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Tourette’s syndrome (TS) is a neurologic condition characterized by both motor 
and phonic tics and is typically associated with psychiatric comorbidities, including 
obsessive-compulsive disorder/behavior and attention-deficit hyperactivity disorder, 
and can be psychologically and socially debilitating. It is considered a disorder of the 
cortico–striato–thalamo–cortical circuitry, as suggested by pathophysiology studies and 
therapeutic options. Among these, deep brain stimulation (DBS) of the centromedian–
parafascicular nucleus (CM-Pf) of the thalamus is emerging as a valuable treatment 
modality for patients affected by severe, treatment-resistant TS. Here, we review the 
most recent experimental evidence for the pivotal role of CM-Pf in the pathophysiology 
of TS, discuss potential mechanisms of action that may mediate the effects of CM-Pf 
DBS in TS, and summarize its clinical efficacy.

Keywords: Tourette, tics, DBS, centromedian–parafascicular, CM-Pf, thalamus

inTRODUCTiOn

Tourette’s syndrome (TS) is a neuropsychiatric disorder characterized by motor and phonic tics with 
onset during childhood; obsessive-compulsive disease and attention-deficit hyperactivity disorder 
(ADHD) are comorbidities present in a large subset of patients (1). Deep brain stimulation (DBS) 
of the centromedian–parafascicular nucleus (CM-Pf) is a therapeutic option for severe, medication-
refractory TS (2). Although TS is generally considered a disorder of the basal ganglia (BG), with 
tics taken as evidence of failure to inhibit motor execution, its pathophysiology extends beyond 
a dysfunction in the BG circuits involving cortical structures in the motor, limbic, and associa-
tive networks (3). It is thought that sensorimotor and limbic circuits are affected in TS, prefrontal 
and limbic circuits in obsessive-compulsive disorder/behavior (OCD/OCB), and sensorimotor, 
orbitofrontal, and limbic circuits in ADHD (4). The CM-Pf complex, located among the caudal 
intralaminar nuclei of the thalamus, plays a pivotal role in these networks, providing the principal 
source of thalamostriatal efferents.

Despite promising preliminary results, CM-Pf DBS for TS is still not approved by the United 
States Food and Drug Administration and is thus an off-label treatment. A better understanding of 
the central role of CM-Pf in TS and its treatment can promote further investigation of this therapeutic 
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FiGURe 1 | Diagram illustrating the main GABAergic and glutamatergic connections of the centromedian and parafascicular nuclei (21–25).
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option and, if efficacy is observed on a larger scale, improve 
patients’ accessibility to CM-Pf DBS. The rationale for the use of 
this structure as a target for DBS derives from its importance as 
the source of thalamostriatal efferents and its major role in func-
tions altered in TS, including attention processing, sensorimotor 
gating, and motor response (5–11).

Tourette’s syndrome has long been associated with BG 
dysfunction. The cortico–striato–thalamo–cortical (CSTC) 
circuits traditionally associated with motor control include 
two BG pathways, one with facilitatory effects (direct pathway) 
and one with inhibitory effects (indirect pathway) upon move-
ment. The dopaminergic output from the substantia nigra pars 
compacta to the striatum upregulates the direct pathway and 
downregulates the indirect pathway (12). TS has been associ-
ated with increased striatal dopaminergic release (13–17), and 
increased striatal dopamine has been proposed as leading to 
disinhibition of thalamic output to the cortex, resulting in tics 
(1). Positron-emission tomography (PET) findings suggest that 
thalamic DBS modulates dopaminergic circuitries, indicating 
a likely role for dopamine in therapeutic mechanisms as well 
(18). Abnormal striatal activity would also lead to the ineffi-
cient impulse control associated with OCD/OCB and ADHD, 
the common comorbidities of TS. In this conception, TS and 
comorbidities are considered diseases deriving from a failure 
in the mechanisms responsible for sensory and motor gating 
(19). In support of the role of BG dysfunction in TS, a recent 
diffusion-weighted imaging study confirmed that delayed or 
altered development in the CSTC networks is a possible factor 
leading to TS manifestations and its normalization is associated 
with remission of tics (20).

Considering the potential viability of CM-Pf DBS for 
patients with treatment-resistant TS, a review of the central 

role of CM-Pf in the complex pathophysiology of TS and its 
comorbidities is warranted.

THe ROLe OF THe CM-Pf in 
TOUReTTe’S SYnDROMe

CM-Pf Connectivity and Function
The hypothesis that the CM-Pf plays a major role in TS is 
supported by its anatomic and functional connections, which 
extend beyond motor control to limbic and associative functions. 
As Figure 1 shows, CM-Pf is densely connected to the BG. The 
main inputs to the CM-Pf derive from the globus pallidus inter-
nus (GPi), and the Pf receives input as well from the substantia 
nigra pars reticulata. The striatum receives most of the CM-Pf 
efferents. Although Eckert et  al. (10) recently confirmed the 
extended connectivity between CM-Pf and subcortical structures 
in a tractography study of normal human subjects, CM-Pf con-
nections have been mainly investigated in studies in rodents and 
primates, which found that CM (or its rodent equivalent, the 
lateral Pf nucleus) and Pf have complementary functions.

With its output to the motor cortex and to sensorimotor puta-
men and afferents from the motor, premotor, and somatosensory 
cortex, the CM nucleus appears to be involved mainly in motor 
control. With efferents to the limbic (nucleus accumbens) and 
associative (caudate, anterior putamen) striatum, anterior cin-
gulate, and premotor and prefrontal cortices, hypothalamus, and 
amygdala, and input from the prefrontal cortex, supplementary 
motor area, and frontal eye fields, the Pf plays a role in the limbic 
and associative network functions. The CM-Pf additionally 
projects to the subthalamic nucleus, the globus pallidus, the 
substantia nigra, and the pedunculopontine nucleus and receives 
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afferents from the cerebellum, pedunculopontine nucleus, 
superior colliculus, brainstem reticular formation, and reticular 
thalamic nuclei (3, 6, 21–24).

The role of CM-Pf in many functions abnormal in patients 
with TS, the effects elicited on striatal and cortical activity by 
manipulations of CM-Pf function, the altered CM-Pf neural 
activity found in patients with TS, and the intimate connections 
of the CM-Pf complex with the striatum, a structure pivotal to 
TS pathophysiology, favor the hypothesis that the CM-Pf plays a 
central role in TS and its treatment.

The complexity of CM-Pf circuitry reflects the complexity of 
its functions. As mentioned above, patients with TS often present 
with a deficiency in sensorimotor gating, as evidenced by the 
reduction in prepulse inhibition (PPI) of the startle reflex. In rats 
with decreased PPI, DBS of the medial and lateral Pf normalizes 
this deficiency (11). Attention deficits are also common in TS (1), 
and consistent with input from the brainstem reticular formation 
and reticular thalamic nuclei, the CM-Pf plays a fundamental 
role in attention arousal (25, 26). The importance of the CM-Pf 
complex in reward and attention behavior is supported by elec-
trophysiology studies in non-human primates (21, 27, 28), which 
have confirmed its role in processing sensory stimuli, especially 
stimuli that are unexpected and unprecedented and thus of high 
attentional value.

CM-Pf DBS and Tourette’s
The effects of CM-Pf DBS have been investigated by functional 
MRI (fMRI) in a large animal model (swine) of CM-Pf DBS (3). 
The results showed that areas of activation as measured by blood-
oxygen-level dependent (BOLD) response varied based on CM 
versus Pf targeting. BOLD-signal changes in the sensorimotor 
network (primary motor, premotor, somatosensory cortex) and 
prefrontal cortex were predominant during CM stimulation, 
while Pf stimulation induced BOLD-signal changes in limbic 
regions (including the hippocampus, parahippocampal gyrus, 
and cingulate cortex). These findings are of relevance given the 
correlation between tic complexity and altered functional con-
nectivity in the sensorimotor (29) and associative CSTC circuits 
and between OCD severity and altered functional connectivity 
in the limbic and associative CSTC circuits (30, 31). Although 
clinical investigations of the potential differential effects of CM 
and Pf DBS are needed before conclusions can be drawn, this 
study suggests that selective modulation of motor, associative, 
or limbic circuits by DBS of the CM or the Pf may enable more 
individualized treatment to predominantly target tics versus psy-
chiatric comorbidities in the future. Many of the cortical regions 
modulated by CM-Pf DBS are structurally and functionally 
altered in TS (3). The effects of DBS on the activity of supplemen-
tary motor, premotor, and prefrontal cortex on the one hand and 
of the sensory network on the other are of special relevance due to 
the suggested role of these regions in tic generation and inhibition 
(32–35), and in PPI and sensorimotor gating, respectively (36).

Morphologic and Functional Findings in 
Tourette’s Syndrome
Widespread anatomic and functional neuroimaging abnormali-
ties in the motor, limbic, and associative networks are a feature 

of TS (37). Sowell and colleagues (38) and Draper and colleagues 
(39) observed a cortical thinning in the premotor, motor, 
somatosensory, insular, and anterior cingulate cortices in TS, the 
severity of which correlated with severity of tics and premonitory 
urges. This morphological alteration was more prominent in the 
ventral portions of the sensory and motor homunculi, and the 
cortical thinning in this area positively correlated with tic sever-
ity in the oro-facial district (38). Similarly, cerebellar gray matter 
volume reductions correlated with tic severity in a recent MRI 
study performed in patients with TS and healthy controls (40). 
H2O PET found increased brain activity in the prefrontal, pri-
mary motor, premotor, supplementary motor, insula, cingulate, 
cerebellum, thalamus, and striatum correlating with tics (41, 42). 
Also, fMRI confirmed the increase in activity before tic onset in 
the limbic (anterior cingulate cortex, insula) and sensorimotor 
(supplementary motor, premotor, sensory associative cortex, 
cerebellum) networks, and at tic onset mainly in the sensorimotor 
network (primary motor, supplementary motor, premotor, soma-
tosensory, sensory association cortex, cerebellum) (43). These 
findings are in favor of an altered function in the sensorimotor, 
limbic, and associative networks, with a central role of CM-Pf in 
modulating the brain areas involved in TS.

Motor network dysfunction has been extensively investigated 
in TS. PET and transcranial magnetic stimulation studies of 
patients with TS have found increased resting-state activation, 
action-related activation, and hyperexcitability in the motor 
network (44–47). A compromised GABAergic function in the 
motor system appears to contribute to hyperexcitability in the 
supplementary motor cortex, as suggested by an altered correla-
tion between GABA levels and beta oscillations in this region 
(29). The importance of motor network dysfunction in TS is also 
underscored by the finding that decreased connectivity between 
the supplementary motor cortex and the striatum correlates with 
Yale Global Tic Severity Scale (YGTSS) scores (48).

Electrophysiology studies of the CM-Pf target in patients 
undergoing DBS surgery for TS have found bursting activity in 
CM-Pf prior to tic production and reduction in the alpha activity 
and increase in the gamma activity correlated with tic reduction 
during DBS (49–52). This suggests that CM-Pf DBS may reduce 
tics by normalizing the local neuronal discharge and affecting 
striatal output. In fact, in vivo stimulation of non-human primate 
CM nucleus results in GABA-mediated decreased cholinergic 
activity in the striatum (53), and Pf manipulations (electrical, 
lesional, or pharmacological) modulate striatal dopaminergic 
transmission (23).

CM-Pf glutamatergic output exerts a powerful influence over 
striatal activity, targeting medium-sized spiny neurons and cho-
linergic interneurons (21). According to one theory of TS patho-
physiology, motor pattern generators in the cerebral cortex and 
brainstem that are associated with a specific movement may be 
involuntarily activated in TS due to altered regulation of striatal 
output, leading to tics (54). Given that the striatum is the major 
target for CM-Pf projections, alterations in this BG structure 
emphasize the role of CM-Pf in TS.

The major BG morphologic changes associated with TS 
include reduced volume of both caudate and lenticular nuclei 
(55–57), and functional imaging of the striatum in TS has 
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shown reduced activity at rest compared to controls (44, 45) 
and increased activity during tic production (41, 42). Reduced 
caudate volumes during childhood have been correlated with 
symptom severity in late adolescence, and larger caudate volumes 
were found in patients taking neuroleptics for TS compared to 
the caudate volumes of patients not exposed to these drugs and 
those of healthy subjects. These findings suggest that a reduced 
caudate volume may be involved in TS pathophysiology and may 
be partially due to increased dopaminergic signaling (56, 58).

The reduction in caudate volumes in TS could be medi-
ated by loss, reduced development, or hypofunctioning of 
GABAergic and tonically active cholinergic interneurons, as 
suggested by (1) the reduced global striatal expression of genes 
involved in the steps of interneuron neurotransmission (59); 
(2) flumazenil-PET findings of reduced GABAergic activity 
in the striatum (60); and (3) post-mortem findings of reduced 
GABAergic interneurons in the associative and sensorimotor 
regions of the striatum (61, 62). In addition, selective inhibition 
of striatal interneuron activity was associated with dyskinesia 
and behavioral manifestations of TS in mice (63, 64), indicating 
that impairment in inhibitory striatal interneuron activity can 
result in tics.

These observations are at the basis of the hypothesis that the 
CM-Pf complex is a central node in the modulation of areas 
and circuitries associated with TS pathophysiology. Despite the 
elements in support of this theory, DBS remains an invasive 
treatment and its clinical distribution needs compelling clini-
cal findings before becoming widely accepted and approved as 
standard of care in selected patients. A summary of available 
clinical reports of CM-Pf DBS is provided to address the initial 
translation of the described pathophysiological findings into 
practice (Table 1).

CLiniCAL OUTCOMeS OF CM-Pf DBS 
FOR TS

Overall, the outcomes reported for DBS of the CM-Pf for TS 
have been positive for tic reduction and mixed for psychiatric 
comorbidities.

Tic Reduction
The first report of DBS for TS was by Vandewalle et al. (65) who 
targeted the junction between the CM-Pf complex, the ventrooral 
internus nucleus (Voi), and the substantia periventricularis (Spv), 
located 5 mm lateral and 4 mm posterior to the midpoint of the 
anterior–posterior commissure (AC–PC) line and on the AC–PC 
plane in a single patient. Long-term results for three patients were 
later reported by the same group and found that tic reduction, 
assessed by video recordings, was 92.6% at 10 years (subject 1), 
72.2% at 1 year (subject 2), and 78% at 6 years (subject 3) (66, 67). 
Subsequent series have targeted coordinates at either the anterior 
border or at the center of the CM-Pf, as discussed below.

The largest series to date (34 patients) of intralaminar thala-
mus DBS for TS (target located at the CM-Pf/Vo junction, 5 mm 
lateral and 2 mm posterior to the midpoint of the AC–PC line 
and on the AC–PC plane) reported statistically significant tic 
reduction across the group. The average YGTSS scores of the 19 
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Case series/reports

Study Patient 
number

Average (range) percent 
change Yale Global Tic 
Severity Scalea

Average (range) percent 
change  
video-based rating

Mean follow-up  
(years)

Average (range) percent 
change Yale-Brown 
Obsessive Compulsive 
Scale

Adverse events (number of patient affected)

Duits et al. (72) 1 −71.4 (stimulation off); 
−7.1 (stimulation on)

N/A 1.8 (stimulation off);  
1.9 (stimulation on)

−60.0 (stimulation off);  
−65.0 (stimulation on)

Multiple limbs hypertonia, involuntary movements, 
opisthotonus, impaired consciousness, mutism, impairment 
of swallowing, nausea, anorexia, death

Idris et al. (73) 1 N/A N/A N/A N/A Bilateral subcortical hematomas

Savica et al. (74),  
Testini et al. (75)

10 −53.5 (−12.1 to −100.0); −48.8 
(−2.4 to −100.0) (tic score)

N/A 2.2 N/A Hardware infection requiring surgical wound revision (1)

Bajwa et al. (76) 1 −66.0 (tic score) N/A 2 −29.0 None

Shields et al. (77) 1 −46.0; −41.0 (tic score) N/A 0.3 N/A None

Kaido et al. (78) 3 −34.7 (−29.1 to −43.88); −36.8 
(−29.3 to −47.9) (tic score)

N/A 1 +3.7 (+53.8 to −11.5)d None

Randomized controlled trialsf

Study Patient 
number

Average (range) percent 
change Yale Global Tic 
Severity Scalea

Average (range) percent 
change video-based 
rating

Mean follow-up  
(years)

Percent change Yale-
Brown Obsessive 
Compulsive Scale

Adverse events (number of patient affected)

Maciunas et al. (79), 
Schoenberg  
et al. (80)

5 −44.0 (range not available); 
−22.5 (+11.9 to −63.3) (tic score)

−12.5 (+18.8 to −50.0)b 0.3 −44.4 (range not available) Acute psychosis (1), accidental switching off of stimulators 
with recurrence of tics (2), MVA with recurrence of tics (1)

Okun et al. (81) 5 −18.6 (−5.0 to −30.0); −14.3 
(range not available) (tic score)

−25.3 (range not available)b 0.5 −5.7 None

Ackermans  
et al. (82)

6 −49.9 (−26.1 to −94.7) (tic score) −35.0 (range not available)b 1 −33.3 (+100.0 to −100.0) Parenchymal hemorrhage with vertical gaze palsy (1), 
lethargy, binge eating, dysarthria, apathy, gait disturbances, 
falls, cerebral atrophy on CT scan (1), lack of energy (6), 
subjective visual disturbances (6)

aTotal Yale Global Tic Severity Scale (YGTSS) (scale 0–100) if not specified.
bModified Rush Video-based Rating Scale.
cRepresent decrease in number of videotaped tics over a 10-min period.
dOne out of three patients experienced an increase in Yale-Brown Obsessive Compulsive Scale (YBOCS) scores; the percent changes for each patient were −11.5, −31.3, and +53.8, respectively.
eOne patient underwent anterior limb of internal capsule/nucleus accumbens lead implantation during the same procedure. The surgical report includes a total of 34 patients of whom 4 were excluded from the analysis [for detail, see 
Servello et al. (69)].
fScore changes reflect the last follow-up reported; one randomized controlled trial (83) was not included in the table because no patient adopted thalamic DBS without pallidal DBS at follow-up.
YGTSS, Yale Global Tic Severity Scale; YBOCS, Yale-Brown Obsessive Compulsive Scale; N/A, not available.
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patients who reached the 2-year follow-up significantly decreased 
from a preoperative average of 76.9 (out of 100) to 36.7, indicating 
reduction in tics and in disease-related impairment (69). In 17 
of these patients, the scores fell from an average of 81.1 preop-
eratively to 22.5 at the 5- to 6-year follow-up (84). An expansion 
of this series was recently published, including additional targets 
(85). As Table 1 shows, results from double-blinded randomized 
controlled trials and single-case studies or small surgical series 
tend to support the effectiveness of intralaminar thalamus DBS 
for TS (70–72, 75, 77–79, 81–83, 86).

Adverse events
Adverse events reported in the literature are also summarized in 
Table 1. Reports from several groups (67, 71, 86–88) have high-
lighted the potential for increased incidence of complications in 
DBS for TS, including infections, system breakages, lead traction, 
and skin dehiscence, possibly associated with self-injurious 
behaviors, forceful head tics, obsessions, and compulsions, such 
as scratching associated with the implanted device or the surgical 
wound and scar.

Of particular note relative to the effects of DBS in patients 
with severe comorbidities is a patient who participated in the 
double-blind randomized control study conducted by Ackermans 
et al. At 23 years of age, she had a history of tics associated with 
severe self-injurious behavior, pervasive developmental disorder, 
depression, and compulsions. Following DBS, she developed 
an array of symptoms and signs (multiple limbs hypertonia, 
involuntary movements, opisthotonus, impaired consciousness, 
mutism, impairment of swallowing, nausea, anorexia) suggestive 
of a psychogenic movement disorder and died in a nursing home 
(72, 82). Blinded DBS had increased tics and reduced hypertonia. 
This case highlights the importance of careful evaluation to rule 
out possible somatoform disorders and treatment of comorbidi-
ties prior to DBS surgery. This is of particular relevance given the 
potential effects of Pf DBS on the limbic and associative networks. 
The authors did consider alteration of these circuits as a possible 
cause of postsurgical complications, warning against DBS in case 
of severe psychiatric comorbidities.

Psychiatric Comorbidities and Cognition
There is no consensus at this time on whether DBS for TS has a 
positive, neutral, or detrimental effect on TS-related psychiatric 
comorbidities and cognition. Results have varied across the 
literature (67, 68, 70, 71, 76, 78–84, 86, 89, 90).

Considering the complexity of TS and comorbidities, includ-
ing OCD/OCB, ADHD, depression, and self-injurious behaviors, 
it is not surprising that in some patients some of these symptoms 
improve and others deteriorate (67, 82). However, it should be 
noted that compared to pallidal stimulation, CM-Pf DBS seems 
to have a more positive impact on depressed mood, emotional 
hypersensitivity, anxiety, and impulsivity (83, 86). Stimulation of 
the ventral electrode of CM-Pf leads, which can be considered 
Pf stimulation, has been associated with feelings of calmness, 
suggesting a modulation of limbic circuitry (81). This is consist-
ent with the known connectivity of Pf and suggests the need 
for further investigation of the differential effects of CM and Pf 
stimulation found in the experimental literature (3).

In the future, large studies may help to elucidate whether 
the limbic circuitry modulation observed during Pf stimulation 
exerts positive or detrimental effects on OCD/OCB, ADHD, and 
depressive symptoms so as to better serve patients whose quality 
of life is significantly decreased by comorbidities.

Additional Targets
Other regions have been investigated as possible DBS targets 
for TS, including the GPi (83, 86, 91–94), the ventroanterior/
ventrolateral thalamus (95), the globus pallidus externus (96), the 
nucleus accumbens and anterior limb of internal capsule (97, 98), 
and the subthalamic nucleus (99).

The GPi is the most commonly used target after CM-Pf. 
Results from a recent double-blind randomized crossover trial 
including 13 patients showed significant tic reduction during GPi 
stimulation (average 15.3% improvement in YGTSS score during 
the stimulation-on phase compared to stimulation-off and to 
baseline phases) (94). Additionally, in a double-blind randomized 
controlled trial comparing CM-Pf and GPi DBS, stimulation 
of either target was found to be effective for tic suppression in 
three patients, with better results obtained with GPi than with 
CM-Pf DBS (78.3 versus 44.7% reduction in YGTSS scores) (83, 
86). Open-label studies including more than ten patients report 
percent tic score reductions ranging between 44.8 and 52.3, 
with 59.6% of patients experiencing a YGTSS reduction of 50% 
or higher (91–93). Further studies comparing CM-Pf and GPi 
stimulation are warranted to establish a definitive target of choice 
in the treatment of TS.

Future Perspectives
As summarized in Table 1, the reports available in the literature 
display a large range of efficacy outcomes for CM-Pf DBS and 
of patient population sizes. This is partially related to the small 
patient group necessitating and being evaluated for DBS treat-
ment and warrants additional investigation to support CM-Pf 
DBS as a standard therapeutic option in selected patients affected 
by TS. If multi-center double-blind randomized controlled trials 
may help achieve larger subject numbers, these are often dif-
ficult to implement. Based on current literature characteristics 
and results, DBS treatment for TS may advance mainly through 
multiple single-institution, double-blind, randomized controlled 
studies widely distributed nationally and internationally, which 
will provide the necessary evidence in support or against the 
efficacy of this treatment. DBS treatment and patient care will be 
then performed according to institutional capabilities and there-
fore not only more feasible but also more closely representative of 
the following clinical practice outside of randomized controlled 
studies.

COnCLUSiOn

CM-Pf DBS is a therapeutic option in carefully selected patients 
affected by severe, treatment refractory TS. CSTC circuitry 
dysfunction is strongly implicated in the pathophysiology of 
TS, and the centrality of the CM-Pf to this mechanism makes 
it a promising target. Larger-scale clinical studies are warranted 
to confirm the initial promising findings of DBS-related tic 
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