelles to sustain life and the 
physiological function of cells under normal conditions by main-
taining energy balance through substrate oxidation, modulation 
of calcium levels, and redox balance (13, 30, 55). However, these 
organelles are also the main target of oxidative stress (30) by an 
imbalance between the production of oxidative molecules, such 
as hydrogen peroxide (H2O2), superoxide radical ( O2

− ), and the 
hydroxyl radical (OH), and the ability of the cell to defend against 
these radicals (56). Because there is a close relationship between 
mitochondrial dysfunction and brain injury, mitochondrial 
protection has become a main therapeutic strategy for treating 
multiple neurodegenerative diseases, such as Parkinson’s disease 
(PD), Alzheimer’s disease (AD), and amyotrophic lateral sclero-
sis, among others (13, 30, 40, 57–59).

As reviewed by Kubik and Philbert (60), from a total of 12,614 
mitochondrial investigations in cells of the nervous system, only 
1,214 were directed to astrocytic mitochondria. This fact over-
shadows that mitochondria in astrocytes provide the metabolic 
substrates necessary for neural function and are essential to 
maintain the energetic balance of the brain and the production of 
antioxidants (61, 62). For example, according to Voloboueva et al. 
(63), the inhibition of mitochondria during glucose deprivation 
conditions induces functional changes in astrocytes related to a 
decrease in ATP levels, depolarization of the plasma membrane, 
and reduced glutamate uptake, without a significant loss of their 
viability. Therefore, this evidence strongly suggests that the dam-
age to the astrocytic mitochondrial function may be the start of 
brain lesions and neuronal death (61).

Studies in animal models of PD showed that the administra-
tion of 1 and 10 μg of either vascular endothelial growth factor 
(VEGF) or glial-derived neurotrophic factor (GDNF) increased 
the expression of mitochondrial genes (64), suggesting that these 
growth factors may have a role in mitochondrial protection. 
Similarly, in  vitro administration of platelet-derived growth 
factor BB (PDGF-BB) preserved mitochondrial function in 
astrocytes treated with rotenone (40). Furthermore, another 
study reported that the transmembrane protein TrkB (a receptor 
for BDNF) was co-localized with mitochondria in astrocytes 
(63), suggesting that astrocytes’ mitochondria have the potential 
to directly interact with neurotrophic factors and other protec-
tive proteins such as Ngb (65, 66). Finally, other substances 
studied in mitochondrial protection are CoQ10 (Coenzyme 
Q10) and conditioned medium from mesenchymal stem cells 
(67–69). CoQ10 is a ubiquinone with multiple functions such 
as decreasing the production of ROS, stabilizing mitochondrial 
membrane potential, improving mitochondrial respiration, 
inhibiting mitochondria-mediated pathway of cell death, and 
activating the mitochondrial biogenesis (69). On the other hand, 
conditioned medium from mesenchymal stem cells has been 
shown as a protective substance, which contains proangiogenic 

and antiapoptotic factors, immunomodulators, antioxidants, and 
neuronal differentiation factors among others, that improve the 
mitochondrial protection during injuries (68). However, further 
studies are necessary in order to find new methodologies for the 
protection of astrocytic mitochondria.

NeUROGLOBiN iN BRAiN PATHOLOGieS

Oxygen depletion is one of the more detrimental conditions for 
the CNS, inducing irreversible damage and as a result loss of 
cognitive functions. Oxygen depletion is underlying several CNS 
diseases such as ischemia or TBI.

As stated above, aquatic mammals such as whales and seals 
(29) withstand conditions of severe hypoxia without damage; they 
are unique models to investigate neuroprotective mechanisms. 
The comparison of Ngb protein sequence between terrestrial and 
aquatic mammals revealed minor differences in its sequence of 
only two or three amino acids, which did not give rise to confer 
functional differences between both groups. However, Ngb mRNA 
expression levels were 4–15 times higher in the brain of seals and 
whales than in those from terrestrial mammals, suggesting that 
higher Ngb levels in aquatic mammals can be a neuroprotective 
mechanism against brain hypoxia and ROS production (70). 
Similarly, in a behavioral study in transgenic mice overexpress-
ing Ngb under normoxia and hypoxia, it was shown that Ngb 
promotes survival in  vivo and may play an important role in 
countering the adverse effects of a hypoxic ischemic stroke. No 
significant behavioral differences were detected between control 
and Ngb overexpressing mice at 3 months of age, but transgenic 
mice showed a superior behavioral performance than control 
mice at 1 year of age (71).

Traumatic brain injury is another major pathology of the brain, 
which affects world population. Basic features include bleeding, 
cell death, increased production of β-amyloid, basic fibroblast 
growth factor (FGF-2), and increased expression of Ngb that 
remains upregulated until the sixth day post-injury (72). In this 
respect, other studies have demonstrated an increased expression 
of Ngb with stroke, hypoxia, and ischemia (73, 74). In an experi-
mental model of TBI, overexpression of Ngb correlated with a 
significant reduction in sensorimotor deficits compared with a 
control group that did not overexpressed Ngb. The immunohis-
tochemical analysis of injured cortex and hippocampus revealed 
that Ngb is mainly expressed in neurons and glial cells (75).

Human studies have correlated the genetic polymorphisms 
of the Ngb with susceptibility to neurodegeneration. One of 
these studies showed that decreased expression of Ngb in the 
elderly is associated with an increased risk of AD (76). In a 
preclinical study using transgenic AD mice, it was found 
that intracerebroventricular injection of Ngb decreased the 
formation of Aβ peptides, and the mitochondrial dysfunction, 
apoptosis, and neuronal death in the AD brains. In addition, 
other studies suggested that the neuroprotective effects of Ngb 
involved the inhibition of caspase-3 and 9, the activation of the 
PI3K/Akt pathway (77), and the removal of proteins aggregates 
(78). Finally, other study has demonstrated that Ngb is related 
to the neurotoxic effect produced by CNS 1-bromopropane 
(1-BP), a volatile organic compound implicated in damage 
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to both the ozone layer of the atmosphere and the CNS. This 
compound is used as cleaning agent for metal, electronics, and 
optical instruments, as well as a substrate for the synthesis 
of pharmaceuticals and insecticides (79). The frequent use 
of this compound may cause health problems in mammals. 
For example, a previous study showed that exposure to 1-BP 
resulted in cognitive deficits and increased levels of 4-HNE and 
MDA modified proteins in rats (80). Also, rats exposed to 1-BP 
showed elongated astrocytic processes, a decreased number 
of oligodendrocytes, suggesting possible negative effects on 
myelination and degeneration of granular and Purkinje cells 
in the cerebellum (81). Similarly, a previous study showed that 
occupational exposure to 1-BP resulted in CNS adverse effects 
and peripheral neuropathy (82). Some evidence suggests that 
Ngb dysfunction may be involved with the toxic effects of 1-BP 
on CNS. For example, 1-BP correlated in a dose-dependent 
manner with a decrease in Ngb, cognitive dysfunction in rats, 
and a significant loss of neurons in layer V of the prelimbic 
cortex. These results suggest that the decreased expression of 
Ngb probably plays an important role in CNS neurotoxicity 
induced by 1-BP (83).

It is important to highlight that the presence of Ngb in vivo or 
in vitro depends on specific astrocytes (84) and the brain region 
affected. For example, in one study, Ngb-positive astrocytes were 
mostly found in the rhinencephalon region severely damaged in 
terms of hemorrhage (85, 86). However, Ngb was not detected in 
astrocytes from healthy mouse brains, suggesting that Ngb may 
have cytoprotective properties with the potential to be a therapeu-
tic agent for intervention. However, the potential neuroprotective 
effect of Ngb in astrocytes (28) during ischemia (84) has neither 
been characterized nor the role of Ngb in neurogenesis and glial 
scar (28). In addition, whether Ngb is secreted by astrocytes as 
a neuroprotective agent has not been explored, and it requires 
further investigations.

NeUROPROTeCTive POTeNTiAL OF 
NeUROGLOBiN

Until recently, hemoglobin (Hb) was the most studied member of 
the globin family of proteins because of its oxygen-binding affin-
ity in blood. Nevertheless, recent studies have revealed expression 
of other globin proteins in erythrocytes of vertebrates, including 
myoglobin (Mb), cytoglobin (CYGB), globin E (GbE), globin Y 
(GBY), and Ngb (87). Ngb is a 17-kDa monomeric protein, which 
shows a classic folded structure adapted to hold the heme-hexa-
Fe-type HisF8 HisE7 in both the ferric and ferrous forms (26). 
According to homology studies, it was found that Ngb sequence 
is highly conserved between species, accounting for almost 76% 
of sequence conservation between humans and amphibians (88). 
Ngb is not only expressed in the nervous system (22) but also in 
the eyes, intestine, and ovary; however, no expression has been 
detected in kidney liver, heart, and skeletal muscle (89). In the 
brain, Ngb has been found in different regions including the 
cortex, thalamus, cerebellum, hippocampus, and hypothalamus 
(90). These areas are important in the processing of sensations, 
memory, and learning, and are often affected in hypoxic and 
ischemic insult or traumatic injuries.

Ngb, with its molecular properties, has been characterized as a 
protein responsible for O2 transport and scavenging of ROS and as 
O2-sensor and oxygen transporter (91). These functions suggest 
that the presence of Ngb is a key factor to brain homeostasis. At 
present, there are several studies addressing the role of Ngb in dif-
ferent pathologies such as focal ischemia and hypoxic–ischemic 
injuries (92–95). These studies suggest that Ngb serves as a sensor 
to hypoxic stress and has a protective effect. For example, Tiso 
et al. (96) reported that a nitrite reductase activity of Ngb inhib-
ited mitochondrial respiration in presence of nitrite in vitro and 
suppressed oxygen consumption and ROS production. Current 
studies have shown a direct functional relationship between 
mitochondrial integrity and Ngb in vivo (74). For example, Ngb is 
associated with reduced oxidative damage induced by either reac-
tive nitrogen species (RNS) or ROS (97). Moreover, Ngb structure 
was found to be extremely stable, in which its holoprotein was 
able to support temperatures exceeding 100°C and low pH values 
of up to 2.0 before denaturation (98). Finally, this protein may 
be involved in enhancing G-protein signal transduction by 
inhibiting the dissociation of guanosine diphosphate from the 
G-α subunit (73, 99, 100) and therefore involved in cell signaling 
processes (66).

Initially, Ngb was considered to be exclusively a cytoplasmic 
protein (101), but recent confocal microscopy studies have 
shown that it is also located in mitochondria and nucleus (102, 
103). In this respect, it was shown that Ngb is associated with 
microdomains of lipid rafts and α-subunits of heterotrimeric 
protein G and becomes activated during oxidative stress, under-
going structural changes that lead to neuroprotection (103). On 
the other hand, the mitochondrial expression of Ngb becomes 
increased after oxygen-glucose deprivation (OGD) in primary 
cultures of mouse cortical neurons (104, 105). Furthermore, 
mitochondrial Ngb has interactions with cytochrome c and 
the voltage-dependent anion channel (VDAC), suggesting the 
importance of Ngb in mitochondrial function and neuroprotec-
tion (73, 106, 107). Additionally, it has been shown the influence 
of thyroid hormones on Ngb expression (97, 108). In one of these 
studies, the authors evaluated Ngb expression in different areas of 
the rat brain after T3 (100 L/100 g) administration. The authors 
found that T3 increased Ngb expression in the hippocampus and 
cerebellum; however, in cerebellum, Ngb expression was only 
detected at 120 min, 6 h, 12 h, and 24 h after T3 injection (97).

Other studies have shown that Ngb promoter is regulated 
by the transcription factors NFκB, SP1, and CREB (109), the 
hypoxia-inducible factor 1-α (HIF-1α), erythropoietin (EPO), 
and the VEGF (84, 110). In this respect, it was observed that 
VEGF2 increased the expression of Ngb by stimulating the Flk1 
receptor, which in turn induced the expression of HIF-α (111).

The mechanisms of neuroprotection by Ngb have not been 
completely elucidated. Various stimuli can affect the expression 
of Ngb in different tissues, including the CNS. For example, in the 
cardiac tissue, which is also affected by ischemia, oxidative stress, 
and reperfusion, Ngb has been involved in the protection against 
cardiac hypertrophy induced by oxidation in cardiomyocytes, 
preventing them from cell death by ROS and therefore can be a 
clinical candidate for the treatment of heart diseases (112). On 
the other hand, it has been shown that cochlear oxidative stress 
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TABLe 1 | Description of the fundamental aspects and biological effects of neuroglobin.

Aspect Description Reference

Expression of neuroglobin 
in the CNS

Cerebellum and hippocampus (97)
Cortex, thalamus, cerebellum, hippocampus, and hypothalamus (90)

Non-neuronal cells 
expressing neuroglobin

Cardiomyocytes (112)
Spiral ganglion cells and the superior olivary complex stem auditory (113)
Retina cells (115)

Antioxidant role of 
neuroglobin

Regular removal of nitric oxide (26, 116)
Reduce the damage induced by reactive nitrogen species (97)

Antiapoptotic role of 
neuroglobin

Survival in nerve cells overexpressing neuroglobin (24)
Decrease apoptosome formation (25)
Cytochrome c reduction (24)
Decreased levels of calcium – upholding levels of ATP – mitochondrial membrane potential in cultured neuronal cells (27, 117)
Modulation of metals such as iron, copper, and zinc in cultured neuronal cells (117)
Increased ATP reservoirs in cultured human neuronal cells (114)

Signaling pathways 
involving neuroglobin

Inhibits the dissociation of guanosine diphosphate from protein G-α (99, 100)
It binds to the subunit Gβχ that activates PI3K and Akt in cultured human neuronal cells (114)
Inhibits production of IP3 (118, 119)
Inhibits actin assembly-mediated Rac-1 in neurons (120)

Factors that mediate 
expression of neuroglobin

HIF-1α (110)
NFκB–SP1–CREB (109)
VEGF (84, 111)
EPO (84)

Drugs that increase 
neuroglobin expression in 
neurons

Deferoxamine–valproic acid–cinnamic acid in HN33 (mouse hippocampal neuron × N18TG2 neuroblastoma) cells (121)

Neuroglobin expression in 
astrocytes

Neuroglobin after a subacute and chronic traumatic brain injury (28)
Neuroglobin in microglia and astrocytes after traumatic brain injury (84, 122)
Neuroglobin astrocytes through estrogen receptor ERβ (22)
Co-localization of neuroglobin with GFAP in human brain after a stroke (28)
Neuroglobin protection is mediated via Raf/MEK/ERK through 14-3-3r (123)
Neuroglobin expression is dependent on the activation of estrogen receptor beta; tibolone induces the upregulation 
of Ngb

(65)

Testosterone upregulates Ngb expression in glucose deprived cells (124)

Related pathologies 
involving neuroglobin

Cerebral hypoxia (70, 71, 125, 126)
Focal cerebral ischemia (127)
Alzheimer  (76)
Injury in the cerebral cortex (72)
Stroke (73)
Traumatic brain injury (74)
Removal of proteins capable of forming aggregates deleterious (78)
Neurotoxic effect of 1-bromopropane (83)
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is the main cause of sensorineural hearing loss and for which so 
far there is no treatment. In this aspect, Ngb is highly expressed 
in the cochlear nuclei and the superior olivary complex (SOC). 
Moreover, it was reported that Ngb is colocalized with the anti-
oxidant neuronal protein nitric oxide synthase (NOS) in the SOC, 
suggesting the importance of Ngb in oxygen homeostasis and 
energetic metabolism in the auditory nervous system (113) (see 
Table 1). Ngb has been also involved in calcium homeostasis (27), 
ATP storage, inhibition of actin assembly, and response against 
increased hydrogen peroxide ion levels. This evidence suggests 
that Ngb is also involved in the maintenance of the integrity of 
the cytoskeleton, cell viability, neuroprotection, and glutamate 
removal (114).

Recent studies have used different drugs to increase Ngb 
expression in neurons as a therapeutic neuroprotective agent in 

traumatic brain injury. Among the drugs studied are deferox-
amine, an iron chelator, valproic acid, and cinnamic acid (121). 
Further in  vivo studies are needed in order to determine both 
the induction levels of Ngb by these drugs and also if they have 
adverse effects in the sensorimotor or cognitive recovery after 
traumatic brain injury or brain ischemic injury.

Antioxidant effect
Ngb has very little affinity for oxygen, and the oxygenated species 
formed with Ngb are unstable; thus, it does not provide a stable 
source of oxygen, due to the low concentration of Ngb in neurons 
(128). In fact, it is recognized that one of the roles of Ngb is basi-
cally its affinity for NO (26, 129), and this action can be related 
to the clearance of this gaseous ligand. Moreover, Ngb has been 
shown to act as a ROS and RNS scavenger in different models 
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(84, 112, 122), although its antioxidant activity is lower than that 
of N-acetyl cysteine, glutathione, and vitamin C (115). Finally, 
Ngb has interactions with many antioxidant-related proteins 
such as Cyt c, Thio, AIF, Prdx3, 4, and 6, Thop1, and Dj1, among 
others. However, further research is needed in order to address 
the relevance of the antioxidant effects of Ngb in CNS diseases.

Antiapoptotic effect of Ngb
The process of apoptosis is complex, and few have investigated 
the action of Ngb. However, some studies used computational 
modeling to determine the mechanism of Ngb in cell death. For 
example, data obtained using computational modeling suggest 
that Ngb reduces the formation of the apoptosome by a redox 
reaction with cytochrome c (24), causing the blocking of initia-
tor pro-caspase 9 activation and thus significantly blocking the 
triggering of apoptosis. In the same study, the authors simulated 
the interaction between Ngb and cytochrome c and validated 
their results using an in  vitro approach. The authors found a 
very rapid reaction between reduced (ferrous) neuroglobin and 
oxidized (ferric) cytochrome c (24), suggesting that Ngb might 
affect the initiation of apoptosis by interacting with cytochrome 
c. Interestingly, under normal conditions, these molecules do 
not interact with each other, but under stress, Ngb prevents 
cytochrome c release from mitochondria, thus protecting the 
cell from apoptosis (115). In this respect, it was reported that 
after reducing cytochrome c, Ngb, in the ferric form, binds to 
two receptors coupled to G protein subunits (GPCR). This fact 
is interesting, as the G-α subunit can cause an inhibition in the 
production of IP3 (inosine triphosphate) and reduce cytosolic 
calcium release (118, 119). On the other hand, Ngb binds to the 
Gβχ subunit, activating PI3K and Akt and thus promoting cell 
viability (114). Also, as mentioned before, Ngb inhibits Rac-1, 
Pak1 kinase, and actin assembly, preventing cytoskeletal rear-
rangement and avoiding the initiation of death signaling (120). 
Moreover, Ngb expression has been found to be higher in meta-
bolically active cells, such as neurons and retinal cells, which have 
some features in common such as high cytosolic calcium levels, 
which can trigger apoptosis (115). This aspect has already been 
validated experimentally, showing that increased Ngb expression 
is directly linked to calcium homeostasis and maintenance of both 
mitochondrial membrane potential and ATP levels (27). Ngb 
may be also important in the modulation of metallic ions such 
as Fe, Cu, and Zn, which are increased in neurons under hypoxic 
conditions. These ions can induce inflammation, mitochondrial 
damage, ROS production, and the release of neurotransmitters, 
leading to neuronal death excitotoxicity (117). All these findings 
support the role of Ngb in apoptotic regulation, a subject that 
merits further research.

NeUROGLOBiN eXPReSSiON iN 
ASTROCYTeS

The expression of Ngb is evident in neurons and the protective 
role of Ngb in neuronal cells has been well documented; however, 
the function of Ngb in astrocytes is less well studied (84). In 2000, 
a study reinforced the expression of Ngb mRNA in spinal cord 

funicles, hippocampal alveus, and cerebellar medulla of rodents 
(101). Until recently, only few studies have reported the expression 
and function of Ngb in astrocytes (28, 84, 122, 130). Previously, in 
2005, a study reported that Ngb mRNA was detected in primary 
cultures of cortical astrocytes and transfection of these astrocytes 
with anti-sense for Ngb led to a 2.5-fold increase in apoptotic cells 
when compared to controls, suggesting a possible protective role 
of Ngb expression in astrocytes against insult (131).

Consistently, Avivi et al. reported that the subterranean mole 
rat (Spalax) expresses Ngb in neurons and astrocytes isolated 
from the corpus callosum (125). More recently, Lechauve et al. 
reported that Ngb was detected in astrocytes processes optic 
nerve under physiological conditions in  vivo (132). Indeed, 
it is important to mention that Ngb expression has been also 
observed in astrocytes under pathological conditions (e.g., reac-
tive astrocytes). For example, the expression of Ngb was found 
upregulated in reactive astrocytes located in the proximity of a 
penetrating cortical injury in vivo (22, 133), in Müller cells dur-
ing reactive gliosis (132) or located in regions associated with the 
most severe pathology and the astroglial scar in murine models 
(134). Moreover, Ngb was also detected in astrocytic tumors 
such as rat astrocytoma cells (C6) and human astrocytoma 
cells (U251) (135, 136), thus confirming the existence of Ngb in 
tumoral cell lines.

A previous study evaluated Ngb expression in astrocytes 
after brain trauma and reported that Ngb expression is present 
in subacute and chronic injuries but not acute trauma (28). 
Moreover, in other studies, it was found that Ngb is expressed 
in microglia and astrocytes specifically during conditions such 
as traumatic brain injury (84, 122) and that estradiol regulates 
the expression of Ngb in astrocytes (66) through the estrogen 
receptor β (ERβ) (22), while ERα is involved in the regulation 
of Ngb in neurons (137). Interestingly, tibolone, a synthetic 
hormone with estrogenic, progestogenic, and androgenic actions, 
has also been reported to induce Ngb expression in astrocytic-
like cells in vitro under glucose deprivation (65) (Figure 1). This 
expression was dependent on the activation of ERβ. Moreover, 
inhibition of Ngb by siRNA significantly affected the protective 
effects of tibolone in glucose-deprived cells, suggesting that its 
actions might be mediated by ERβ and Ngb upregulation (65). 
Similarly, testosterone also induced the expression of Ngb in 
astrocytes subjected to glucose deprivation, indicating that 
estrogenic and androgenic compounds might play a protective 
role via induction of Ngb (124). Furthermore, a previous report 
(130) showed co-localization of Ngb and GFAP in glia from 
human brains after stroke (28). It has been postulated that neu-
roprotection by Ngb in astrocytes is mediated by Raf/MEK/ERK 
pathway through 14-3-3r, which has the ability to bind to multiple 
signaling proteins as kinases, phosphatases, or transmembrane 
receptors (123). Controversially, Ngb has not been detected in 
astrocytes by conventional immunohistochemistry or fluorescent 
immunostaining in normal mice brains (134). Indeed, a strong 
correlation between the cellular expression of Ngb and the 
neuronal marker NeuN, but not the astroglial marker GFAP, has 
been found (130). These results indicate that is debatable whether 
Ngb is expressed in astrocytes and others glial cells under non-
pathological conditions (84). Nevertheless, Ngb is detected in 
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FiGURe 1 | Representative microphotographs of astrocyte-like cells (T98G cell line) expressing neuroglobin. Data generated in our group showed that in 
cells subjected to metabolic insult by adding a balanced salt solution devoid of glucose (BSS0), neuroglobin expression is enhanced and homogeneously distributed 
in the cytoplasm (left). The control condition (BSS5) was the same as BSS0, but adding 5-mM glucose; in this case, neuroglobin expression was decreased in 
comparison with BSS0 and located in proximity of the cell nucleus (center). Under basal culture conditions with DMEM medium, Ngb expression was similar to that 
of BSS5.
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