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Spontaneous intracerebral hemorrhage (SICH), defined broadly as intracerebral hemor-
rhage not related to trauma, results in long-term disability or death in a large proportion 
of afflicted patients. Current management of this disease is predominantly supportive, 
including airway protection, optimization of hemodynamic parameters, and manage-
ment of intracranial pressure. No active treatments that demonstrate beneficial effects 
on clinical outcome are currently available. Animal models of SICH have allowed for the 
elucidation of multiple pathways that may be attractive therapeutic targets. A minority 
of these, such as aggressive blood pressure management and recombinant activated 
factor VII administration, have led to large-scale clinical trials. There remains a critical 
need for further translational research in the realm of SICH.
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iNTRODUCTiON

Spontaneous intracerebral hemorrhage (SICH), while comprising only 10–20% of all strokes (1, 2), 
remains one of the deadliest forms of the disease, with mortality rates approaching 40% at 1 month 
(3). Long-term survivors of SICH are often saddled with permanent deficits, with up to 75% of 
patients suffering significant disability or mortality at 1  year (4). Management of SICH patients 
currently consists primarily of supportive therapies (5), such as airway management, hemodynamic 
monitoring, and control of intracranial pressure (6), with no treatment options demonstrating 
significant efficacy despite extensive investigation into the topic (7).

Despite the disappointing results of interventional studies to date, there is reason to be hopeful 
going forward. Advancements in the understanding of secondary injury after SICH have highlighted 
opportunities for therapeutic intervention (5). One such opportunity is preventing secondary expan-
sion of hemorrhage after the initial bleed. Such expansion may occur in up to 30% of SICH patients 
(8, 9) and is associated with significantly worse clinical outcomes (10). This impact on outcome is 
independent of previously described predictors of outcome in SICH (11), including patient age, 
Glasgow Coma Scale score, intraventricular extension, hematoma volume, hemorrhage location, 
anticoagulant use, and medical history (12–14).

This review will discuss the classifications and current animal models of SICH, as well as what 
is known about the pathophysiology of secondary hematoma expansion. The interaction between 
bench research and clinical trials will be examined, with a focus on blood pressure control and the 
hemostatic mechanism – two areas where findings in animal models of SICH have lead to large-scale, 
randomized controlled trials in humans.
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SiCH eTiOLOGY

Broadly, SICH is defined as any intracerebral hemorrhage 
that is non-traumatic in nature; SICH can be further divided 
into primary and secondary hemorrhage (15). Primary SICH 
consists of those hemorrhages in which an underlying vascular 
malformation or coagulopathy is not identified (16). The two 
most common causes of primary SICH are arteriosclerosis 
due to chronic hypertension and cerebral amyloid angiopathy, 
which together account for up to 88% of all primary SICH 
(17). Chronic hypertension initially leads to proliferation of 
smooth muscle cells in the small penetrating arterioles of the 
brain, but eventually smooth muscle cell death occurs, with 
replacement of muscle in the tunica media layer with collagen 
(18). This weakening of the arteriolar wall can lead to vessel 
ectasia – Charcot–Bouchard aneurysms – and subsequent 
rupture; it occurs primarily in the deep, penetrating arterioles of 
the brain (19). In cerebral amyloid angiopathy, the progressive 
deposition of insoluble amyloid protein in the walls of small- 
and medium-sized vessels leads to increased vessel fragility over 
time (20). This deposition increases dramatically with age and 
occurs primarily in the leptomeningeal and cortical vasculature 
(21). As a result, SICH caused by cerebral amyloid angiopathy 
is significantly more common in the elderly population and is 
more commonly seen in a superficial cortical distribution (21). 
Patients with cerebral amyloid angiopathy are also at higher risk 
of recurrent hemorrhage (22).

Secondary SICH can be caused by a variety of underlying 
lesions and pathologies. Vascular malformations that can lead 
to SICH include arteriovenous malformations (23), cerebral 
aneurysms (24), dural arteriovenous fistulas (25), and cavernous 
malformations (26). Patients who have had ischemic strokes can 
experience hemorrhagic conversion (27), as can up to 50% of cer-
ebral venous thrombosis patients (28). Neoplastic causes of SICH 
make up a minority of cases, but melanoma, choriocarcinoma, 
renal cell carcinoma, and thyroid carcinoma are the most prone 
to bleeding (29). Investigations into secondary hematoma expan-
sion in secondary SICH are fairly limited, with the exception of 
those evaluating hemorrhages associated with oral anticoagulant 
use, where secondary expansion is both more common and 
associated with worse outcomes (30).

ANiMAL MODeLS

Currently, there are two widely used paradigms for modeling of 
SICH in animals. The first is the intracerebral injection of autolo-
gous blood. Initially developed in the 1960s (31), this model has 
been used in both large animals (32–34) (with injections typically 
performed into the frontal lobe) and rodents (15, 35) (with injec-
tions typically performed into the basal ganglia). This model has 
the advantage of allowing for control of hemorrhage volume but 
does not mimic the effects of vessel rupture seen in SICH (36). 
The second model involves injection of collagenase into the brain, 
leading to compromise of the extracellular matrix and subsequent 
vessel rupture. Developed in the 1990s and used primarily in 
rodents (37, 38), this model replicates the vascular disruption 
seen in SICH but has more diffuse effects when compared with 

the injection model and may result in diffuse inflammation and 
ischemia that is not commonly seen in the disease process (39). 
Despite these shortcomings, the collagenase injection model is 
more commonly used in the evaluation of secondary hematoma 
expansion.

PATHOPHYSiOLOGY OF HeMATOMA 
eXPANSiON

Although the precise mechanism for secondary hematoma 
expansion has yet to be fully elucidated, two predominant mod-
els currently exist. The first is the “persistent bleeding” model, 
which proposes that the vessel or vessels that initially rupture 
continue to bleed and lead to an enlarging hematoma (7). The 
second model, initially proposed by Fisher (40), postulates that 
secondary expansion results from the mechanical disruption of 
neighboring vasculature by the initial bleed.

Regardless of the underlying histopathological cause, experi-
mental evidence suggests that two important contributors to 
secondary hematoma expansion may be derangement of the 
coagulation cascade (41, 42) (Figure  1) and hypertension. 
A   variety of coagulopathies have been shown to be associated 
with an increased risk of secondary hematoma expansion. In a 
murine collagenase injection model of SICH, Illanes et al. (43) 
demonstrated significantly higher rates of hematoma expansion 
and larger hematoma volumes in animals treated with warfarin 
when compared with controls. A variety of newer anticoagulant 
agents act to inhibit either factor Xa (e.g., rivaroxaban) or 
thrombin (e.g., dabigatran). By doing so, these agents halt the 
so-called “thrombin burst,” whereby a single molecule of factor 
Xa may activate several hundred molecules of thrombin (44). 
This “thrombin burst” subsequently upregulates myriad other 
coagulation factors (45). For these novel agents, Zhou et al. (46) 
found that hematoma volume and secondary expansion were 
significantly increased in a subgroup of mice treated with rivar-
oxaban and high-concentration collagenase (47). Surprisingly, 
Lauer et  al. (48) found that secondary hematoma expansion 
was not dramatically higher in animals treated with dabigatran 
compared with control animals, although larger hemorrhagic 
volumes and worsened neurologic function were seen with 
high-dose parenteral administration of the drug. The myriad 
disorders, which may affect the coagulation cascade, have led to 
the development of more refined laboratory testing methods to 
detect and track its function. One of the most widely adopted 
of these is thromboelastography (49), a modality that detects 
variables such as the rate of fibrin formation, the thrombin 
burst, and the firmness of the resultant clot (50). Such tests 
may allow for the stratification of patients at risk of hematoma 
enlargement and represents an area for future study (50).

Non-pharmacologic disruption of hemostatic mechanisms 
may be equally important. In an autologous blood injection 
rat model of intracerebral hemorrhage, Liu et  al. (51) found a 
relationship between hyperglycemia and secondary hematoma 
expansion. They discovered that this relationship may be 
mediated by the platelet-inhibiting effects of plasma kallikrein, 
a protein whose action is enhanced by elevated blood glucose. 
Hyperglycemia has also been shown in animal models to 
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FiGURe 1 | Coagulation cascade and anticoagulants. Roman font denotes parts of the “intrinsic” coagulation pathway; italicized font denotes parts of the 
“extrinsic” coagulation pathway; underlined font denotes parts of the “common” coagulation pathway. Dashed red arrows denote inhibition; dashed blue arrows 
denote augmentation. * denotes vitamin K-dependent coagulation factors.
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worsen perihematomal neurolysis and edema, likely secondary 
to increased levels of inflammatory cytokines such as TNF-α 
(52). Current work on intensive hyperglycemic management 
in ischemic stroke is ongoing through the multicenter Stroke 
Hyperglycemia Insulin Network Effort (SHINE) (53), but organ-
ized efforts in hemorrhagic stroke are needed.

The relationship of hypertension to secondary hematoma 
expansion is more controversial. Although some experimental 
evidence does exist that higher blood pressures may lead to 
hematoma expansion and larger overall hematoma volumes 
(54), other investigators have found no relationship between 
hypertension and hematoma expansion (55). This variability 
may be related to the acuity of blood pressure rise, with large, 
rapid changes in blood pressure being less well tolerated than 
chronic hypertension (56). One rat model of hypertensive 
hemorrhagic stroke showed increased vascular permeability on 
MRI in hypertensive rats in the 1–2 weeks prior to SICH (57), 
suggesting that vessel changes may be detectable prior to cata-
strophic hemorrhage. Both animal (58) and human (27) studies 
also suggest that patients with anticoagulation and hypertension 
may be at further risk of intracerebral hemorrhage, and focused 
investigation on these commonly overlapping entities is also 
warranted.

TRANSLATiONAL THeRAPieS

Blood Pressure Control
Animal models have suggested that elevations in blood pressure 
may lead to increased secondary hematoma expansion in SICH. 
Several observational analyses in patients also suggested that 
hypertension was associated with worsened clinical outcomes 
following SICH and that aggressive blood pressure management 
could offer benefits (59, 60). This has led to the initiation of 
prospective, randomized trials seeking to determine the efficacy 
of aggressive blood pressure management in reducing secondary 
hematoma expansion and overall morbidity.

The Intensive Blood Pressure Reduction in Acute Cerebral 
Hemorrhage Trial (INTERACT) was initiated in 2005, with 
patients randomized to intensive (systolic blood pressure goal 
of <140  mmHg) or standard (systolic blood pressure goal of 
<180 mmHg) groups (4). Although early pilot data suggested that 
aggressive blood pressure reduction reduced secondary hematoma 
expansion (4), the results of the main study (INTERACT2) did 
not demonstrate significant reduction in secondary hematoma 
expansion with aggressive hypertension correction [relative dif-
ference 4.5%, 95% confidence interval (CI) – 3.1–12.7; p = 0.27] 
(61). INTERACT2 also did not find any significant difference 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


4

Guan and Hawryluk Hematoma Expansion in Spontaneous ICH

Frontiers in Neurology | www.frontiersin.org October 2016 | Volume 7 | Article 187

between the two groups in the primary outcome of severe dis-
ability or death at 90 days [odds ratio (OR) 0.87 for the intensive 
treatment group; 95% CI 0.75–1.01; p = 0.06], although patients 
in the intensive blood pressure control group had a higher rate of 
good functional outcomes (OR 0.87, 95% CI 0.77–1.00; p = 0.04) 
on ordinal analysis of modified Rankin scores at 90 days.

Similarly, early results of the Antihypertensive Treatment of 
Acute Cerebral Hemorrhage (ATACH) study (62), where patients 
were treated using nicardipine for a systolic blood pressure goal of 
<140 mmHg, also did not find significant reductions in the rate 
of secondary hematoma expansion (21% in patients with lower 
than median systolic blood pressure reduction versus 31% in 
patients with greater than median systolic blood pressure reduc-
tion, p > 0.05), although a trend was noted. The follow-up study, 
ATACH-2, demonstrated no significant advantage of aggressive 
blood pressure control (with a goal of 110–139  mmHg) over 
standard (140–179  mmHg) and was discontinued after 1280 
patients were enrolled (63). For the primary outcome of death 
or disability in ATACH-2, patients with intensive management 
had a rate of 37.7%, while those in the standard group carried a 
risk of 38.7% (relative risk 1.04; 95% CI 0.85–1.27). Secondary 
hematoma expansion occurred in 18.9% of patients in the inten-
sive treatment group and 24.4% of the standard treatment group 
(p = 0.08). Patients in the intensive treatment group also suffered 
a significantly higher rate of short-term renal complications, 
with a rate of 1.6 versus 1.2% in the standard treatment group 
(p = 0.002).

One of the primary concerns regarding aggressive blood 
pressure management in intracerebral hemorrhage is the fear of 
reduced cerebral perfusion (64). The intracerebral hemorrhage 
Acutely Decreasing Arterial Pressure Trial (ADAPT) tested the 
effects of acutely lowering systolic blood pressure within 1 h of 
randomization to <150 mmHg in one group and <180 mmHg 
in another (65). The study found no difference in perihemor-
rhage cerebral blood flow volumes on CT perfusion between 
the two groups (0.86 ± 0.12 mL/100 g/min in the <150 mmHg 
group versus 0.89  ±  0.09  mL/100  g/min in the <180  mmHg 
group, p  =  0.19). This led the investigators to conclude that 
aggressive blood pressure lowering in SICH patients did not 
lead to lowered cerebral blood flow or risk of perihemorrhagic 
ischemia. In light of the results of these studies, the most recent 
American Heart Association/American Stroke Association 
guidelines recommend an acute systolic blood pressure goal 
of <140 mmHg and a long-term goal of <130 mmHg to prevent 
recurrent SICH (66).

Correction of Hemostatic Derangement
Derangements of the hemostatic mechanism have been dem-
onstrated in animal models to significantly increase the risk 
of secondary hematoma expansion and overall hemorrhage 
volume. Patients presenting with intracerebral hemorrhage are 
more than three times as likely to be taking an anticoagulant 
when compared with matched controls and were significantly 
more likely to be utilizing antiplatelet agents (67, 68). Compared 
with patients who are not on anticoagulation therapy, those with 
SICH on blood-thinning agents have dramatically higher rates 
of poor outcome and mortality (69). Reversal of anticoagulation 

in animal models (70) has been shown to attenuate hematoma 
expansion and reduce final hematoma volume. However, despite 
the ubiquity of the anticoagulated SICH patient there remains 
no evidence from randomized trials evaluating the efficacy of 
anticoagulation reversal in SICH patients (71). Evidence from 
retrospective analyses of anticoagulation reversal suggests that 
even in patients who are effectively treated, hematoma expansion 
remains prevalent, and poor outcomes remain common (47). The 
majority of these studies have evaluated only patients who take 
warfarin for anticoagulation, and there is a significant lack of data 
on the behavior of more recent, novel anticoagulants. There is 
also a lack of evidence regarding the utility of newer anticoagula-
tion reversal agents in the prevention of hematoma expansion 
in SICH. These include general-use agents, such as four-factor 
prothrombin complex concentrates (72) (trade name Kcentra, 
approved for use in the United States in 2013), and targeted 
drugs, such as the antibody idarucizumab (trade name Praxibind, 
approved for use in the United States in 2015), which inactivates 
dabigatran (73). As a result, although guidelines exist for the 
reversal of anticoagulation in SICH, the majority of these are 
good-practice recommendations without extensive, high-quality 
supporting evidence (74).

Although an ever-increasing number of patients presenting 
with SICH are on anticoagulant therapy, the majority of cases of 
SICH still occur in those taking no blood-thinning agents. The 
utility of prothrombotic agents in non-anticoagulated animals 
has been primarily focused on the utility of recombinant factor 
VII (rFVIIa), with rat models showing significantly reduced 
hematoma expansion in animals treated with rFVIIa compared 
with controls (75). The results of these studies led to the Factor 
seven for Acute hemorrhagic Stroke Trial (FAST), a randomized, 
controlled study evaluating the efficacy of rFVIIa in SICH. 
Although the phase II study showed significant reductions in 
hematoma expansion and improvements in clinical outcome 
(76), the phase III study failed to demonstrate any clinical ben-
efit, with a similar rate of death or severe disability at 90 days in 
the low-dose rFVIIa group (26%), the high-dose rFVIIa group 
(30%), and the placebo group (24%, p > 0.05), although volumes 
of hematoma expansion remained lower in both rFVIIa groups 
compared with placebo (18% increase, p = 0.08 for the low-dose 
group and 11% increase, p < 0.001 for the high-dose group versus 
26% increase for placebo) (77).

Some concern remained after these studies that patient 
selection – specifically the enrollment of individuals who were 
unlikely to suffer hematoma expansion in the first place – may 
have resulted in the negative results of FAST. Thus, two trials 
(the Selection of Intracerebral Hemorrhage to Guide Hemostatic 
Therapy or SPOTLIGHT and the Spot Sign for Predicting and 
Treating ICH Growth Study or STOP-IT) are ongoing to attempt 
to resolve this question. Both these studies utilize the so-called 
“spot sign” for selection of patients who are at higher risk of 
hematoma expansion. The spot sign is the presence of contrast 
enhancement within the hematoma mass on CT angiography 
and has been shown to be strongly associated with both 
hematoma expansion and poor outcome (78, 79). However, 
the sensitivity of the spot sign is low – only 51% in a recent 
prospective series, and a significant number of patients without 
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contrast extravasation on CT angiography are still at risk of 
secondary hematoma growth (80).

CONCLUSiON

Because of the high mortality and incidence of long-term dis-
ability associated with SICH, it remains a significant health care 
burden globally. Current therapeutic options remain limited, 
but continued investigations into the underlying mechanisms of 
secondary injury, such as hemorrhage expansion, have yielded 

promising targets for intervention that continue to warrant fur-
ther investigation. Further refinement of animal models of SICH, 
the discovery of therapeutic pathways in the laboratory setting, 
and the transition of this knowledge into treatments in humans 
remain critically needed.
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