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NG2 cells, also known as oligodendrocyte progenitor cells, are located throughout the 
central nervous system and serve as a pool of progenitors to differentiate into oligoden-
drocytes. In response to spinal cord injury (SCI), NG2 cells increase their proliferation and 
differentiation into remyelinating oligodendrocytes. While astrocytes are typically asso-
ciated with being the major cell type in the glial scar, many NG2 cells also accumulate 
within the glial scar but their function remains poorly understood. Similar to astrocytes, 
these cells hypertrophy, upregulate expression of chondroitin sulfate proteoglycans, 
inhibit axon regeneration, contribute to the glial-fibrotic scar border, and some even dif-
ferentiate into astrocytes. Whether NG2 cells also have a role in other astrocyte functions, 
such as preventing the spread of infiltrating leukocytes and expression of inflammatory 
cytokines, is not yet known. Thus, NG2 cells are not only important for remyelination 
after SCI but are also a major component of the glial scar with functions that overlap with 
astrocytes in this region. In this review, we describe the signaling pathways important for 
the proliferation and differentiation of NG2 cells, as well as the role of NG2 cells in scar 
formation and tissue repair.

Keywords: OPCs, oligodendrocytes, scar formation, astroglial scar, oligodendrocyte progenitor cells, axon 
regeneration

iNTRODUCTiON

Many oligodendrocytes are lost after contusive spinal cord injury (SCI) (1, 2), leaving axons demy-
elinated and impairing proper conduction of action potentials (3–6). Although new remyelinating 
oligodendrocytes are formed after SCI (7–11), normal levels of myelination are not achieved (6). 
Pre-existing oligodendrocytes do not contribute to remyelination (12); however, NG2 cells, also 
known as oligodendrocyte progenitor cells (OPCs), are ubiquitously distributed throughout the 
central nervous system (CNS) and are capable of differentiating into oligodendrocytes in the adult 
CNS (13). Thus, targeting their proliferation and differentiation is an appealing target to promote 
remyelination after CNS injury. NG2 cells are present in increased numbers surrounding the lesion 
site (2, 7, 8, 14), and many studies have investigated the mechanisms underlying their differentiation 
into oligodendrocytes and their contribution to remyelination (15–17).

However, a large number of NG2 cells that do not differentiate into oligodendrocytes are present 
within the glial scar, which has been traditionally synonymous with reactive astrocytes. Interestingly, 
similar to astrocytes, these NG2 cells hypertrophy and upregulate expression of chondroitin sulfate 
proteoglycans (CSPGs) after CNS injury (18). In fact, NG2 is itself a CSPG (gene name is cspg4) and 
can inhibit axon growth in vitro (19). Interestingly, NG2 cells have the capacity to differentiate into 
astrocytes at the CNS injury site, as discussed in more detail below. Thus, NG2 cells are potentially 
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FiGURe 1 | Scar formation after SCi. Diagram depicting the events of scar formation after contusive SCI in mice. Astrocytes (blue), NG2 cells (red), and 
myelinating oligodendrocytes (yellow) in the uninjured spinal cord white matter (A). Early after SCI, cell death occurs within the lesion site and axons are damaged. 
Microglia (not shown) and astrocytes respond by secreting cytokines and chemokines. NG2 cells react and proliferate around the lesion site. Macrophages (gray) 
begin to infiltrate the lesion core and perivascular fibroblasts (green) begin to delaminate from blood vessels (B). Inflammation causes secondary death of 
oligodendrocytes and neurons leading to accumulation of myelin debris in the injury site (C). Macrophage and fibroblast density peaks at 7 days after SCI (D). By 
2 weeks after SCI, the scar has matured. There are tight borders between the fibrotic scar (consisting of fibroblasts and macrophages) and the glial scar (consisting 
of astrocytes, NG2 cells, and microglia) (e). The relative number of cells may not accurately reflect actual in vivo pathology.
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a major contributor to the axon regeneration inhibition by the 
glial scar.

In addition to their role in axon growth inhibition, NG2 cells 
may share other properties with astrocytes. For example, astro-
cytes play an important role in preventing the spread of infiltrat-
ing leukocytes, and their ablation leads to increased neuron and 
oligodendrocyte loss (20, 21). Astrocytes also play a major role 
in the immune response after contusive SCI through secretion 
of pro-inflammatory cytokines and chemokines (22, 23). In this 
review article, we will discuss methods of investigating NG2 cells 
in the context of SCI, the mechanisms underlying the proliferation 
of NG2 cells after SCI, as well as their contribution to the glial scar 
including axon regeneration, wound healing and inflammation.

SCAR FORMATiON AFTeR  
CONTUSive SCi

Figure  1 depicts a diagram of the cellular reactions after con-
tusive SCI in mice. Differences between mice, rat, and human 
SCI will be addressed where appropriate. In the uninjured spinal 
cord, astrocytes, oligodendrocytes, and NG2 cells are located 

throughout the parenchyma (Figure 1A). Contusive SCI leads to 
large scale death of neurons and glia at the site of injury, shearing 
of ascending and descending axons, and damage to the vascula-
ture. This damage leads to large-scale hemorrhage at the site of 
the lesion, which leads to the release of factors that contribute 
to the immune response, and responses from resident glia (24, 
25). Microglia reacts within hours after injury by accumulating 
around the lesion site and secreting pro-inflammatory cytokines 
and chemokines that which contribute to the immune response 
(26). While NG2 cells have been shown to proliferate and migrate 
short distances toward the lesion site after laser induced injury 
(27), their migration capacity has not been investigated in more 
clinically relevant traumatic injuries. Astrocytes also prolifer-
ate, hypertrophy, and upregulate expression of glial fibrillary 
acidic protein (GFAP), and secrete cytokines, chemokines, 
growth factors, and CSPGs (28). Increased inflammation leads 
to secondary damage to neurons and oligodendrocytes, as well 
as axonal dieback characterized by dystrophic endings (1, 29) 
(Figures 1B–D). Myelin debris and CSPGs, both inhibitory to 
axon regeneration, accumulate in the lesion core and the glial 
scar. Hematogenous macrophages start to infiltrate the lesion 
(30, 31) and attract perivascular fibroblasts that separate from 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


TABLe 1 | Antibodies used to label NG2 cells after SCi.

Antibody NG2 glia Pericytes Astrocytes OLs Macrophages Schwann cells

Uninjured
NG2 (39) + +
PDGFRα (39)  + +
Olig2 (42, 43) + +

injured
NG2 (39) + + + +
PDGFRα (39) + +
Olig2 (42, 43) + + +
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blood vessels and form the fibrotic scar (32, 33) peaking in den-
sity by 7 days after SCI. By 14 days after SCI, the scar has started 
to mature and form tight borders between the glial and fibrotic 
components of the scar (20, 21, 33) (Figure 1E). (At around this 
time in rats and humans, a fluid-filled cavity starts to form in 
parts of the fibrotic scar, whereas in mice, the fibrotic scar con-
tracts slightly over time.) The formation of this scar is dependent 
on the interactions between CNS cells, namely microglia, NG2 
cells, and astrocytes, with non-CNS cells, namely hematogenous 
macrophages and fibroblasts. In human SCI, astrocytes and NG2 
cells were readily detected in the glial scar, and macrophages in 
the lesion core, within days after SCI (34). Understanding their 
individual contributions to scar formation is essential for design-
ing both regenerative and neuroprotective therapies for SCI. In 
this review, we will focus primarily on the role of NG2 cells in the 
context of the glial scar formation after SCI.

NG2 CeLL FATe MAPPiNG STRATeGieS 
AFTeR CNS iNJURY

Proper understanding of NG2 cells after SCI requires proper 
understanding of the tools that have been used to study them, 
namely antibodies and transgenic mouse lines. In the uninjured 
brain and spinal cord, antibodies against NG2 and PDGFRα 
(platelet-derived growth factor receptor alpha) label NG2+ 
glia, but NG2 antibodies also label pericytes that express this 
CSPG (35–37) (Table  1). After CNS injury, NG2 expression 
is upregulated at the injury site (18), but many cells including 
pericytes, non-myelinating Schwann cells, and macrophages 
also express NG2 (38, 39) (Table 1), making the use of the NG2 
antibody alone insufficient to definitively identify NG2+ glial 
cells. Similarly, PDGFRα antibodies can label fibroblasts, rather 
than NG2 glia, at the injury site (39) (Table 1). Since cells that 
are NG2+ macrophages, NG2+ pericytes, or PDGFRα+ fibroblasts 
are often counted as NG2 glia, the use of these antibodies as sole 
markers for NG2 glia has led to the misconception that NG2 glia 
are located within the injury core (GFAP-negative region) and has 
mostly likely contributed to the highly variable reports of NG2 
cell density across different studies (40). For the remainder of this 
review, our use of NG2 cells refers to NG2+ glia (and not pericytes), 
and we use these two terms along with OPC interchangeably. 
Antibodies against Olig2 has also been used to identify NG2 cells, 
but they also label mature oligodendrocytes, and several reports 
have shown that a small population of protoplasmic astrocytes 

(10, 41) and reactive astrocytes can also express the transcription 
factor Olig2 after CNS injury (42, 43) (Table 1). Thus, co-labeling 
with NG2 and Olig2 antibodies may be the best method of histo-
logically detecting NG2 cells after SCI.

Prior to the advent of genetic fate mapping using transgenic 
mice expressing cell type-specific Cre recombinase, several 
attempts to understand the fate of NG2 cells after SCI were 
made. One of the first attempts to study the fate of NG2 cells 
after SCI utilized a Mahoney retrovirus with reporter expression 
driven by the NG2 promoter (9). Injection of this virus into the 
injury site-labeled dividing NG2 cells, however, due to the fact 
that it was administered after SCI, it also labeled a large number 
of macrophages (since some of them upregulate NG2 as discussed 
above) (39, 44). This study also reported that a high percentage of 
NG2 cells differentiate into GFAP+ astrocytes (35–50%); however, 
this could have included astrocytes that upregulated NG2 after 
SCI. Shortly after, Lytle et  al. (43) used the CNP-EGFP mice 
(which labels 2′,3′-cyclic-nucleotide 3′-phosphodiesterase+ NG2 
cells and oligodendrocytes) to determine the response of NG2 
cells after contusive SCI and reported that a large population of 
NG2+ cells were EGFP−. This could have been due to CNPase 
only being expressed in NG2 cells that have already committed to 
the oligodendrocyte lineage since CNPase is expressed later than 
PDGFRα and NG2 during development (45, 46). However, it is 
also possible that scar forming NG2 cells downregulate CNPase 
expression after injury. Together, these results suggest that NG2 
glia comprise both myelinating cells as well as non-myelinating, 
scar forming cells after contusive SCI.

Transgenic mice expressing tamoxifen-inducible Cre under 
cell-specific promoters (Cre-ER mice) have been particularly 
useful for studying fate of NG2 cells after SCI. Although 
PDGFRα-CreER (13, 47), NG2-CreER (48), and Olig2-CreER 
(41) mice have been used extensively to either fate map and/or 
conditionally delete genes in NG2 cells, each mouse line has its 
advantages and disadvantages. The NG2-CreER mouse line has 
a recombination efficiency of about 30–40% of NG2 cells (48, 
49), while the PDGFRα-CreER has a recombination efficiency of 
over 90% (47). Low recombination efficiency is often desirable 
for lineage tracing studies, while high recombination efficiency 
is often desirable for functional studies. Similar to the limitations 
of antibodies as discussed above, these transgenic lines label cells 
other than NG2 glia. The NG2-CreER mice label pericytes (49, 
50) whereas the PDGFRα-CreER mice label fibroblasts at the 
injury site (unpublished observations), and the Olig2-CreER 
mice label oligodendrocytes as well as a small population of 
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astrocytes (10, 51). Although we did not observe contributions of 
NG2+ pericytes to scar formation after SCI in mice, it is possible 
that experimental manipulations (drugs, viruses, or genes dele-
tions) could induce them to contribute to scar formation (49). 
Thus, these off-target labeling must be carefully considered when 
interpreting any NG2 cell genetic fate mapping studies involving 
these mouse lines.

One possible solution to circumvent these technical hurdles 
is to combine genetic labeling of NG2 cells with antibody 
co-labeling. Genetically labeled cells in NG2-CreER mice can 
be co-labeled with Olig2 or PDGFRβ antibody to distinguish 
NG2 cells from pericytes/fibroblasts respectively. Alternatively, 
instead of using Rosa26 reporter mice, Olig2 promoter-driven 
reporter mice can be used in combination with NG2-CreER 
or PDGFRα-CreER mice, which would label NG2 glia without 
labeling pericytes. This Olig2 strategy can be used to express not 
only fluorescent reporters but also proteins such as diphtheria 
toxin receptor (52) that can be used to probe the function of NG2 
cells more specifically. However, such Olig2 reporter mice have 
not yet been reported in the literature.

PROLiFeRATiON AND 
OLiGODeNDROGeNeSiS

NG2 cells have been shown to react to CNS injuries such as 
traumatic brain injury (18), demyelination (53), and contusive 
SCI (2). This response is reminiscent of astrocyte reactivity as 
they surround the lesion site and hypertrophy (18). Whereas 
NG2 cells are normally evenly dispersed throughout the spinal 
cord (13) and maintain territories due to the dynamic filopodia 
being repulsed by neighboring NG2 cells (27), their processes 
become intertwined as they form the glial scar. Two-photon live 
imaging has revealed NG2 cells react to laser injury by migrating 
only short distances toward the lesion (27), suggesting that the 
large number of NG2 cells at the injury site is most likely due to 
local proliferation rather than migration. In fact, the percentage 
of proliferating NG2 cells is increased sixfold (2) and NG2 cells 
comprise nearly one half of bromodeoxyuridine (BrdU)-labeled 
cells, 3 days after SCI (7). This is most likely an underestimate 
since it does not account for NG2 cells that differentiated into 
oligodendrocytes and/or astrocytes after injury. Overall, these 
data suggest that NG2 cells have a significant capacity to prolifer-
ate after SCI.

As NG2 cells differentiate into oligodendrocytes, they lose 
expression of the NG2 antigen. NG2 cells are capable of dif-
ferentiating directly into oligodendrocytes without cell division 
(27), but they often differentiate after division, where one or 
both differentiate into oligodendrocytes within 6–8  days. This 
represents a critical window where their fate after proliferation 
can be determined by the microenvironment of the injury site 
(48, 54). For example, myelin damage can accelerate and promote 
NG2 cell differentiation into oligodendrocytes (54). Sensory 
deprivation induced by whisker clipping can reduce oligodendro-
genesis after NG2 cell division, suggesting that neuronal activity 
promotes differentiation of NG2 cells into oligodendrocytes (54). 
Conversely, optogenetic stimulation of neurons can increase the 

proliferation of NG2 cells and their subsequent differentiation 
into oligodendrocytes (55). This raises the possibility that the 
myelin and neuronal damage after SCI may create an environ-
ment that significantly influences NG2 cell differentiation.

Several factors important for proliferation and differentiation 
of NG2 cells are upregulated after SCI. These include fibroblast 
growth factor 2 (FGF2) (56, 57), glial growth factor 2 (GGF2) 
(58, 59), and Wnts (60). FGF2 is a potent mitogen for NG2 
cells in vitro (56). Deletion of FGFR1 and FGFR2 in NG2 cells 
reduces oligodendrogenesis and remyelination chronically after 
cuprizone-induced demyelination (61). FGF2 is increased for at 
least a month after SCI (57) and intraspinal injection of FGF2 (62) 
was shown to improve functional recovery after SCI. GGF has 
been shown to increase the proliferation of NG2 cells while inhib-
iting their differentiation in vitro (63). Subcutaneous injection of 
GGF2 increases NG2 cell proliferation, oligodendrogenesis, and 
functional recovery after SCI (59) as well as increased functional 
recovery and myelination after experimental autoimmune 
encephalomyelitis (EAE) (64). Wnts have been shown to play a 
major role in proliferation of NG2 cells during development (65) 
and are upregulated after SCI (60). Overexpression of activated 
β-catenin, a downstream mediator of Wnt signaling, results in 
developmental hypomyelination and delayed remyelination 
after demyelination (65). Wnt3A-conditioned media increases 
proliferation of NG2 cells in  vitro and deletion of β-catenin in 
NG2 cells leads to reduced proliferation of NG2 in the glial scar 
after contusive SCI (66).

Cytokines such as ciliary neurotrophic factor (CNTF), leu-
kemia inhibitory factor (LIF), and tumor necrosis factor (TNF) 
are also important in the proliferation and differentiation of 
NG2 cells (67). CNTF and LIF promote oligodendrocyte dif-
ferentiation in vitro (67), however, CNTF knockout (68) and LIF 
knockout mice (69) only have a developmental delay in oligo-
dendrogenesis, indicating that these factors may be a mediator of 
oligodendrogenesis early in development. Daily intraperitoneal 
administration of CNTF increases numbers of NG2 cells, oli-
godendrocytes, and neurons and improves outcome after EAE 
(70). Deletion of the transcription factor signal transducer and 
activator of transcription 3 (STAT3), which is downstream of 
CNTF, LIF, and several other cytokines, delays oligodendrogen-
esis without affecting proliferation after SCI (49). Accordingly, 
overexpression of a constitutively active STAT3 using an adeno-
virus leads to increased oligodendrocyte differentiation in vitro 
(71). Deletion of suppressor of cytokine signaling 3 (SOCS3), a 
negative regulator of STAT3, leads to enhanced proliferation of 
NG2 cells in the glial scar but does not affect their differentiation 
after SCI, suggesting a non-canonical STAT3/SOCS3 signaling 
mechanism in NG2 cells after SCI (49). Although the proinflam-
matory cytokine TNFα is typically associated with oligodendro-
cyte death, it may have important roles in NG2 cell response to 
injury and subsequent remyelination. TNFα signaling through 
TNFR2 is important for NG2 cell proliferation and differentiation 
after cuprizone-induced demyelination (72). Similarly, genetic 
deletion of TNFR2 using the CNPase-Cre mouse resulted in 
impaired functional recovery, reduced number of NG2 cells, and 
impaired oligodendrocyte differentiation and remyelination after 
EAE (73). While similar genetic studies have not been performed 
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after SCI, pharmacological blockade of TNFR1, but not TNFR2, 
promotes functional recovery SCI (74).

NG2 CeLL LiNeAGe PLASTiCiTY AFTeR 
iNJURY

Astrogliogenesis
Both NG2 cells and astrocytes are derived from radial glia during 
development (75, 76). In addition, NG2 cells isolated in  vitro 
differentiate into astrocytes as well as oligodendrocytes (77). 
Thus, while NG2 cells differentiate only into oligodendrocytes 
in the normal CNS, these observations provide a mechanistic 
basis for the potential of NG2 cells to differentiate into astrocytes 
in the injured CNS. The advent of Cre-loxP technology has 
allowed rigorous testing of NG2 cell lineage plasticity in  vivo. 
The NG2-Cre mouse line revealed that, indeed, a population 
of NG2 cells could differentiate into protoplasmic astrocytes in 
the ventrolateral forebrain gray matter (78) and spinal cord (79) 
during development. As mentioned above, Sellers et al. injected 
Mahoney retrovirus with a reporter driven by the NG2 promoter 
into the injured spinal cord, and found that 35–54% of reporter-
labeled cells were GFAP+ astrocytes (limitations of this technique 
is discussed above).

Using CreER mice to permanently label a population of NG2 
cells prior to injury has led to similar results. The NG2-CreER and 
PDGFRα-CreER mouse lines both revealed that NG2 cells can 
only differentiate into oligodendrocytes in the uninjured adult 
CNS (13, 47, 48). To determine if NG2 cells had lineage plasticity 
after injury, the Olig2-CreER mice were used in cortical stab injury 
(41) and dorsal hemisection SCI (10). However, due to the fact 
that 5% of labeled cells were GFAP+ in the uninjured condition, 
it was difficult to determine if NG2 cells had astroglial fate. Using 
the NG2-CreER mice in which astrocytes are not labeled in the 
uninjured spinal cord, 8% of NG2 cells expressed GFAP at 10 days 
post cortical stab injury (80). Since the percentage of reporter-
labeled cells that co-localized with GFAP decreased to 2% by 
30 days after injury and many cells retained NG2 expression, it 
has been suggested that these NG2 cells transiently express GFAP 
after injury and that NG2 cell-derived astrocytes are not major 
contributors to the astroglial scar (80). However, after contusive 
SCI where inflammation, secondary damage, and astrogliosis is 
much greater than stab wounds, 25% of reporter-labeled cells in 
the NG2-CreER mice expressed GFAP at 1 week after SCI and 8% 
by 4 weeks after injury (49).

Possible mechanisms by which NG2 cells differentiate into 
astrocytes after SCI could be similar to the mechanisms underly-
ing astrogliogenesis during development. These include the Janus 
kinase (JAK)/STAT3 (81), bone morphogenetic protein (BMP) 
(82), and/or Olig2 signaling pathways (83, 84). BMP2 and BMP4 
are known to promote astrogliogenesis from NG2 cells in vitro 
(85). Both BMP2 and BMP4 are upregulated after SCI (86), and 
intraspinal injection of BMP4 leads to increased differentiation 
of transplanted NG2 progenitors into GFAP+ astrocytes (9). 
When NG2 cells are treated with conditioned media from reac-
tive astrocytes isolated from injured spinal cords, it reduces their 
differentiation into O1+ oligodendrocytes and increases their 

expression of GFAP (87), suggesting that the injured spinal cord 
could provide a niche for NG2 cell differentiation into astrocytes. 
Astrocytes isolated from the injured spinal cord have increased 
expression of BMP2/BMP4 compared to uninjured spinal cord 
astrocytes and BMP2 is increased in reactive astrocyte condi-
tioned media, suggesting that astrocytes are a major source of 
BMPs after SCI (87). NG2 cells increase expression of the BMP 
downstream effector Smad after exposure to reactive astrocyte-
conditioned media with an associated decrease in MBP and 
increase in GFAP expression, which is reversed upon treatment 
with the BMP inhibitor noggin (87). Together, these data suggest 
that BMPs may be derived from reactive astrocytes and promote 
NG2 cell differentiation into astrocytes after contusive SCI.

In addition to BMPs, the JAK-STAT3 signaling pathway 
could also be important in astrogliogenesis from NG2 cells after 
CNS injury. The JAK-STAT3 signaling pathway is important for 
astrocyte differentiation from nestin+ cortical precursor cells 
and STAT3 binds to the GFAP promoter (81, 88). In addition, 
developmental astrogliogenesis is impaired in LIF knockout mice 
and gp130 knockout mice (89, 90). However, neither deletion of 
STAT3 nor its negative regulator SOCS3 significantly affects NG2 
cell differentiation into astrocytes after SCI (49). Overexpression 
of the oligodendrocyte transcription factor Olig2 reduced astro-
cyte differentiation from neural stem cells in  vitro (83) while 
deletion of Olig2 in developing NG2 cells leads to increased 
astrocyte production at the expense of oligodendrogenesis and 
myelination (91). However, genetic deletion of Olig2 does not 
affect astrogliogenesis from NG2 cells after cortical stab injury 
(80). Together, these data suggest that NG2 cells might differenti-
ate into astrocytes by a mechanism different from developmental 
processes.

Differentiation into Schwann Cells
After contusive SCI, there are many Schwann cells at the injury 
site (92, 93). Since there are no Schwann cells in the normal 
spinal cord and since the majority of the myelin protein 0 (P0+) 
myelinating Schwann cells are located in the dorsal column after 
SCI, it was thought that these Schwann cells had migrated from 
the dorsal roots. However, genetic lineage tracing revealed that, 
after focal demyelination in the dorsal column white matter, the 
majority of Schwann cells were derived from NG2 cells (94). This 
is also supported by a recent study in which a dorsal rhizotomy 
did not lead to a significant decrease in Schwann cells at the SCI 
site, indicating that the peripheral nervous system (PNS) is not 
a major source of Schwann cells present at the injury site (95). 
While there is accumulating evidence that NG2 cells can differ-
entiate into Schwann cells after SCI, there are several issues that 
need to be carefully considered. First, in addition to dorsal roots, 
the ventral roots as well as nerve fibers on blood vessels may also 
serve as sources of Schwann cells (96). Second, unlike the ability 
of NG2 cells to differentiate into astrocytes in vitro, there have 
been no reports of NG2 cells differentiating into Schwann cells 
in vitro. Last, whereas NG2 cells and astrocytes are derived from 
the neural tube, Schwann cells are derived from the neural crest, 
thereby making the mechanism by which NG2 cells differenti-
ate into Schwann cells ontogenetically more complex than the 
mechanism of their differentiation into astrocytes.
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FiGURe 2 | Reactive gliosis after SCi. (A) After SCI in mice and rats, astrocytes proliferate; secrete cytokines, chemokines, and CSPGs; and form glial-fibrotic 
borders. (B) It is known that NG2 cells proliferate, differentiate into oligodendrocytes and astrocytes, and contribute to scar formation after SCI, however, whether 
NG2 cells contribute to the glial scar by secreting cytokines or contribute to the wound healing process is currently unknown.
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CONTRiBUTiONS TO AXON 
ReGeNeRATiON

Increased CSPG expression is widely considered to be a major 
inhibitory barrier to axon regeneration after CNS injury. 
Phosphocan, neurocan, versican, and brevican are all upregulated 
after SCI (97). While reactive astrocytes are considered a major 
source of CSPGs (98), NG2 cells have also been shown to secrete 
versican and neurocan in  vitro (99–101). Unlike other CSPGs, 
NG2 is typically expressed on the cell membrane rather than as 
a secreted factor. However, its extracellular domain can be shed 
from the cell surface via cleavage by metalloproteinases (MMPs) 
(102). Increased expression of NG2 in the glial scar and its abil-
ity to inhibit neurite outgrowth in vitro indicate that NG2 cells 
may be major inhibitors of axon regeneration (19). The NG2 
proteoglycan leads to inhibition of cerebellar granule neuron 
neurite outgrowth even after digestion with chrondroitinase ABC 
(ChABC), indicating that it is not just the glycosaminoglycan 
(GAG) side chains but also the core proteoglycan that is inhibi-
tory to axon growth (19). Treatment with intraspinal injection 
of NG2 neutralizing antibody leads to enhanced regeneration of 
ascending sensory axons after SCI (103), and long-term delivery 
of NG2 neutralizing antibody through an osmotic pump improves 
conduction and functional recovery after SCI (104). Together, 

these studies suggest that NG2 proteoglycan is inhibitory to axon 
regeneration.

However, the inhibitory properties of NG2 proteoglycan does 
not necessarily mean that NG2 cells themselves are inhibitory. 
Despite the increased levels of NG2, several studies have noted 
that NG2 cells are often associated with regenerating axons, and 
similar findings have been reported for astrocytes (105–107). 
Neonatal hippocampal neurites grow better on NG2 cells than 
on poly-l-lysine and laminin (PLL), even after overexpressing 
NG2 using an adenovirus (108). In addition, regenerating axons 
are observed more frequently in areas of the spinal cord that 
are NG2+ after SCI (39, 109) and may facilitate axon entry into 
Schwann cell grafts after SCI (110). Also, cspg4 knockout mice 
display less serotonergic axons that are able to cross into the 
lesion (111), as well as increased dieback of sensory axons after 
SCI (112). In addition, regenerating dorsal root ganglion (DRG) 
axons associate with NG2-expressing cells after dorsal column 
crush (112). These data suggest that while NG2 proteoglycan 
may inhibit axon regeneration, NG2 cells themselves may be 
permissive to axon growth (108, 112). This is similar to the 
role of reactive astrocytes where even though their expression 
of CSPG is inhibitory to axon regeneration, reactive astrocytes 
themselves may be permissive to, and even necessary for, axon 
regeneration (105–107). Thus, we must be cautious in classifying 
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cells as inhibitory to axon regeneration based solely on their 
expression of CSPGs.

While axons may be able to use NG2 cells as a growth-
permissive substrate, the fact that regenerating axons can form 
terminal synaptic contacts with NG2 cells implies that the net 
effect prevents axonal growth (112–114). The ability of NG2 cells 
to form synapse with axons has been known for quite some time 
(115), but its significance in the context of axon regeneration is 
just beginning to be appreciated. NG2 cells form “synaptic-like” 
structures with DRG axons in vitro (112), and NG2 cells are asso-
ciated with dystrophic sensory axons (116). Furthermore, there 
is presynaptic differentiation of injured sensory axons along the 
CNS/PNS border after dorsal root crush injury (117). Together, 
these data indicate that NG2 cells may inhibit axon regeneration 
by both expression of the inhibitory NG2 proteoglycan as well as 
formation of synaptic contacts.

CONTRiBUTiONS TO iNFLAMMATiON

Astrocytes contribute to the inflammatory response after 
CNS injury and attenuating their expression of proinflamma-
tory cytokines and chemokines leads to improved functional 
outcome (118–123). While astrocytes and microglia have been 
the focus of neuroinflammatory studies, there is accumulating 
evidence that NG2 cells may also contribute to the inflammatory 
response. Genetic deletion of Act1, an activator of NFκB (nuclear 
factor kappa-light-chain-enhancer of activated B cells) via 
interleukin-17 (IL-17) signaling, in NG2 cells, leads to reduced 
expression of proinflammatory chemokines, reduced leukocyte 
infiltration, and improved functional outcome after EAE (124). 
Upon stimulation in  vitro, NG2 cells increase expression of 
multiple proinflammatory chemokines and cytokines as well as 
MMPs (124, 125). In addition, NG2 cells upregulate IL1β and C-C 
motif chemokine ligand 2 (CCL2) after cuprizone demyelination 
(126). Interestingly, deletion of β-catenin in NG2 cells leads to 
reduced Iba1+ macrophage/microglia density around the lesion 
after SCI and also reduced astrogliosis, suggesting that NG2 cells 
may play a role in attracting macrophages after CNS injury (66). 
Therefore, these studies raise the possibility that NG2 cells may 
be a major contributor to inflammation after CNS injury, and 

future studies need to directly address this possibility, especially 
in the context of SCI.

SUMMARY

The glial scar has been synonymous with reactive astrocytes, but 
there is substantial evidence indicating that NG2 cells are also 
a major part of the glial scar, both physically and functionally. 
Similar to astrocytes, NG2 cells react to SCI by proliferating, 
becoming hypertrophic, and upregulating CSPG expression 
(Figure 2). However, unlike astrocytes, NG2 cells can differenti-
ate into other cell types, namely oligodendrocytes, astrocytes, 
and perhaps even Schwann cells. This lineage plasticity of NG2 
cells raise the possibility that they can be targeted to promote 
endogenous repair of the injured spinal cord. Most NG2 cells 
remain undifferentiated in the glial scar region, and these NG2 
cells contribute to axon regeneration failure by expressing CSPGs 
and forming synaptic structures that prevent further axonal 
growth. Similar to astrocytes, NG2 cells may also contribute to 
neuroinflammation, which remains an area that has been under-
appreciated in the field (Figure  2). Therefore, NG2 cells share 
similarities and differences with astrocytes as a part of the glial 
scar, which present novel mechanisms that may be targeted to 
promote repair after SCI.
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