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Objectives: To review the evidence for the use of diffusion tensor imaging (DTI) param-
eters in the human brain as a diagnostic tool for and predictor of post-concussion 
syndrome (PCS) after a mild traumatic brain injury (mTBI).

Design: Systematic review.

Data sources: All relevant studies in AMED, Embase, MEDLINE, Ovid, PubMed, 
Scopus, and Web of Science through 20 May, 2016.

Study selection: Studies that analyze traditional DTI measures [fractional anisotropy 
(FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD)] and the severity 
of PCS symptoms or the development of PCS in humans after an mTBI.

Data extraction: Population studied, patient source, mTBI diagnosis method, PCS 
diagnosis method, DTI values measured, significant findings, and correlation between 
DTI findings and PCS.

Data synthesis: Ten studies investigated correlations between DTI values and PCS 
symptom severity or between DTI values and the development of PCS in mTBI patients. 
Decreased FA and increased MD and RD were associated with the development and 
severity of PCS. AD was not found to change significantly. Brain regions found to have 
significant changes in DTI parameters varied from study to study, although the corpus 
callosum was most frequently cited as having abnormal DTI parameters in PCS patients.

Conclusion: DTI abnormalities correlate with PCS incidence and symptom severity, as 
well as indicate an increased risk of developing PCS after mTBI. Abnormal DTI findings 
should prompt investigation of the syndrome to ensure optimal symptom management 
at the earliest stages. Currently, there is no consensus in the literature about the use of 
one DTI parameter in a specific region of the brain as a biomarker for PCS because no 
definite trends for DTI parameters in PCS subjects have been identified. Further research 
is required to establish a standard biomarker for PCS.

Keywords: diffusion tensor imaging, mild traumatic brain injury, post-concussion syndrome, biomarker, 
systematic review
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iNTRODUCTiON

Traumatic brain injury (TBI) is an important global health issue, 
with the incidence of TBI reported to hospitals in developed 
countries being approximately 200 per 100,000 people annually 
(1). Globally, approximately 10 million TBIs are serious enough 
to result in death or hospitalization each year (2). TBI is more 
common in adolescents and young adults; a Canadian study 
found that 20% of students in grades 7–12 had sustained a TBI 
(3). Classification of TBI as a mild traumatic brain injury (mTBI) 
is primarily based on an initial Glasgow Coma Scale (GCS) score 
of 13–15 (4). Other mTBI classification criteria consider the dura-
tion of loss of consciousness (LOC) and duration of posttraumatic 
amnesia (PTA), if present (5). mTBIs are the most frequent TBIs, 
accounting for 70–90% of all brain injuries treated at hospitals. 
However, because a majority of mTBI cases are not reported to 
hospitals, the true incidence of mTBI is estimated to be above 600 
per 100,000 people per year (6).

Post-concussion syndrome (PCS), also referred to as post-
concussional disorder (PCD), refers to a set of somatic, affective, 
and cognitive symptoms that manifests days after the initial head 
injury. Although these symptoms usually resolve within 3 months, 
they can persist for longer (7). Patients whose symptoms persist 
for less than 3 months are referred to as having experienced post-
concussion symptoms, while those with symptoms persisting for 
longer than 3 months are diagnosed with PCS (8, 9). PCS often 
has a significant impact on quality-of-life, but currently there are 
no validated treatments for PCS beyond patient monitoring and 
symptom management.

The first step toward developing an effective treatment is to 
understand the pathophysiology and anatomical basis of the 
development of PCS and establish dependable biomarkers of the 
syndrome. Unfortunately, the current definition of PCS is vague 
because as a syndrome, it is only a set of signs and symptoms. 
Diagnosing PCS depends solely on clinical criteria, the judgment 
of the physician or healthcare professional, the patient’s self-
reporting of symptoms, and the diagnostic assessment selected. 
For this reason, PCS diagnosis is unreliable and poorly defined.

The Rivermead Post-Concussion Symptoms Questionnaire 
(RPCSQ) (10) is often used to quantify PCS symptoms. However, 
it has been shown that these criteria do not meet modern psycho-
metric standards, and it was suggested that the usual practice of 
summating the RPCSQ into a single score is unreliable (11). Other 
assessments used in the diagnosis of PCS include the World Health 
Organization (WHO) International Classification of Diseases 
(ICD) guidelines (12), the British Columbia Postconcussion 
Symptom Inventory (BC-PSI) (13), and the Neurobehavioral 
Symptom Inventory (NSI) (14). Unfortunately, PCS symptoms 
are not specific to TBI patients (7, 15–18), further complicating 
PCS diagnosis via these assessments. mTBI patients have been 
found to report a greater number and increased severity of PCS 
symptoms when compared with moderate or severe TBI patients 
(19, 20). Identifying a biomarker specific to TBI patients with PCS 
would greatly improve diagnosis and treatment.

Axonal damage can cause impaired network function (21, 
22) and may explain the symptoms experienced by patients after 
a TBI (23). Diffusion tensor imaging (DTI) is a non-invasive, 

in vivo imaging technique that measures the quantity and direc-
tion of water molecule diffusion (24). It is well-documented and 
validated for use in mapping microstructural changes, such as 
axonal damage, in the brain (24–28). The most commonly meas-
ured DTI parameter in brain research is fractional anisotropy 
(FA) (28), a measure of the directionality of diffusion (25). Other 
common DTI parameters include mean diffusivity (MD), a scalar 
measure of the total diffusion within a voxel (25), radial diffu-
sivity (RD), a scalar measure of the diffusion in two directions 
perpendicular to the length of an axon, and axial diffusivity (AD), 
a scalar measure of the diffusion along the length of an axon (29). 
Through these measurements, DTI can detect microstructural 
changes in the brain’s white matter tracts; abnormalities in these 
measurements indicate axonal damage, which may correlate with 
PCS symptoms (28, 30).

Diffusion tensor imaging has been used in the PCS population 
to study axonal damage that may be the underlying cause of the 
syndrome. A specific DTI biomarker for PCS would help identify 
and characterize these patients, providing the basis for treatments 
that target the anatomical deficits that cause the syndrome. A 
number of studies have looked at the classic DTI parameters in 
the PCS population (31–40). These studies offer information that 
can be helpful for clinicians and patients managing PCS, but often 
differ in the DTI parameters analyzed and in the brain regions 
found to have abnormal DTI values. A review to summate the 
current literature will help to design future studies to address 
gaps in the field. This paper reviews the use of DTI parameters 
as biomarkers for diagnosing and predicting PCS after mTBI. By 
summarizing the current literature on the use of DTI parameters 
in patients with PCS after an mTBI, this paper aims to assist future 
researchers, clinicians, and patients in determining the role of 
DTI as a diagnostic tool for and predictor of PCS.

MeTHODS

Literature Search
A comprehensive literature search was conducted on AMED, 
Embase, MEDLINE, Ovid, PubMed, Scopus, and Web of 
Science for all relevant articles reporting on the use of DTI in 
subjects who developed PCS post-mTBI, through 20 May, 2016. 
The databases were searched with the following search phrase 
using the Boolean logic operators “OR” and “AND”: “(DTI 
OR diffusion tensor imaging OR diffusion tractography) AND 
(mTBI OR mild traumatic brain injury OR concussion) AND 
(postconcussive syndrome OR post-concussive syndrome OR 
post concussive syndrome OR postconcussion syndrome OR 
post-concussion syndrome OR post concussion syndrome) 
AND human.” To ensure maximal article capture, these search 
terms also encompassed the following Medical Subject Headings 
(MeSH) terms: “diffusion tensor imaging,” “brain injuries,” and 
“post-concussion syndrome.” Manual searching of relevant 
journals and reference lists of studies found in the above search 
provided additional articles.

The search terms identified above yielded 205 studies. For this 
review, the PCS population was defined as patients who experi-
ence persistent symptoms for 3  months or longer post-injury. 
Inclusion criteria were studies published in English; use of human 
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FigURe 1 | Flow chart depicting the paper selection process.
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participants; and studies that analyzed changes in measured DTI 
parameters in patients with PCS following an mTBI. Exclusion 
criteria were studies that did not report method of diagnosing 
PCS; studies that did not report method of diagnosing mTBI; 
studies that were not original research; and studies with fewer 
than six participants. Two readers independently screened all 205 
studies, removing 79 duplicates, 16 conference abstracts, and 1 
foreign language paper. Six additional studies were identified from 
relevant reference lists and journals. Of the 115 studies remaining, 
92 were excluded for containing one or more exclusion criterion. 
A further 13 studies were removed after rescreening because they 
included patients who were assessed for PCS symptoms within 
3 months of injury. This resulted in 10 studies that were included 
in this review. The flow diagram for the paper selection process is 
presented in Figure 1.

Data extraction and Analysis
Each study was assessed by two reviewers for quality using 
STROBE guidelines (41). A point was awarded for each required 
criterion that was met. The two reviewers performed individual 
assessments, and scores were compared, with discrepancies 
resolved by discussion. The two reviewers also performed data 
extraction for the population studied, patient source, number of 
PCS patients, patient demographics (age and gender), mecha-
nism of injury, mTBI diagnosis method, PCS diagnosis method, 
time interval between injury and PCS diagnosis, time interval 
between injury and imaging, control group characteristics 
(screening process, number, and matching process), DTI values 

measured, DTI analysis method [voxel-wise or region of interest 
(ROI)], significant findings, conclusions (correlations between 
DTI and PCS), and study limitations for all nine studies. DTI 
studies most often do not quantify changes in DTI parameters 
because there are no established values for healthy patients, 
so only qualitative changes (increases and decreases) in these 
parameters were extracted for this review. Results of data extrac-
tion were compared between the reviewers, with discrepancies 
resolved with help from a third reader.

ReSULTS

A total of 205 studies were screened for eligibility, with 10 studies, 
published within the last 6 years, qualifying for review based on 
the inclusion and exclusion criteria. All studies scored between 
17 and 20 points out of a possible 22 in STROBE quality assess-
ment. The 10 studies included PCS patients from 8 to 65 years of 
age, with the mean age across all studies being 29.58 years. One 
study analyzed a pediatric population (31), one study analyzed a 
mixed pediatric and adult population (35), and the rest analyzed 
adult populations. Also, 235 PCS patients were included in the 
10 studies reviewed, with 141 male and 44 female PCS patients 
tested in the 8 studies that reported sex breakdown. All studies 
included control groups. One study (36) used a combination 
of patients with orthopedic injuries and healthy patients as 
controls, two studies (34, 39) used uninjured military members 
as controls, and the remaining seven studies used healthy 
controls. Nine studies (31–36, 38–40) performed a group-wise 
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TABLe 2 | Studies looking at DTi parameters in prospective PCS patients.

Article Population studied Diagnosis method (mTBi; PCS) DTi analysis 
approach

DTi values 
measured

D’Souza  
et al. (35)

Patients from a neurosurgery clinic, no reported mechanism 
of injury

American Congress of Rehabilitation Medicine; 
RPCSQ

ROI analysis FA, MD

Messé  
et al. (38)

Patients presenting to the emergency department, sustained 
an mTBI in an MVC, pedestrian injury, or aggression incident

American Congress of Rehabilitation Medicine; 
self-reported symptoms

Voxel-wise 
analysis

MD

Polak  
et al. (40)

PCS patients referred from a concussion clinic, sustained an  
mTBI in a sports-related event, fall, or when struck by an object

Physician diagnosis via the Buffalo Concussion 
Treadmill Test; WHO

Voxel-wise 
analysis

FA, MD, 
RD, AD

TABLe 1 | Studies looking at DTi parameters as a biomarker for PCS.

Article Population studied Diagnosis method (mTBi; PCS) DTi analysis 
approach

DTi values 
measured

Bartnik-Olson 
et al. (31)

Pediatric patients, sustained a sports-related mTBI in an 
organized athletic event

International Conference on Concussion in Sport;  
self-reported symptoms

ROI analysis FA, MD, 
RD, AD

Bouix et al. (32) Patients with persistent PCS, sustained an mTBI in an 
MVC, blast exposure, sports-related event, or assault

Emergency department triage; headaches, emotional 
dysregulation, cognitive, or memory impairments

ROI analysis FA, MD, 
RD, AD

Dean et al. (33) Patients who sustained an mTBI but did not report  
to the hospital, no reported mechanism of injury

WHO (ICD-10); RPCSQ Voxel-wise 
analysis

FA

Delano-Wood 
et al. (34)

Military veterans with a closed head TBI from blast 
exposure or blunt force trauma

US DoD and the Department of Veterans Affairs TBI 
Task Force; NSI

ROI analysis FA

Levin et al. (36) Post-deployment veterans and service members,  
sustained mTBI in a blast exposure

Physician diagnosis; NSI ROI analysis FA, MD

Maruta et al. (37) Patients with a single, isolated concussive injury to the 
head, no reported mechanism of injury

Physician diagnosis; self-reported symptoms Voxel-wise and 
ROI analysis

FA, MD, 
RD, AD

Miller et al. (39) Military veterans, sustained an mTBI in a blast exposure American Congress of Rehabilitation Medicine;  
RPCSQ

Voxel-wise 
analysis

FA
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comparison between controls and PCS subjects, while the last 
study (37) directly matched PCS patients to controls. Matching 
was achieved on the bases of age, gender, and years of education.

For the DTI analysis, four studies (33, 38–40) performed 
a whole brain voxel-wise analysis, four studies (31, 32, 34–36) 
used an ROI analysis, and two studies (37) used a voxel-wise 
approach to identify ROIs for subsequent ROI analysis. In the 10 
studies reviewed, the time interval between injury and imaging 
ranged from 7 days to 259 months, with a median imaging time 
of 20.5 months post-injury. The time interval between injury and 
PCS assessment ranged from 3 to 259  months, with a median 
assessment time of 23.2 months post-injury.

Seven of the ten studies analyzed DTI parameters in imaging 
conducted after PCS was diagnosed, thereby assessing the value 
of DTI as a biomarker of PCS (Table  1). The remaining three 
studies analyzed imaging conducted at the subacute or pre-PCS 
stage of injury in patients who were later diagnosed with PCS 
(Table 2). The importance of these studies is in the prediction of 
PCS development in mTBI patients.

A decrease in FA and increase in MD and RD were com-
monly observed in PCS patients post-mTBI. The most common 
finding across all studies was that FA decreased in patients with 
PCS following mTBI compared to controls, although three stud-
ies included in the review found no significant changes in FA 
(Table 3). An increase in MD was also found, although three of 
the six studies that analyzed MD did not find a significant change 
(Table 4). Messé et al. (38) compared mTBI patients with PCS 

to mTBI patients not experiencing PCS and found higher MD 
values in the PCS-present group. An increase in RD was also 
found in three of five studies that analyzed RD (Table  5). No 
changes in AD were observed in the five studies that analyzed this 
parameter. These changes in DTI parameters also had a positive 
correlation with PCS symptom severity. The corpus callosum was 
most frequently reported as being affected in PCS, with reduced 
FA and increased MD and RD (Table 6).

DiSCUSSiON

Findings in DTi Parameters
Decreased FA and increased MD and RD were reported in PCS 
patients compared to healthy controls or PCS-absent trauma 
patients. Abnormal DTI values were also reported to be corre-
lated with an increase in number and severity of PCS symptoms, 
suggesting that greater axonal damage causes more severe PCS 
symptoms. Decreased FA is a well-documented finding in brain 
injury (42–46), as is increased MD (42, 44, 45) and RD (43). In 
addition, regions within the corpus callosum were most often 
found to be affected in PCS patients. Two additional articles 
reporting on case studies also found decreased FA, specifically 
in PCS patients (47, 48). The corpus callosum is involved in 
inter-hemispheric integration of motor, sensory, and cognitive 
information, and damage to this area might lead to extensive 
behavioral, emotional, and cognitive impairments, as observed 
in the PCS groups. Although the effects of damage to the corpus 
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TABLe 6 | Studies that found changes in the corpus callosum.

Specific region DTi value Change Article

Genu MD ↑ Bartnik-Olson et al. (31)
Polak et al. (40)

RD ↑ Polak et al. (40)
Splenium FA ↓ Dean et al. (33)
Whole corpus callosum FA ↓ Levin et al. (36)

D’Souza et al. (35)
Forceps major MD ↑ Messé et al. (38)
Forceps minor MD ↑ Messé et al. (38)

TABLe 5 | Studies that analyzed radial diffusivity.

Article Brain region Change

Studies that found changes in RD
Bartnik-Olson et al. (31) Internal capsule (right anterior limb) ↑
Bouix et al. (32) Whole brain ↑
Polak et al. (40) Corpus callosum (genu) ↑

Studies that found no changes in RD
Maruta et al. (37)
Messé et al. (38)

TABLe 4 | Studies that analyzed mean diffusivity.

Article Brain region Change

Studies that found changes in MD
Bartnik-Olson et al. (31) Corpus callosum (genu) ↑
D’Souza et al. (35) Left uncinate fasciculus ↑
Messé et al. (38) Corpus callosum (forceps major and 

minor), inferior fronto-occipital fasciculus, 
inferior longitudinal fasciculus, superior 
longitudinal fasciculus, corticospinal tract, 
left anterior thalamic radiation

↑

Polak et al. (40) Corpus callosum (genu) ↑

Studies that found no changes in MD
Bouix et al. (32)
Levin et al. (36)
Maruta et al. (37)

TABLe 3 | Studies that analyzed fractional anisotropy.

Article Affected region Change

Studies that found changes in FA
Bouix et al. (32) Whole brain ↓
Dean et al. (33) Right anterior corona radiata, internal 

capsule (anterior limb), corpus callosum 
(splenium), fornix, frontal medial superior 
gyrus

↓

Delano-Wood et al. (34) Pontine tegmentum ↓
D’Souza et al. (35) Corpus callosum, left uncinate fasciculus, 

bilateral superior thalamic radiations
↓

Levin et al. (36) Corpus callosum ↓
Miller et al. (39) Greater number of white matter clusters ↓
Polak et al. (40) Corpus callosum (genu) ↓

Studies that found no changes in FA
Bartnik-Olson et al. (31)
Maruta et al. (37)
Messé et al. (38)
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callosum are not fully understood, it is reasonable to expect that 
these effects would include the symptoms of PCS patients.

Studies included in this review assessed different patient 
populations, including pediatric, adult, and military. Although 
age- and education-related differences in structural and func-
tional neuroanatomy have been documented (49, 50), all of the 
studies had a case–control design. Patients were matched to 
controls by age, gender, and education level, therefore ensur-
ing that changes detected in DTI parameters were not a result 
of comparisons made between inherently distinct populations. 
However, consistent findings in FA, MD, and RD across the 
studies suggest that the microstructural white matter damage 
detected is consistent in all patient groups. This possibility 
increases the value of DTI as a universal biomarker of PCS. In 
addition, 8 of the 10 studies (31–35, 38–40) excluded patients 
with abnormal CT or routine clinical MRI findings. This exclu-
sion criterion indicates that there is damage identified by DTI, 
which is not detected via more commonly used modalities, 
further emphasizing the utility and importance of DTI in the 
clinical setting. It is often acknowledged that the more widely 
available structural neuroimaging modalities have limited value 
in the mTBI and PCS populations (8, 51, 52).

Post-concussion syndrome has been found to be more 
prevalent in the mTBI population than the moderate or severe 
TBI populations (19, 20). However, it has been noted that axonal 
injury in these more severely injured groups usually presents with 
focal lesions and so is detectable via clinical MRI (53). Therefore, 
not all axonal injury is indicative of PCS. This evidence suggests 
that generalized axonal injury does not correlate well with PCS, 
but diffuse axonal injury (DAI), which presents as widespread 
axonal injury limited to the microstructure scale, may be more 
specific to PCS. This is also supported by a recent study using 
magnetic resonance spectroscopy (MRS), which found signifi-
cant correlations between DAI and PCS (54). However, PCS may 
not only be a result of neurological damage but may also develop 
due to psychological distress (55–57). For this reason, a patient 
who has not sustained an mTBI may still experience PCS because 
it is not unique to the mTBI or TBI population. Although patients 
with DAI may develop PCS, not all PCS patients have DAI.

ROi versus voxel-wise Analysis
Two studies (37, 39) that applied a voxel-wise analysis of the 
whole brain reported no significant findings in the corpus cal-
losum. Maruta et al. (37) reported no significant findings in any 
brain region but was the only study to have no significant find-
ings in all four DTI parameters in a whole brain analysis. Miller 
et al. (39) did find a decreased FA in several white matter clusters 
in the whole brain but did not identify specific brain regions 
where the clusters were located. Voxel-wise analysis requires 
intersubject registration of subjects’ brains and normalization to 
standard atlases. Both of these processes involve smoothing and 
hence may result in masking small differences between subjects 
or groups. All studies that used ROI analysis found significant 
changes in DTI parameters, suggesting that ROI analysis might 
be more proficient at identifying changes in specific brain regions. 
However, ROI analysis has some limitations: it requires a brain 
structure to be predefined for analysis, and manual selection of 
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the region to draw an ROI may lead to intersubject differences 
in ROI location. Despite these limitations, the success of ROI 
analysis in the studies reviewed is encouraging; once a particular 
region has been identified as most commonly damaged in PCS, 
diagnosis via DTI will be faster than if a voxel-wise approach 
was necessary.

Data Synthesis
Although DTI can detect axonal damage and possibly predict 
PCS onset or be used to diagnose PCS, there is insufficient evi-
dence supporting the observed results to validate any parameter 
in a specific brain region as a biomarker for PCS. The trends in 
the parameters are a decrease in FA and an increase in MD and 
RD, but there is no uniformity in the brain areas investigated 
for these changes. These findings suggest that there may be 
more than one DTI biomarker for PCS and that axonal damage 
does contribute to PCS symptoms. The subjective nature of PCS 
and the possibility of a large number of brain regions being 
involved in PCS may have led to the indefinite results. Each 
patient has a unique illness experience due to their baseline 
for many of the symptoms, such as fatigue, feelings of depres-
sion, feelings of frustration, forgetfulness, poor concentration, 
and restlessness. Patients have varying pain tolerances and 
emotional fortitudes that could either magnify or diminish 
the severity of PCS symptoms being reported. In addition, a 
researcher may focus on one or more brain regions or on the 
entire brain, depending on his or her research interests and 
image processing preferences.

Other Potential PCS Biomarkers
Other imaging modalities have been used to study PCS. In addi-
tion to the poor value of CT and MRI in the PCS population, 
studies have shown conflicting results in positron emission 
tomography (PET) in the PCS population, with some finding 
correlations between PET results and PCS (58–60), while others 
do not (51). A more promising imaging modality may be MRS, 
which has been used to detect DAI that is significantly correlated 
with PCS (54), although there is unsubstantial evidence that it is 
a reliable PCS biomarker. Evoked potential (EP) studies have con-
cluded that significant results in the EP data correlate with PCS 
(61, 62), but there is not enough concrete evidence to support 
these measurements as a PCS biomarker. Biochemical markers 
of PCS may also be viable. A review paper (63) identified S100 
proteins, neuron-specific enolase (NSE), and cleaved Tau protein 
(CTP) as potential serum biochemical markers for predicting 
PCS after an mTBI. The review concluded that none of the three 
compounds are well-validated for use, although S100 was most 
widely studied in the mTBI population and appears to be the 
most promising. It is possible that a combination of DTI, clinical 
factors, and biochemical markers may be needed to accurately 
and objectively diagnose PCS or predict its development after an 
mTBI.

Future Research Directions
Further research into this topic is necessary. All of the studies 
included in this review are cross-sectional. Future studies should 

consider a longitudinal cohort study design to track changes in 
DTI parameters during PCS progression and resolution, which 
would provide more concrete evidence of a specific biomarker 
for PCS. Recruiting a larger PCS patient population is required 
to reduce sample size biases. Research on DTI parameters in 
the brain is also required to establish “normal” values for FA, 
MD, RD, and AD, so that significant differences are based on 
a universal standard as opposed to being derived from each 
study’s controls. This will ensure that significant results are not 
misrepresented. Future case–control studies should try to use 
an orthopedic or other non-head trauma control group to help 
remove error in PCS reporting due to factors other than the 
sustained mTBI. Case–control studies may also consider com-
paring PCS-present mTBI patients to PCS-absent mTBI patients 
to eliminate most external confounding factors. These studies 
would be more likely to observe changes in DTI parameters 
specifically due to PCS. The large range of time intervals between 
injury and imaging reported in the ten reviewed articles is also a 
concern. In addition, 13 articles were excluded from this review 
because researchers conducted PCS assessment within 3 months 
of injury. It is suggested that future studies include patients 
whose PCS symptoms persist for 3  months or longer, as the 
literature supports PCS diagnosis when symptoms persist for 
this length of time. Finally, a standard PCS assessment should 
be administered to ensure consistency across all future stud-
ies. Consulting the Common Data Elements identified by the 
National Institutes of Health would help establish assessment 
standards.

CONCLUSiON

To our knowledge, this is the first systematic review that 
examines the use of DTI parameters in the human brain as a 
diagnostic tool for patients with PCS and a predictor of PCS 
in mTBI patients. DTI abnormalities indicate axonal damage, 
which leads to an increased risk of developing PCS after an 
mTBI. However, no DTI biomarker for PCS is identified due 
to the small body of research conducted on the topic and the 
heterogeneity of results reported. Further research is required 
to establish a standard DTI biomarker for PCS diagnosis and 
prediction.
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