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Diving response (DR) is a powerful integrative response targeted toward survival of the 
hypoxic/anoxic conditions. Being present in all animals and humans, it allows to survive 
adverse conditions like diving. Earlier, we discovered that forehead stimulation affords 
neuroprotective effect, decreasing infarction volume triggered by permanent occlusion of 
the middle cerebral artery in rats. We hypothesized that cold stimulation of the forehead 
induces DR in rats, which, in turn, exerts neuroprotection. We compared autonomic [AP, 
heart rate (HR), cerebral blood flow (CBF)] and EEG responses to the known DR-triggering 
stimulus, ammonia stimulation of the nasal mucosa, cold stimulation of the forehead, 
and cold stimulation of the glabrous skin of the tail base in anesthetized rats. Responses 
in AP, HR, CBF, and EEG to cold stimulation of the forehead and ammonia vapors instil-
lation into the nasal cavity were comparable and differed significantly from responses 
to the cold stimulation of the tail base. Excitotoxic lesion of the subthalamic vasodilator 
area (SVA), which is known to participate in CBF regulation and to afford neuroprotection 
upon excitation, failed to affect autonomic components of the DR evoked by forehead 
cold stimulation or nasal mucosa ammonia stimulation. We conclude that cold stimula-
tion of the forehead triggers physiological response comparable to the response evoked 
by ammonia vapor instillation into nasal cavity, which is considered as stimulus triggering 
protective DR. These observations may explain the neuroprotective effect of the forehead 
stimulation. Data demonstrate that SVA does not directly participate in the autonomic 
adjustments accompanying DR; however, it is involved in diving-evoked modulation of 
EEG. We suggest that forehead stimulation can be employed as a stimulus capable of 
triggering oxygen-conserving DR and can be used for neuroprotective therapy.

Keywords: diving response, nasal ammonia stimulation, forehead cold stimulation, autonomic parameters, 
neuroprotection, subthalamic vasodilator area, electroencephalography

inTrODUcTiOn

“Diving response” (DR) is a specialized integrative state of the organism targeted toward survival 
of potentially hypoxic/anoxic conditions, such as diving (1). Observed in diving animals, arche-
typal DR consists of the coordinated activation of at least three reflexes: simultaneous activation of 
parasympathetic and sympathetic systems and respiratory adjustments (2, 3). Activation of these 
reflexes leads, respectively, to bradycardia (4–10), peripheral vasoconstriction limiting blood supply 
to muscles and “non-critical” organs (2, 11–15), increase in arterial pressure (2, 16–18), and apnea 
(12, 18, 19).
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Diving response is initiated by the excitation of the  ophthalmic 
division of the trigeminal nerve (2), which innervates nasal 
mucosa, cornea, forehead, and cerebral dura mater (20, 21). 
Stimulation of the nasal mucosa by perfusion of water or ammo-
nia vapors through the nasal cavity triggers similar response 
(6, 22). Direct stimulation of the ethmoidal nerve branching 
from the ophthalmic division and innervating the nasal mucosa 
produces DR (23).

Autonomic component of the DR is mediated by the medul-
lary circuitry and preserved in decerebrated animals (12, 24). The 
afferents of the ethmoidal nerve project to the medullary dorsal 
horn neurons through the trigeminal ganglion. Medullary dorsal 
horn neurons issue multiple projections (25). Transsynaptical 
viral tracing of the ethmoidal nerve projections revealed fibers 
reaching nucleus tractus solitarii, rostral ventrolateral medulla 
(RVLM), lateral tegmental field, Kolliker Fuse nucleus, and 
superior salivatory nucleus (SSN) (1, 26). Sympathetic activation 
responsible for the pronounced peripheral vasoconstriction 
seems to be mediated by RVLM (27), which, among others, 
harbors neurons innervating preganglionic neurons of inter-
mediolateral column of the spinal cord and is critical for the 
control of sympathetic tone (28). Importantly, stimulation of 
RVLM produces metabolically independent increase in cerebral 
blood flow (CBF) (29, 30) and exerts some neuroprotection 
(Yamamoto and Golanov, unpublished observation). Projections 
of the medullary dorsal horn neurons receiving ethmoidal nerve 
afferents are observed in pre-Botzinger and trapezoid nuclei 
(31), which are known to participate in respiratory regulation 
(32–34) and may be involved in the apneic component of DR 
(1). DR-associated bradycardia most probably involves activation 
of parasympathetic preganglionic neurons of nucleus ambiguus, 
which receive projections from medullary dorsal horn neurons 
targeted by ethmoidal afferents (35).

Integral effect of DR is overall decreased oxygen consump-
tion and preservation of vital functioning of heart and brain 
during apneic period (17, 36–38). DR, an evolutionary ancient 
mechanism of survival of low-oxygen/anoxic conditions (39–41), 
presents in all animals (1) and exerts powerful protection against 
anoxic conditions (42). There are reports of humans who remained 
submerged under water for prolonged periods of time (over 1 h 
in some cases) and fully recovered afterward (43–46). Survival 
after near drowning does not depend on body temperature (45, 
47, 48), and the DR is suggested to be an important component 
of survival (49).

While stimulation of the ethmoidal nerve produces DR (23), 
its transection does not eliminate DR in rats, suggesting that 
other branches of the ophthalmic nerve are capable of triggering 
DR (50). In humans, dipping face into cold water is sufficient to 
initiate typical DR consisting of hypertension and bradycardia 
(2, 8, 10, 51, 52). In fact, it was suggested that stimulation of face 
cold receptors is vital for the “survival” DR response (53). These 
findings allowed us to hypothesize that forehead stimulation 
can be neuroprotective. In agreement with this hypothesis, we 
established that cold or electrical forehead stimulation exerts 
neuroprotective effects, decreasing the infarction volume induced 
by permanent middle cerebral artery occlusion in rats (54). We 
suggested that forehead stimulation is capable to trigger DR and 

accompanying activation of endogenous neuroprotective system 
(55). Non-invasive, simply applicable method of activation of the 
DR opens potential of using its protective properties in clinical 
settings.

The basic “tri-partite” components of the DR – hypertension, 
bradycardia, and apnea – seem to be mediated at the medullary 
level (1, 3, 27). However, this basic circuitry mediating autonomic 
component of the DR is also under control of suprabulbar struc-
tures (56). The suprabulbar components of the DR are not well 
investigated. Subthalamic vasodilator area (SVA) plays an impor-
tant role in the hypoxia-induced cerebral vasodilation and affords 
neuroprotection upon stimulation, as we established earlier 
(57, 58). We hypothesized that SVA may be involved in suprab-
ulbar regulatory mechanisms of DR. Here, we explored whether 
cold stimulation of the forehead triggers autonomic responses 
comparable to those induced by nasal mucosa stimulation with 
ammonia vapors as a “classic” model of DR and compared the 
responses to changes evoked by cold stimulation of the glabrous 
skin of tail base in anesthetized rats, and possible role of SVA in 
DR mechanisms.

MaTerials anD MeThODs

All experiments were performed in accord with NIH “Guide 
for the care and use of laboratory animals” and approved by the 
IACUC of the University of Mississippi Medical Center.

general Procedures
The methods were described in detail in our previous publica-
tions (58). In short, experiments were performed in adult male 
Sprague-Dawley rats (250–300  g), maintained in thermally 
controlled facilities with 12/12 h light cycle and ad libitum access 
to lab chow and water. Anesthesia was initiated in the induction 
chamber using 5% isoflurane and maintained during surgery at 
2–2.5%. All experiments were conducted under isoflurane level 
of 1.2–1.5% in mixture of 80% N2 and 20% O2. Both femoral 
arteries were cannulated to monitor arterial pressure and to 
sample blood for blood gasses. Animals were intubated and 
ventilated using mechanical ventilator at 50–60  strokes/min. 
Blood gasses were maintained at normal level (pH 7.46 ± 0.023; 
PaO2: 94.3 ± 1.1 mmHg; PaCO2: 34.2 ± 0.8 mmHg) (59). Body 
temperature was maintained at 37°C using feedback-controlled 
thermoblanket. Following instrumentation, animals were placed 
in the stereotaxic frame. The calvarium was exposed through 
the midline cut and the bone was thinned over the area of 
3  mm  ×  4  mm over the parietal cortex to place laser Doppler 
needle probe (Periflux PF3, Perymed). A stainless steel screw 
was inserted through the bone extradurally 0.5 mm rostral and 
1  mm lateral to bregma for EEG recording. Arterial pressure 
was recorded using strain-gauge pressure transducer. EEG was 
recorded monopolarly with the reference electrode placed in 
the muscle caudally to the midline cut. EEG signal was filtered 
at 0.1–100  Hz. Laser Doppler probe (0.45  mm diameter) was 
positioned over the thinned bone over the parietal cortex area 
avoiding visible large vessels, and drop of paraffin oil was placed 
under the probe to provide optical contact. The probe was left 
in place till the end of experiment. Regional CBF was recorded 
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with time constant of 0.2 s and expressed in arbitrary units. After 
placing the probe, cerebrovascular reactivity was assessed by 
adding CO2 to breathing mixture for ~2  min, which increased 
PaCO2 to ~50–60 mmHg. This maneuver triggered fast elevation 
of CBF by 60–90%. The test was repeated several times during 
the experiment. If reactivity was lost, animal was euthanized and 
excluded from the analysis.

cold stimulation
Animal forehead was shaved and small thermocouple was 
introduced under the skin at the rostral angle of the cut on the 
top of the head. To induce cold stimulation, 1,1-difluoroethane 
(“Canned Air”) was directly applied to the forehead skin for 
5  s. 1,1-difluoroethane is a volatile liquid with a boiling point 
of −25°C. Upon application, it immediately evaporated and 
decreased under-skin temperature to a minimum of ~12°C by 
15  s after the beginning of application. Temperature gradually 
returned to the baseline of 35.6°C in ~2 min. Identical stimula-
tion has been applied to the base of the tail. There are no known 
irritation effects of skin application of the 1,1-difluoroethane 
besides possible “frostbites,” when excessive amount is applied 
for extended period of time. We did not observe any residual 
skin effects, such as redness or edema, even after multiple short 
applications of 1,1-difluoroethane in our experiments.

ammonium application
To introduce ammonia vapors into the nasal cavity polyethylene 
catheter (PE-50) was introduce into the nasal cavity through the 
nares until it reached nasopharynx. Piece of cotton saturated 
with 50% solution of ammonia hydroxide was placed near the 
nostrils, and gentle suction was applied for 5  s to the external 
end of the nasal catheter to create a slightly negative pressure in 
the nasopharynx, allowing ammonia vapors to be sucked into the 
nasal cavity through the nares (3). Cotton ball was removed while 
suction was continued to evacuate ammonia hydroxide vapors 
from the nasal cavity. All tests were applied three times in each 
animal with the 10 min intervals.

excitotoxic lesion of subthalamic 
Vasodilatory area
The intrinsic neurons of the SVA were bilaterally destroyed with 
neurotoxin, ibotenic acid. Rats were anesthetized using face mask 
and placed in stereotaxic frame. Calvarium was exposed, and, 
through a burr hole, glass micropipette with the tip diameter of 
40–50  μm was inserted at 4.8  mm posterior and 1.5 lateral to 
bregma to the depth of 7.2 mm. Single injection of 3 nmol of IBO 
in 20 nl of phosphate buffered saline (PBS) was delivered. After 
injection pipette was kept in place for additional 5 min to avoid 
backflow. Symmetrical injection on the other side was performed. 
After wound closure and recovery from anesthesia, animals were 
kept in the home cage for 5 days before the experiment. Control 
animals received injection of PBS. As microinjections of PBS into 
SVA did not affect baseline or cooling and ammonia response the 
data obtained in this animals were pooled together with naïve 
animals.

histological Procedures
After euthanasia with carbon dioxide, brains were removed and 
frozen in isopentane and stored at −80°C until analysis. For 
histological analysis, brains were sectioned at 20  μm thickness 
at −20°C and stained with thionin. Lesioned sites were identified 
using anatomical brain atlas (60) (Figure 6).

Data collection and Processing
All data were digitized using ADInstruments digitizer and stored 
for further analysis. Data processing, including fast Fourier trans-
formation (FFT) of EEG, was performed using LabChart software 
package. Mean arterial pressure (MAP) was calculated according 
to the formula: 2/3 diastolic pressure  +  1/3 systolic pressure. 
Cerebrovascular resistance (CVR) was calculated as a ratio 
between MAP and CBF and expressed as percentage of change 
relative to the baseline. EEG was normalized as percentage of the 
total power in 0.1–15 Hz interval. For the study purposes, EEG 
rhythms were defined as follows: delta rhythm – 0.1–3.0 Hz; theta 
rhythm – 3.1–7.0  Hz; alpha rhythm 7.1–11.0  Hz; beta rhythm 
11.1–15 Hz. Data were expressed as mean ± SEM. For statisti-
cal analysis, t-test for independent and repeated measures and 
two-way repeated measures ANOVA with Bonferroni post  hoc 
multiple comparisons were used (SPSS). Differences were con-
sidered significant at p < 0.05.

resUlTs

In 12 animals, response to ammonia vapors passage through the 
nasal cavity has been analyzed. In response to ammonia vapor 
passage through the nasal cavity, MAP increased by 17.5 ± 3.3% 
(from 95.6 to 112.5 mmHg, p < 0.05) in 11 ± 1 s and returned to 
the baseline in 146 s (Figures 1A and 4A). The increase in MAP 
was accompanied by small and slow increase in heart rate (HR), 
reaching maximum of 1.7  ±  0.4% (from 359.6 to 365.3 beats/
min, p < 0.05) in 55 ± 4 s (Figures 1C and 4C). In parallel, CBF 
demonstrated robust increase by 22.8 ± 3.5% reached in 11 ± 1 s 
(p < 0.5, Figures 1 and 4B). Increase in CBF was accompanied 
by non-significant decrease in CVR by −6.6 ± 3.3% at 34 ± 5 s 
returning to the baseline in 80 s (Figures 1D and 4D). In response 
to intranasal ammonia vapor administration, power of EEG 
delta rhythm significantly decreased by 10.6 ± 5.1% (p < 0.05) 
compared with the background activity. At the same time, theta 
rhythm power increased by 7.2 ± 3.3% (p < 0.05), while alpha and 
beta rhythm did not change significantly (Figure 3).

In the same animals, response to the forehead cooling was 
tested. Five-second application of cold stimulus to the forehead 
triggered decrease of the subcutaneous temperature from 35°C to 
a minimum of 12°C reached in 19 s after the initiation of cooling 
and returned to the baseline by 157 s. In response to decreased 
forehead temperature MAP raised by 15.0 ± 2.1% (p < 0.05, from 
92.8 to 106.7  mmHg) in 7  s when subcutaneous temperature 
decreased to 16.7°C (Figures 1A and 4A). Increase in MAP was 
comparable to that observed in response to passage of ammonia 
(p > 0.05). In parallel, HR increased by 2.8 ± 0.5% (p < 0.05, from 
353.4 to 363.2 beats/min) reaching maximum at 23 s (Figures 1C 
and 4C). CBF started to increase within 2 s of the beginning of 
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FigUre 1 | averaged responses of mean arterial pressure [MaP (a)], cerebral blood flow [cBF (B)], heart rate (c), and cerebrovascular resistance 
[cVr (D)] to ammonia vapors instillation into the nose (green line), cold stimulation of the forehead (red line), and cold stimulation of the tail base 
(blue line) in naïve anesthetized artificially ventilated rats expressed as delta percent change compared with baseline (n = 12 animals, 36 tests of 
each modality).
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cooling and reached maximum of 16.8 ± 3.4% (p < 0.05) in 9 s. 
After insignificant increase at 10 s, CVR decreased significantly by 
5.5 ± 2.2% (p < 0.05) at 81 s (Figures 1D and 4D). All parameters 
returned to the baseline within 5 min. Forehead cooling did not 
affect EEG significantly (Figure 3).

Comparable 5-s cooling of the tail base triggered biphasic 
increase in MAP. First, fast increase reached 7.2 ±  2.5% in 6  s 
(from 92.3 ± 2.4 to 98.9 ± 4.1 mmHg, p < 0.05;) followed by the 
secondary delayed increase by 7.7 ± 2.6% (to 101.7 ± 3.5 mmHg, 
p < 0.05) at 90 s (Figures 1 and 4A). MAP returned to the baseline 
in 5 min. Increases in MAP response to tail base cooling was sig-
nificantly smaller than responses to ammonia passage or forehead 
cooling evoked responses. HR in response to tail base cooling 
was gradual, and, after fast initial increase, it continued to rise 
reaching maximum of 4.2 ± 1.8% (from 354.4 ± 5.7 to 370.0 ± 9.6 
beats/min, p < 0.05) by 120 s and returned to the baseline also 
in 5 min (Figures 1 and 4C). CBF increase likewise was biphasic: 
after peaking in 7 s by 9.8 ± 2.7% (p < 0.05), it continued to rise 
after the short decrease and reached 18.1 ± 3.1% (p < 0.05) by 

102 s and returned to the baseline in parallel with MAP (Figures 1 
and 4B). CVR also demonstrate biphasic changes similar to MAP 
and CBF, the first decrease of −7.0 ± 2.2% (non-significant, n.s.) 
in 16  s after the stimulus onset was followed by the secondary 
slightly deeper decrease by −8.1 ± 3.1% (p < 0.05) at 111 s. CVR 
returned to the baseline in parallel with CBF in 5 min (Figures 1 
and 4D). In response to tail base stimulation, delta rhythm was 
significantly depressed by 11.1 ± 3.2% (p < 0.05) and theta rhythm 
increased by 9.9 ± 4.4% (p < 0.05). Alpha and beta rhythm were 
not affected significantly (Figure 3).

effects of sVa lesions
In seven other animals, SVA was lesioned by intraparenchymal 
injection of ibotenic acid. Histological identification of the 
localization of lesion of subthalamic vasodilatory area estab-
lished gliosis in SVA and in the immediate vicinity, including 
mediate pole of zona incerta, prerubral nucleus, and field of Forel 
(Figure 6). Only animals that demonstrated gliosis in the SVA 
area were included in the analysis. Baseline absolute values of 
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FigUre 2 | comparison of changes (difference between percent of total power before and after stimulus) of eeg rhythms [(a) Delta rhythm, 
(B) Theta rhythm, (c) alpha rhythm, (D) Beta rhythm] expressed as change in percent of total power in response to nasal ammonia vapor instillation 
and forehead and tail cold stimulation in naïve (n = 12, green bars) and animals after the lesioning of the subthalamic vasodilator area (n = 7, red 
bars), *p < 0.05 significance of the amplitude of the response compared with the baseline, †p < 0.05, significance between response in naive and 
sVa-lesioned animals, error bars – seM.
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MAP were significantly (p  <  0.05) higher: 107.3  ±  4.0  mmHg 
in SVA-lesioned animals compared with 92.7  ±  3.1  mmHg in 
naïve animals. HR did not differ significantly between naïve and 
SVA-lesioned animals: 354.5  ±  8.1 beats/min and 360.1  ±  9.1 
beats/min, respectively. Baseline EEG was significantly affected 
by SVA lesion. Background delta rhythm power decreased 
by 18.2  ±  2.3%, alpha and beta rhythm powers increased by 
9.0 ± 2.4% and 6.7 ± 1.9%, respectively (p < 0.05), while theta 
rhythm power did not change significantly (Figure 5).

In SVA-lesioned animals, MAP change in response to 
ammonia passage through the nasal cavities was significantly 
(p < 0.05) facilitated compared with non-lesioned animals and 
reached 29.3 ± 4.2% (from 106.8 ± 3.9 to 138.5 ± 6.2 mmHg) 
with that comparable to non-lesioned animals latency of 10  s 
(Figures 3A and 4A). MAP returned to the baseline within 5 min. 
HR decreased within 4 s by 1.3 ± 0.6% (from 365.3 to 361.6 beats/
min). While the decrease was not significant compared with the 
baseline it differed significantly when compared with naïve ani-
mals, which demonstrated increase in HR (Figures 3C and 4C). 
CBF response was facilitated reaching 28.6 ±  6.1% (p <  0.05), 
which was not significantly different from the response in naïve 
animals. However, CBF returned to the baseline significantly 

faster than in naïve animals within 41  s (Figures  3B and 4B). 
Following SVA lesion, CVR demonstrated non-significant short 
increase of 5.3 ± 1.2% in 9 s (Figures 3D and 4D). In response 
to ammonia passage, only alpha rhythm was significantly sup-
pressed by 7.3 ± 1.2% (p < 0.05), while power of other rhythms 
did not reach level of significance (Figure 2).

In response to the forehead cooling in SVA-lesioned ani-
mals, MAP increased comparable to the response observed 
in naïve animals, but, like response to ammonia, was slightly 
higher and reached 20.2  ±  5.1% (p  <  0.05) (from 105.7  ±  3.6 
to 126.9  ±  4.2  mmHg) of baseline in 6  s and returned to the 
baseline in 24  s (Figures  3A and 4A). HR in response to the 
forehead stimulation increased in 6 s by 1.9 ± 0.8% (n.s.) (from 
355.61  ±  13.1 to 361.7  ±  10.8 beats/min) followed by second-
ary increase by 2.5 ±  1.0% (n.s.) (to 363.8 ±  9.5 beats/min) at 
40  s which also did not significantly differ from other stimuli 
and slowly returned to the baseline in 5  min (Figures  3C and 
4C). CBF, in response to stimulation, increased in 6 s in parallel 
to MAP, reaching 19.9  ±  4.5% with secondary increase up to 
36.2 ± 6.5% at 136 s and slowly returned to the baseline in 5 min 
(Figures  3B and 4B). CVR changes in SVA-lesioned animals 
were amplified compared with naïve animals. CVR in parallel 
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FigUre 3 | averaged responses of mean arterial pressure [MaP (a)], cerebral blood flow [cBF (B)], heart rate (c), and cerebrovascular resistance 
[cVr (D)], to ammonia vapors instillation into the nose (green line), cold stimulation of the forehead (red line), and cold stimulation of the tail base 
(blue line) in anesthetized artificially ventilated rats after the lesioning of the subthalamic vasodilator area (sVa) (n = 7 animals, 21 tests of each 
modality).
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with CBF increased acutely to 10.8 ± 3.4% (p < 0.05) by 8 s and 
decreased by −7.9 ± 2.6 (p < 0.05) at 32 s and further dropped 
to a minimum of −14.5 ± 4.5% at 140 s, returning to the baseline 
in 5 min (Figures 3D and 4D). Forehead cooling induced sup-
pression of theta rhythm by 6.4 ± 1.8% (p < 0.05), while other 
rhythms remained unchanged (Figure 2).

Response to tail base cold stimulation also was affected 
in SVA-lesioned animals. Increase in MAP was attenuated 
and changes were non-significant with the slight increase of 
2.3 ± 0.8% (from 107.6 ± 1.2 to 110.1 ± 5.3 mmHg) within 4 s, 
followed by drop and return to the baseline in 3 min (Figures 3A 
and 4A). HR increased by 1.9 ± 1.0% at 24 s (from 359.9 ± 9.3 
to 365.1  ±  9.6  beats/min), while not reaching significance 
compared with the background. However, it was significantly 
(p  <  0.05) less than in naïve animals (Figures  3C and 4C). 
CBF response also was attenuated. Initial peak of increase of 
6.8 ± 1.4% was reached in 12 s with the secondary increase at 

93 s to 16.8 ± % (p < 0.05), with gradual return to the baseline 
in 5  min (Figures  1, 2 and 4B). In parallel, CVR dropped to 
−8.1 ± % with the further decrease to −14.0 ± 3.5 (p < 0.05) in 
112 s and returned to the baseline in 5 min (Figure, 1, 2, 4D). 
Cold stimulation of the tail base failed to significantly modify 
EEG in SVA-lesioned animals (Figure 2).

DiscUssiOn

The Model
In our experiments, we explored whether cold stimulation of 
the forehead is capable to induce DR. We compared autonomic 
responses triggered by stimulation of the nasal mucosa with 
ammonia and by cold stimulation of the forehead or the glabrous 
skin of the tail base. Changes in AP and CBF evoked by ammonia 
vapors instillation into the nasal cavity or by cold stimulation 
of the forehead were similar. Both responses, however, differed 
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FigUre 4 | comparison of changes of the maximum amplitudes of early responses of mean arterial pressure [MaP (a)], cerebral blood flow  
[cBF (B)], heart rate [hr (c)], and cerebrovascular resistance [cVr (D)] in response to nasal ammonia vapor instillation and forehead and tail cold 
stimulation in naïve animals (n = 12, green bars) and animals after the lesioning of the subthalamic vasodilator area (n = 7, red bars), *p < 0.05, error 
bars – seM.

FigUre 5 | Power of eeg components expressed as percent of total power in naïve anesthetized artificially ventilated animals (n = 12, green line) 
and in anesthetized artificially ventilated animals after lesion of subthalamic vasodilator area (n = 7, red line), *p < 0.05 comparison between naïve 
and lesioned animals, error bars – seM.
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FigUre 6 | schematic presentation of areas lesioned by ibotenic acid injection based on the histological analysis. Level −4.8 mm from bregma (60). F, 
nucleus of the fields of Forel; Po, posterior thalamic nuclear group; PR, prerubral field; SNR, substantia nigra, reticular part; VPM, ventral posteromedial thalamic 
nucleus; ZID, zona incerta, dorsal part; ZIV, zona incerta, ventral part.
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significantly from those induced by cold stimulation of glabrous 
skin of the tail base.

It is generally accepted that stimulation of the nasal mucosa 
triggers DR (1, 61–63). The prototypic DR observed in marine 
animals can be reproduced in other animals, including birds 
and terrestrial animals. It consists of characteristic and unique 
triad: hypertension, bradycardia, and apnea, which result from 
the simultaneous coordinated activation of sympathetic and 
parasympathetic systems (1, 11, 12). Our experiments demon-
strated that MAP, HR, CBF, and CVR responses to the application 
of the stimuli of different modality, but within the zone inner-
vated by the trigeminal nerve, were comparable. At the same 
time, the stimuli of the same modality (cold) applied to areas 
innervated by different nerves, forehead and tale base, produced 
different responses. These observations suggest that activation 
of trigeminal system evokes autonomic responses, which differ 
from responses triggered from other areas. Along with that, some 
common features between tail and forehead cooling induced 
responses suggest the existence of shared mechanisms probably 
related to excitation of somatic cold receptors. Because nasal 
mucosa stimulation-induced response is considered archetypal 
DR, we suggest that forehead stimulation also triggers response, 
which is close if not identical to DR. This conjecture finds support 
in the observations that, in humans, cold face stimulation triggers 
autonomic changes, hypertension, and bradycardia, similar to the 
DR (2, 8, 10, 51, 52).

It is thought that cold stimulation of the ophthalmic branch 
of trigeminal nerve initiates DR (2). Cold stimulation of the 
forehead and ammonia nasal mucosal stimulation in our 
experiments triggered autonomic responses typical for the DR. 
However, we did not observe bradycardic component of the DR. 
The weak tachycardic response observed by us probably occurred 
due to artificial ventilation and isoflurane anesthesia. Lung infla-
tion attenuates bradycardia during DR (64), and isoflurane is 
capable of decreasing the parasympathetic cardiac drive (65). 
Simultaneous use of isoflurane in combination with mechanical 
ventilation in our experiments may negate bradycardic response. 
This speculation is supported by our observations of pronounced 
bradycardic responses accompanied by hypertension to electrical 
stimulation of the forehead in spontaneously respiring rats under 
isoflurane anesthesia (66, 67). These findings also indicated that 
apnea plays an important role in the bradycardic component of 
the DR (68). Overall, it is possible to conclude that forehead cold 
stimulation triggers autonomic response comparable to DR.

Studies of the mechanisms of the DR are complicated by the 
various problems related to difficulties of working with diving 
animals or use of voluntary or forced diving in terrestrial animals 
(9). Our model allows studying mechanisms of DR in laboratory 
conditions using various physiological approaches. Use of arti-
ficial ventilation provides advantages to explore the mechanism 
of the DR. First, it obviates heart–lung reflexes (69), which, 
while a part of the “normal” DR, complicate studies of central 
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mechanisms responsible for the initiation of the DR. Second, it 
allows to maintain normal partial pressure of blood gasses and 
avoids superimposition of chemoreflexes, which also complicate 
studies of the central mechanism of the DR. Our model of the 
DR using forehead cold stimulation offers advantages to dissect 
its central mechanisms.

changes in cerebral Blood Flow
It is generally assumed that blood flow to the brain increases dur-
ing the DR (11, 12). However, limited amount of data are avail-
able on the changes of CBF during the DR. Blood flow velocity 
in the middle cerebral artery in humans increases in response 
to face cold test (70, 71). Direct stimulation of nasociliary nerve 
triggers transient increase in CBF (72). Other studies failed to 
demonstrated changes in CBF related to trigeminal system 
activation (73, 74). In our model, ammonia nasal stimulation 
and cold forehead stimulation triggered robust increase in CBF, 
suggesting that trigeminal stimulation triggers increase in CBF 
independent of modality. The central mechanisms of the DR 
include activation of RVLM and nucleus tractus solitarius (NTS) 
(1). These structures are capable not only to regulate the activity 
of sympathetic and parasympathetic systems but also induce 
global neurogenic increase in CBF (75–77). Neurogenic origin 
of CBF increase is evidenced by the decrease in CVR because 
mechanisms of autoregulation maintain stable CBF in face of 
increased MAP by increasing CVR (78). It is conceivable that 
activation of RVLM also initiates increase in CBF as a part of 
the DR. However, limited decrease in CVR suggests that, in 
our model, neurogenic cerebrovasodilation is not the major 
component of CBF increase and results also from the increase in 
MAP mediated by excitation of locus coeruleus and Kolliker Fuse 
nuclei (18). This suggestion is further confirmed by the fact that 
lesion of SVA mediating RVLM-induced CBF increase (58) failed 
to do so in our experiments.

role of subthalamic Vasodilatory area
Autonomic components of the DR are mediated by the medullary 
circuitry (7, 12, 24) as the afferents of the trigeminal ophthalmic 
branch through the trigeminal ganglion project to NTS, RVLM, 
lateral tegmental field, Kolliker Fuse nucleus, and SSN (26, 31). 
Peripheral autonomic reflexes comprising DR (nasotrigeminal 
reflex) in traditional sense seem to be mediated by the medulla 
and spinal cord (3). However, this basic circuitry mediating auto-
nomic component of the DR is also under control of suprabulbar 
structures (56) and regulates brain activity, brain vasculature, 
and CBF. SVA activation triggers neurogenic metabolically 
independent increase in CBF evidenced by the decrease in CVR 
without affecting AP. It also participates in cerebrovasodilation 
induced by hypoxia (58). Moreover, stimulation of the SVA 
affords neuroprotection (57). We hypothesized that SVA may 
participate in the DR mechanisms. However, lesion of SVA did 
not reverse but augmented increase in MAP and CBF in response 
to stimulation of nasal mucosa or forehead. HR increase was 
suppressed (or unchanged in case of the forehead stimulation) 
and, in response to ammonia application, was even reversed 
becoming slightly bradycardic. Tail base responses, on the 

opposite, were suppressed. Interestingly, MAP increase evoked by 
tail base stimulation was also suppressed. Amplified decrease in 
delayed, secondary CVR in response to tail stimulation suggests 
increased neurogenic cerebrovasodilation in response to tail base 
stimulation following SVA lesion. To summarize, it is possible 
to suggest that SVA may attenuate sympathetic activation of the 
heart rate and somatically (tail) induced MAP. At the same time, 
trigeminally induced changes in AP seem to be potentiated, which 
explains amplified CBF response. Secondary delayed increase in 
CBF following forehead cold stimulation and after SVA lesion 
may relate to release of vasodilatory mediators, such as NO, or 
prostaglandins and requires further investigation. To conclude, 
it seems that SVA does not participate directly in trigeminal or 
somatosensory cerebrovasodilation, but rather modulates these 
responses. It is conceivable that MAP increase-related increase 
in CBF is sufficient to provide additional blood supply without 
neurogenic cerebrovasodilation, which is consistent with the 
DR-associated “centralization” of circulation. Whether SVA 
participates in DR-induced neuroprotection (66, 67) remains to 
be established.

eeg activity
Limited data are available on the EEG changes accompanying 
DR. In seals, EEG was changing from alpha low voltage activ-
ity to prevalence of high voltage slow waves (79). Apnea alone 
does not produce significant changes in EEG (80). Trigeminal 
stimulation has been proposed to suppress seizure-like EEG 
synchronization (81, 82). In our experiments, ammonia nasal 
stimulation and tail base stimulation shifted power of EEG 
frequencies from delta to theta rhythms. Delta rhythm is gener-
ally associated with deep non-REM sleep and reflects decreased 
brain metabolic activity (83). Theta rhythm is observed in 
various conditions, including general anesthesia, attention, 
and activity (84). There seems to be two different types of theta 
rhythm. The first type has higher frequency, can be blocked with 
atropine, and relates to repeated voluntary behavior. The second 
type – atropine insensitive – is of lower frequency and relates 
to general anesthesia or behavioral immobility (85). It was 
demonstrated that orexin A, synthesized by neurons of lateral 
hypothalamus promotes wakefulness. Intracerebroventricular 
administration of orexin A leads to decrease in the power of 
delta rhythm and simultaneous increase in the power of theta 
rhythm (86). In our experiments, we observed shift from delta to 
theta rhythm in response to ammonia nasal stimulation and tail 
base stimulation. This observation suggests that these stimuli 
exert short arousal-like effect. Because of anesthesia, full arousal 
did not occur as evidenced by the lack of alpha desynchroniza-
tion. Intralaminar and midline thalamic nuclei participate in 
arousal processes (87). SVA is localized to the posterior midline 
subthalamic area. Stimulation of this functionally defined area 
triggers appearance of synchronized EEG activity (58). In our 
experiments, lesion of SVA significantly suppressed background 
delta and theta rhythm, while facilitating expression of alpha 
and beta rhythms. These observations suggest that SVA partici-
pates in the maintenance of the specific level of synchronization. 
At the same time, SVA lesion reversed EEG shift in response 
to stimuli: power of slow delta rhythm increased while power 
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of theta rhythm decreased in response to stimuli. These data 
suggest that SVA participates in the regulation of the synchro-
nization–desynchronization balance. Because lesion of SVA 
amplified synchronization responses, it seems that SVA is not 
the leading source of synchronization but rather is a modulator 
of other structures, which induce cortical synchronization.

cOnclUsiOn

Our experiments demonstrated similarities between ammonia-
induced and forehead cooling-induced response pattern of 
MAP and CBF. At the same time, these responses differed from 
somatically (tail base) cold-induced response. These observations 
suggest that activation of the ophthalmic branch of the trigeminal 
nerve triggers specific physiological changes compatible with 
the pattern of “classic” DR observed in animals and humans. 
Experiments with the lesion of SVA demonstrated that, while 
SVA does not mediate trigeminal of somatically induced cer-
ebrovasodilation, it modulates these responses and participates 
in EEG changes accompanying DR. Further investigations of the 
role of SVA and other elements of endogenous neuroprotective 
system in DR related neuroprotection are granted.

Diving response directed toward survival of the anoxic peri-
ods “is the most powerful and enigmatic reflex” (1). Activation 
of “oxygen conserving” DR may have beneficial effects in various 
conditions, such as obstructive sleep apnea, stroke, TBI, and hem-
orrhagic shock. Our recent experiments indicate that forehead 
stimulation, indeed, affords neuroprotection following ischemic 
stroke (54) and traumatic brain injury (66, 67). The present study 
demonstrates that forehead stimulation triggers response compa-
rable to DR. Further understanding of this complex phenomenon 
will allow the development of new therapeutic approaches for the 
various pathologies.
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