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Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the 
brain due to an injury following a trauma, which can potentially cause severe physical, 
cognitive, and emotional impairment. The primary insult to the brain initiates secondary 
injury cascades consisting of multiple complex biochemical responses of the brain that 
significantly influence the overall severity of the brain damage and clinical sequelae. 
The use of mesenchymal stem cells (MSCs) offers huge potential for application in the 
treatment of TBI. MSCs have immunosuppressive properties that reduce inflammation in 
injured tissue. As such, they could be used to modulate the secondary mechanisms of 
injury and halt the progression of the secondary insult in the brain after injury. Particularly, 
MSCs are capable of secreting growth factors that facilitate the regrowth of neurons in the 
brain. The relative abundance of harvest sources of MSCs also makes them particularly 
appealing. Recently, numerous studies have investigated the effects of infusion of 
MSCs into animal models of TBI. The results have shown significant improvement in the 
motor function of the damaged brain tissues. In this review, we summarize the recent 
advances in the application of MSCs in the treatment of TBI. The review starts with a 
brief introduction of the pathophysiology of TBI, followed by the biology of MSCs, and 
the application of MSCs in TBI treatment. The challenges associated with the application 
of MSCs in the treatment of TBI and strategies to address those challenges in the future 
have also been discussed.
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iNTRODUCTiON

Annually, around 10 million people worldwide suffer traumatic brain injuries (TBIs), which 
lead either to death or hospitalization (1). In the USA alone, an estimated 1.7 million people 
sustain a TBI each year, with death being the outcome for about 52,000 of those affected 
(2). Brain injuries may also have less pronounced effects that are harder to quantify and are 
classified as mild. Although deemed benign, even mild TBIs can lead to prolonged symptoms 
and long-term serious sequelae (3–5). Patients often complain of headaches for weeks after the 
injury, and the risk of depression remains higher for decades (6). TBI could also increase the 
likelihood of suffering from Alzheimer’s disease or dementia in old age (7–9). In USA, the direct 
and indirect costs of TBI are estimated at over US$60 billion per year (10), and life years lost 
due to death and disability outweigh medical and rehabilitation costs by a factor of four (11).
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Traumatic brain injury occurs when the brain is damaged by 
an external force (12). This force could result from a direct impact 
of the head with an object (bump, collision, assault) or from an 
indirect impact (whiplash, sudden acceleration–deceleration of 
the head). In both cases, the brain is subjected to forces that dam-
age its neural structure and alter its function. The trauma causes a 
primary injury/damage to the brain that is followed by a second-
ary injury. The second injury is manifested in cascades of multiple 
pathophysiological mechanisms, including cytotoxicity, gene 
activation, oxidative injury, cerebral edema, and inflammation. 
The body’s response to the initial injury has protective and repara-
tive roles as well as negative effects that prevent the completion of 
the healing process in the affected area (13). In order to protect 
the intact neural tissue from the destructive immuno-response, a 
physical barrier termed the glial scar is formed around the injured 
area to isolate it and prevent the spread of the inflammation to 
neighboring neurons and the surrounding area (14). To address 
this issue and in attempt to restore functionality to the afflicted 
neurons, researchers have investigated various restorative 
approaches, one of which is regenerative medicine. A major new 
focus of regenerative medicine involves the use of stem cells. Stem 
cells are progenitor cells that are found in various niches of the 
body. There are several types of stem cells that have been used in 
the treatment of various bodily injuries, from muscular, skin, and 
bone to liver, bladder, and neural cells. Endogenous stem cells, 
exogenous stem cells, embryonic stem cells, induced pluripotent 
stem cells, adult stem cells, and mesenchymal stem cells (MSCs), 
to name a few. The scope of this review paper is solely the use of 
MSCs in the treatment of TBI. MSCs are multipotent stromal cells 
that can be extracted from all tissues (15) and have been shown 
to differentiate into various cell lines, not solely mesenchymal 
ones (16–18). Due to the relative ease with which these cells can 
be obtained, the abundance of their sources (19–23), and their 
wide differentiation potential, there is a growing interest in their 
use for regenerative purposes. Moreover, MSCs have been shown 
to selectively migrate to and settle in injured tissue (24–30). 
This “homing” capacity has been exploited to circumvent the 
difficulties associated with delivery of stem cells into delicate 
sites, such as in the brain or the heart. Furthermore, MSCs help 
in the regeneration of injured tissue through their multi-lineage 
differentiation potential. In addition, injecting MSCs into injured 
tissue has been shown to reduce the natural immune response 
(31–35) and to promote the tissue’s own regenerative process by 
releasing helpful growth factors (31, 36–38).

The use of MSCs is a promising strategy for the treatment of 
TBI. Considerable advances in MSC’s application in neuronal 
regeneration have been made in recent years, particularly in the 
methods of preparation of these cells for successful implantation 
and subsequent brain injury recovery. Most of the in vivo studies 
in this direction have been limited to animal studies (39–42). 
Translating these treatments to humans remains a challenge due 
to various reasons (43) including the need for well-established and 
reliable grafting techniques. In addition, the lack of knowledge of 
the specific mode of action of MSCs (the way they target tissues, 
the role of paracrine factors, among others) still limits the suc-
cessful implementation in clinical practice (25). On another note, 
the immunogenic aspects of MSCs after transplantation (32) and 

their correlation with tumors (44) are also among challenges not 
to be neglected.

In the current review, we discuss the state–of-the-art and the 
recent advances in the application of MSCs in the treatment of 
TBI. The review gives a brief introduction of the pathophysiology 
of TBI, followed by the biology of MSCs, and the application of 
MSCs in TBI treatment. We then present the challenges associ-
ated with the application of MSCs in the treatment of TBI, and 
the strategies to address those challenges in the future have also 
been discussed.

PATHOPHYSiOLOGY OF TBi

The effects of TBI on the brain are numerous, and they can be 
divided between external and internal effects depending on the 
targeted area. Externally, the skull provides protection for the 
brain. Some cranial outcomes of TBI are scalp hematoma, hem-
orrhagic contusion, herniation, and midline shifts of the brain 
(Figure  1A) (45). Internally, the complex blood–brain barrier 
(BBB) structure separates the brain extracellular fluid from the 
circulating peripheral blood. The BBB maintains ion concentra-
tions, regulates the flow of elements into the brain, and protects 
the brain from foreign elements (therapeutic and neurotoxic) 
circulating in the blood stream. In cases of brain injury, the BBB’s 
tight lock is compromised, allowing the passage of immune cells 
into the central nervous system (46).

Astrocytes that are part of the BBB are also particular key 
players in the brain’s defense response. After an injury, astrocytes 
enclose the damaged area to protect the rest of the brain creating 
the so-called glial scar (53). A consequence thereof however, is a 
much lower rate of inflow of macrophages (54), the immune cells 
responsible for removing the inhibitory myelin from the site, and, 
ultimately, the inhibition of the return to full functionality of the 
injured area (55).

While the incident of TBI is usually acute, general consensus 
is that there are two stages in the biological response to TBI. The 
first, or primary stage, is the physical damage to the neurons, 
the glial cells, the nerve fibers, and the BBB (56, 57). Damage 
to the neural structure involves linear and torsional forces. The 
linear force results from the direct acceleration–deceleration 
experienced during the collision. The linear force contributes to 
a torsional force among the neurons that leads to twisting and 
shearing injuries in the brain, significantly affecting the white 
matter fiber tracts that are especially vulnerable to injury. Axonal 
injury characterized by swelling and even complete severing of 
axons is a major and common result of TBI (51). The effect of 
TBI on neurons and the general neuronal tracts are shown in 
Figure 1D. Experiments by Johnson et al. showed that for in vivo 
and in vitro TBI models, myelinated fibers are more tolerant to 
mechanical strain than their unmyelinated counterparts (58). 
The susceptibility of nerves to injury is due to the viscoelastic 
nature of the nerve fibers. Although nerves do exhibit an elastic 
nature under gradual loading, their behavior is brittle under sud-
den sharp loads. Sharp sudden loads render the neuron brittle, 
resulting in the damage of axons.

Following the initial injury caused by the trauma, an intense 
local inflammation occurs, exacerbating the damage and 
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FiGURe 1 | Pathophysiology of TBi. (A) Possible effects of TBI (hemorrhagic contusion, and midline shifts). A monitor can be inserted into the skull via surgical 
methods to reduce intracranial pressure (ICP) (45, 47–49). (B) Creating a TBI model in a rat; a 4.8 mm craniectomy was performed on the right parietal cortex (left 
panel), a plastic cylinder 4.8 mm in diameter was fixed at the craniectomy site (middle panel), a bone cement is placed to reclose the skull (right panel) (94).  
(C) A picture of the coronal rat whole brain section is shown for both the control case and the TBI case (50). (D) At the macroscopic scale, injuries can be noticeable 
in large white matter tracts, seen here in the leftmost bottom figure in a postmortem specimen with black regions of hemorrhage, indicating underlying damage. At 
the organ scale, damage to tracts interrupts long-distance communication between brain regions. The two pairs of axial human brain sections at the bottom center 
and bottom right illustrate the white matter microstructure with reduced fractional anisotropy due to a TBI (red structures in the bottom center) and intact structures 
(displayed in green). The damage could result in a disruption in the interaction between nodes of a brain network (illustrated as red and yellow regions in the bottom 
right figure) (51). Figures reproduced from Ref. (45, 47–49, 51, 52, 94) with permissions from Elsevier and Nature publishing groups and the International Journal of 
Critical Illness and Injury Science. Abbreviations: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; NMDA, N-methyl-d-aspartic acid; NO, nitric oxide; 
ROS, reactive oxygen species; TBI, traumatic brain injury.
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expanding the site of injury to include neighboring neurons. The 
primary injury leads to ischemia, reducing the oxygen and glu-
cose supply to the cells. This forces the cells to resort to anaerobic 
respiration and the accumulation of lactic acid. After the deple-
tion of the ATP in the cells, the ion pumps in the cell membrane 
lose some functionality leading to the leakage of calcium ions into 
the cells and the mitochondria, leading to the formation of free 
radicals that cause more damage (52, 59–62). The inflammatory 
response consists of the recruitment and migration of leukocytes 
and microglia to the site of injury and the release of cytokines, 
some of which promote an inflammatory response (such as IL-6 
and TNFα) and anti-inflammatory response (such as TGFβ and 

IL-10) in addition to oxygen radicals, nitric oxide, proteases, and 
other factors with cytotoxic effects, which, in turn, exacerbate 
neuronal death (52, 58, 60, 63). The complex cascade of resultant 
events is known as the secondary stage of TBI. In response to this 
cascade, astrocytes become hypertrophic and are activated build-
ing a physical barrier (the glial scar) isolating the site of injury and 
protecting the neurons that are still intact. The glial scar encloses 
an area containing inhibitory molecules that prevents the 
regrowth of neurons (14) and inhibits the repair of the BBB (64). 
Preventing the formation of the glial scar by inhibiting reactive 
gliosis might appeal as a treatment method (65). The astrocytes 
in the glial scar, however, encourage the survival of surrounding 
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neurons by secreting various metabolites such as glucose, growth 
factors, and nutrients (14).

There exist many models of TBI. The lateral fluid percussion 
brain injury method process of modeling TBIs in rats is shown in 
Figures 1B,C (50, 66). Generally, they are separated into either 
penetrative injury or non-penetrative injury models. Penetrative 
injury models are implemented by the aforementioned lateral 
fluid percussion and controlled cortical impacts (CCIs). Non-
penetrative injuries are caused by impact acceleration and weight 
drop models (67–71).

BiOLOGY OF MSCs

Mesenchymal stem cells are multipotent stromal cells that can be 
extracted from virtually any adult tissue (15) and have the potential 
to differentiate into a variety of cell types including the osteogenic, 
adipogenic, chondrogenic, and neural lineages (72–75) (Figure 2). 
It is required that MSCs be positive for CD105, CD73, and CD90 
and negative for CD45, CD34, CD14, or CD11b, CD7α, CD19, 
and HLA-DR surface molecules (72). The expression or lack of 
expression of the aforementioned antigens ensures distinction 
between MSCs and other cells that would be present in an MSC 
culture. MSC’s therapeutic and restorative potential for TBI is 
evident from their ability to differentiate into neural cell lineages, 
to home to sites of injury, as well as to cross the BBB. In what fol-
lows, we will be discussing in more details each of these properties, 
which make MSCs particularly valuable for TBI treatment.

Differentiation Potential of MSCs  
in Neural Cells
Azizi et  al. showed that it is possible to engraft MSCs into the 
brain, where they survive and display migratory abilities similar 
to those of neural stem cells (NSCs) (77). Furthermore, whereas 
these MSCs could be stained with antibodies for collagen 1 before 
implantation, this characteristic was no longer maintained after-
ward. Their staining for fibronectin also decreased significantly 
30 and 72  days later. The differentiation of MSCs into certain 
lineages and thus the expression of certain genes are explained 
by the potential of MSCs to acquire the phenotype of their host 
tissue (78).

Kopen et  al. implanted immunodepleted MSCs into the 
lateral ventricle of neonatal mice (76). Consistent with previous 
observations, the distribution of the marked cells throughout the 
brain reflected a specific course of migration along defined routes. 
Furthermore, some of the cells migrated into the corpus striatum, 
the molecular level of the hippocampus, and the cerebellum, and 
differentiated into macroglia. This behavior of the cells was in line 
with the developmental stages of those parts of the brain. MSCs 
also migrated into parts of the brain undergoing neurogenesis, 
where they might have developed into new neurons. However, 
the cells did not migrate into regions of the brain where the popu-
lation of neurons develops during embryogenesis. The implanted 
MSCs thus mimicked the behavior of neural progenitor cells in 
the postnatal murine brain.

Further evidence of the neural differentiation potential of 
MSCs was produced by Sanchez-Ramos and coworkers. They 
found that MSCs differentiated into neuron-like and glial-like 

cells both in the case of coculturing with primary neural cultures 
and without (18). Human MSCs (HMSCs) were also shown to 
differentiate, inside murine bone marrow, into the building 
blocks of the hematopoietic stem cell (HSC) niche, namely peri-
cytes, myofibroblasts, reticular cells, osteocytes, osteoblasts, and 
endothelial cells (ECs) (79), the discussion on which is beyond 
the scope of the current review. The HSC niches maintained the 
progenitor cells in a quiescent state, protecting them from dif-
ferentiation or apoptosis, and then controlled their proliferation 
and the release of their progeny into the vascular system (80, 81).

Homing of MSCs at the Sites of injuries
Mesenchymal stem cell homing is described as their ability to 
“arrest within the vasculature of a tissue followed by transmigra-
tion across the endothelium” (25). MSCs can migrate to sites of 
TBI injury (82, 83), and many mechanisms have been put forth 
to explain this behavior. For instance, López Ponte and colleagues 
showed that MSCs’ migration is influenced by several chemokines 
and growth factors (27). Another mechanism is the adhesion of 
MSCs to the endothelium of injured tissue due to the expression 
of vascular cell adhesion molecule (VCAM-1) (28–30). Figure 3 
shows the homing mechanism of MSC to injury sites and infiltra-
tion and how they are similar to the homing mechanism of leuko-
cytes. The figure shows how leukocytes have the ability to tether, 
roll, adhere, and transmigrate toward chemokines, selectins, and 
integrins secreted by the endothelial layer (24).

In in vitro coculturing, Rojas et al. reported a clear prolifera-
tion and migration of MSCs toward injured lung cell suspensions 
that did not occur when MSCs were cocultured with healthy lung 
cells (36). Barbash et al. found a considerably higher activity of 
infused MSCs in myocardial infarction (MI) versus sham-MI 
rats (26). They also compared the colonization sites of MSCs 
around injured myocardial tissue in rats. They identified the 
presence of donor cell at the infarcted border zone but none in 
intact myocardial tissue or in sham-MI rats. This suggests that 
MSCs can also locate injured cells inside otherwise healthy tissue.

As the amount of released markers could decrease over time, 
the efficiency of MSC migration could drop as time elapses after 
an injury. Barbash et al. registered a trend of increased presence of 
MSCs in rats in cases of MSC infusion after 2 days as compared to 
that after 14 days (26). However, the effectiveness of the infusion 
could depend on its location. The efficiency of the MSC homing 
capacity when infused into the left ventricular (LV) cavity versus 
that of intravenous infusion in rats with MI was compared. A 
considerably larger activity of MSCs was registered in the lungs 
after intravenous infusion compared to LV cavity infusion. 
Furthermore, the migration of MSCs to the site of injury in the 
heart was significantly more effective in the latter case.

immunosuppressive Properties of MSCs
In addition to their ability to differentiate into cells of various 
lineages and their tendency to home or migrate toward the sites 
of injuries, the immunosuppressive properties of MSCs have 
resulted in growing interest in their potential clinical applications. 
For example, the addition of MSCs from both autologous and 
allogenic sources to an in vitro mixed lymphocyte reaction led 
to a suppression of the proliferative response of the lymphocytes 
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FiGURe 2 | (A) The mesengenic process, typical lineages of mesenchymal stem cells (MSCs), and the stages of their differentiation (74). (B–D) Human MSCs 
(HMSCs) differentiate into the adipo, chondro, and osteocyte lineages (16). Adipogenesis is seen by the accumulation of natural lipid vacuoles that stain oil red 
(B). Chondrogenesis is seen by staining with C4F6 monoclonal antibodies to type II collagen (C). Osteogenesis is evident by the increase in alkaline phosphatase 
and calcium deposition typical of osteocytes (D). (e) HMSCs differentiate in neurons and expressed high levels of the neuronal marker neuron-specific enolase 
(75). (F) Murine MSCs harvested and reinjected into neonatal murine brains differentiated into astrocytes. MSC-derived astrocytes in the hippocampus were 
labeled with anti-BrdUrd and anti-GFAP. The arrows indicate BrdUrd-labeled nuclei (76). (G) Murine BMSCs were labeled with fluorescent stain and cocultured 
with fetal midbrain cultures for 1 week. The red stain shows BMSC with astroglial cell marker GFAP (18). Figures reproduced from Ref. (16, 74–76) with 
permissions from the American Association for the Advancement of Science, John Wiley and sons, PNAS, and Elsevier publishing groups.
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FiGURe 3 | (A) A schematic showing how leukocytes transmigrate across the endothelium. Mesenchymal stem cells (MSCs) are likened to have similar 
patterns in their transmigration. The homing of leukocytes is affected by chemokines, selectins, and integrins released by the endothelial layer (24). (B) MSCs 
(red, stained with CellTracker Red) were cocultivated with endothelial spheroids (green, stained with CellTracker Green). The MSCs came in contact with the 
spheroid at 2 h and infiltrated it with plasmic podia (indicated with arrows at 4 and 6 h, scale bar 10 µm) (84). (C) MSCs in the reticular filament of the brain 
stem labeled with anti-BrdUrd, anti-GFAP, and anti-neurofilament (×400 magnification). The insets show neurofilament staining (re) in the cytoplasm of the 
BrdUrd stained (yellow) MSCs (×1,000 magnification) (76). (D) MSCs (DiI labeled, red) migrate to site of sub-endocardium myocardial ischemia. Damaged 
myocytes appear dark green and are more loosely organized than healthy myocytes (phalloidin labeled F-actin, green; and Hoechst labeled nuclei, blue) (29). 
Figures reproduced from Ref. (24, 29, 76, 84) with permissions from John Wiley and Sons, Elsevier, and PNAS publishing groups.
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(34, 35). This effect was further amplified with increased numbers 
of MSCs. Furthermore, the suppressed lymphocytes were found 
to recover their properties when stimulated in the absence of 
MSCs (35). In vivo, the addition of MSCs to an allogenic skin graft 
also delayed the time of rejection from 7 to 11 days (34). These 
findings show that MSCs have immunosuppressive properties. 
This effect of MSCs could be exploited to help in reducing the 
effects of the secondary insult of TBIs.

Regenerative-Aiding effects of MSCs
Mesenchymal stem cells have been found to facilitate the injured 
tissue’s own regenerative process. MSCs implanted into mouse 
hippocampus were found to enhance the proliferation, migration, 
and differentiation of native NSCs (37). Chemokines released 
by MSCs might have themselves influenced the NSCs or done 
it indirectly through activating the surrounding astrocytes. A 
decreased expression of inflammation-associated cytokines was 
also reported in lung tissues treated with MSCs, which facilitated 
the natural repair of the injured tissue (36).

A common devastating outcome of TBI is the damage and 
undermining of the BBB. Menge et  al. reported that MSCs 
upregulate the expression of the TIMP3 gene in TBI mice (43). 
The TIMP3 protein was shown to contribute to restoring the BBB 
to function through decreasing its permeability and reinforcing 
the junctions between ECs.

Crossing of the BBB by MSCs
The ability to cross the BBB is important for neurotherapeutic 
drugs for their proper efficacy. Over the last decades, several 
strategies and technologies that enable access through the BBB 
have been investigated (85, 86). Recent research has indicated 
that MSCs might already possess the ability to cross the EC bar-
rier of the BBB (87). Steingen et  al. identified the mechanisms 
through which this occurs (84). After coming into the contact 
with the endothelium, MSCs exit the blood stream and integrate 
into the endothelium through the use of the adhesion molecules 
VCAM-1/VLA-4 and β1 integrin. After crossing the endothelial 
barrier, MSCs invade the host tissue through the use of plasmic 
podia (84). In the brain, Matsushita et al. reported that MSCs were 
able to cross the BBB through paracellular pathways (88), despite 
the presence of tight junctions that would normally inhibit such 
passage. Similar to lymphocytes, MSCs seem to influence tight 
junction barrier properties leading to their temporary abolish-
ment. The MSC’s ability to cross the BBB is a primary cause of its 
appeal as a TBI treatment method.

RePORTeD ReSULTS iN DeCReASiNG 
TBi SeQUeLAe

There is growing evidence supporting the efficiency of using 
MSCs in alleviating the severe consequences of TBI. In this 
regard, several studies have reported the potential mechanisms 
by which MSCs might enhance the function of patients’ nervous 
systems. In one study, it was found that MSCs differentiate into 
neuron- and astrocyte-like cells when transplanted into rats with 
TBI (39). This was demonstrated by the existence of the neuronal 
nuclear antigen and glial fibrillary acidic protein in the parietal 

lobes of the studied cells. Furthermore, researchers reported that 
this differentiation enhanced neural growth, promoting sensory 
and motor functions improvement (39, 89, 90). These results 
hold promise for the potential of MSCs in the treatment of TBI. 
Table 1 summarizes animal and clinical trial breakthroughs and 
findings concerning the therapeutic effect of MSCs in treatment 
of TBI and its sequelae.

Other studies have reported that the intravenous administra-
tion of secretome derived from HMSCs led to a decrease in the 
number of apoptotic neural cells promoting vascular endothelial 
growth factor (VEGF) release (40, 91, 98). These results support 
the idea that MSC-driven neural regeneration could restore 
neural function (99, 100). Factors secreted by MSCs include glial 
cell line-derived neurotrophic factor, brain-derived neurotrophic 
factor (BDNF), nerve growth factor (NGF), and VEGF. MSC 
cultures in supernatants from rat brains subjected to closed TBI 
also showed increased BDNF, NGF, and VEGF, in addition to an 
increase in hepatocyte growth factor (HGF). The large number of 
factors secreted can promote self-repair of residing tissue cells.

Furthermore, several preclinical trials investigating the use of 
MSCs in TBI models have shown the migration of cells away from 
the lesion site and subsequent survival of MSCs, as well as their 
differentiation into neurons and astrocytes, leading to enhanced 
motor function (101).

It is important to mention that it may be possible to administer 
factors produced by MSCs to improve the state of traumatically 
injured brains without transplanting the cells themselves. The 
potential recovery of neural function has been reported not to 
be due to MSCs replacing the dead neural cell, but rather to 
the fact that local progenitor cells are stimulated following the  
MSCs’ secretion of soluble factors, which in turn leads to the 
survival of the neural progenitor cells and subsequently their 
differentiation (31).

GeNeTiC MODiFiCATiON AND OTHeR 
PReCONDiTiONiNG OF MSCs BeFORe 
DeLiveRY TO TBi

Recent research has highlighted the possibility of genetically 
modifying MSCs for the purpose of producing soluble growth 
factors, as well as cytokines and chemokines (98). These soluble 
factors are capable of enhancing the survival of stem and neu-
ronal cells. For instance, neurotrophic factors secreted by MSCs 
have been found to promote angiogenesis and neurogenesis in the 
injured brain, thus enhancing the multiplication of neuronal cells 
at the damaged site (39).

Some recent studies have highlighted the therapeutic potential 
of the secretome of modified MSCs for the survival of neuronal 
cells (40, 91). The therapeutic efficiency of MSCs was improved 
by preconditioning these cells under hypoxia, in addition to using 
collagen delivery metrics and scaffolds, and encapsulated MSCs 
(EMSC). The intravenous injection of secretome from normoxia-
preconditioned HMSCs can attenuate TBI by reducing neuronal 
cell loss and apoptosis in addition to increasing the production 
of VEGF. This was traced by immunofluorescence staining in 
TBI-induced rats (40). However, MSCs cultured in hypoxia were 
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TABLe 1 | Summary of studies of MSC biological properties and their therapeutic effects on TBi.

Animal trials

Mesenchymal stem 
cell (MSC) source

Traumatic brain 
injury (TBi) model

Animal Administration Result Reference

Immune-depleted MSCs N/A Neonatal mice Implanted into the lateral ventricle Migration of MSCs into different part of the murine brain, some cells also 
underwent neurogenesis, where they developed into neuron

(76)

Human MSCs (HMSCs) N/A Mice Injection into bone marrow HMSCs differentiate into the building blocks of the hematopoietic stem cell 
niche, pericytes, myofibroblasts, reticular cells, osteocytes, osteoblasts, and 
endothelial cells

(79)

MSC N/A Rats Infused in myocardial infarction (MI) 
and sham-MI

Infused MSCs demonstrated higher activity in MI being able to locate injured 
cells within healthy tissues. Homing was not observed in Sham-MI rats or 
healthy rats

(26)

MSC N/A Baboon Addition of MSCs to an allogenic skin 
graft

MSCs displayed immunosuppressive properties by delaying rejection time from 
7 to 11 days by suppressing the proliferative response of lymphocytes

(34)

MSC N/A Mice Implantation into hippocampus MSCs facilitate the regenerative process of the injured neural tissue by 
enhancing proliferation, migration, and differentiation of native neural stem cells

(37)

MSC N/A Rats Transmigration in the brain MSCs exhibited their ability to penetrate the blood–brain barrier (BBB) via 
paracellular pathways

(88)

Human UMSC Controlled cortical 
impact (CCI)

Mice Infusion into the cerebral ventricle Mice exhibited improved motor skills after 35 days of TBI (90)

HMSCs CCI Rats Transplantation in the brain MSCs decreased TBI sequelae by their inherent capability to differentiate into 
neuron- and astrocyte-like cells

(89)

HMSCs FPI Rats Intravenous injection MSCs mitigated TBI effects by reducing neuronal cell loss and apoptosis, and 
increasing the production of the vascular endothelial growth factor

(40)

Hypoxic-preconditioned 
MSCs

FPI Rats Rat brains were treated with hypoxic 
and normoxic-preconditioned MSCs

The MSCs increased their growth factor secretion due to hypoxia 
preconditioning

(91)

MSCs CCI Rats Transplantation MSCs with collagen scaffolds enhanced the survival of cells in rats with 
experimental TBI

(41)

MSCs CCI Rats Topical application to the surface of the 
brain

MSCs with fibrin increased the adhesion efficiency of MSCs to the cortical 
brain surface and provided a scaffold for the increase of the MSCs before they 
penetrated the white matter to migrate to the site of TBI

(92)

BMSCs Weight drop model Rats Transplantation with administration of 
exogenous basic fibroblast growth factor 
(bFGF)

Exogenous bFGF enhances the growth of transplanted cells, for the 
regeneration of tissue. And, rats following TBI exogenously supplied with bFGF 
recovered more quickly than rats without bFGF

(93)

MSCs combined with 
mannitol

FPI Rats Intra-arterial transplantation Mannitol disrupts the BBB, which allows more MCSCs to be detected in injured 
brain tissues as compared to MSCs with glycerol or phosphate-buffered saline

(94)

UMSCs Weight drop  
method

Rats Increased ability to survive and migrate in 
rat cerebral tissues

Higher improvement in neurological function when rats received brain-derived 
neurotrophic factor gene-modified UMSCs due to an increase in the MSCs 
ability to survive and migrate in rat cerebral tissues

(95)

(Continued )
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more effective than their normoxic counterparts in inducing the 
expression of both HGF and VEGF in cultured cells. It was also 
demonstrated that treating experimental TBI rats with hypoxia-
preconditioned MSC secretome resulted in significant improve-
ments in their motor functions as well as in their cognitive 
functions and neurogenesis. Furthermore, the rats treated with 
hypoxic-precondition MSCs showed signs of reduced brain dam-
age compared to rats treated with the normoxic-preconditioned 
MSC secretome. Taken together, these findings suggest that the 
preconditioning of MSCs under hypoxia can enhance the thera-
peutic potential of the secretome, mainly due to increasing the 
secretion of growth factors from these cells (91). The recuperative 
effects of MSCs on TBI sequelae are shown in Figures 4 and 5.

The use of collagen delivery matrices has been reported to 
improve MSCs therapy by promoting the retention of human 
bone marrow MSCs (BMSCs) in the lesion site and limiting 
their distribution in the transplanted region. Collagen scaffolds 
also enhanced cell survival in rats with experimental TBI and 
improved brain metabolism, as detected by positron emission 
tomography, when compared with rats into which the stem cells 
were transplanted without collagen scaffolds (41).

The use of EMSCs rather than naked MSCs has been shown to 
reduce neuronal cell loss from the hippocampus and cortical neu-
ronal and glial defects in CCI rat models (40). These therapeutic 
effects were further improved by designing EMSCs transfected to 
produce the glucagon-like peptide-1 (GLP-1), which was present 
in increased concentration in cerebrospinal fluid in rats treated 
with these GLP-1-secreting EMSCs (42).

The topical application of MSCs to the surface of the brain, 
as compared to systemic delivery of MSCs, can allow MSCs to 
migrate more efficiently and specifically to the TBI site, where 
they can replenish injured neurons and secrete various anti-
inflammatory, immunomodulatory, and neurotrophic cytokines 
that facilitate neuronal regeneration. Interestingly, the topical 
application of green fluorescent protein (GFP)-expressing MSCs 
(GFP-MSCs) combined with a thin layer of fibrin was shown to 
increase the adhesion efficiency of the GFP-MSCs to the corti-
cal brain surface (92). In addition, it provided a scaffold for the 
increase of the GFP-MSCs before penetrating the white matter to 
migrate to the cortical surface of the site of TBI.

Furthermore, the administration of exogenous basic fibroblast 
growth factor (bFGF), which enhances the proliferation of NSCs 
in vitro and in vivo, can promote BMSC transplantation-associated 
functional recovery in rats after TBI. Experimental data have 
provided evidence that exogenous bFGF enhances the growth 
of transplanted cells, which is necessary for the regeneration of 
neural tissue (103, 104). Moreover, rats exogenously supplied 
with bFGF following TBI recovered more quickly as compared 
to other groups of rats that did not receive bFGF (93).

Intra-arterial transplantation of MSCs combined with man-
nitol has been proven to be an effective treatment in experimental 
TBI models. Specifically, mannitol results in an increased disrup-
tion of BBB, which allows more MSCs to be detected in injured 
brain tissues as compared to MSCs with glycerol or phosphate-
buffered saline (94).

In addition, umbilical cord MSCs (UCMSCs), which express 
a genetically modified BDNF, attenuate neurological deficits in 
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FiGURe 4 | (A) Ipsilateral hemisphere brain water content of rats was analyzed 72 h after injury using a weight drop device. Rats treated with mesenchymal stem 
cells (MSCs) had significantly lower water content than rats injected with phosphate buffer solution (PBS) only (n = 6 per group, *p = 0.05, **p = 0.01) (99). (B) Rats 
impacted with traumatic brain injury (TBI) using fluid percussion injury and treated with MSC secretome showed a lower number of neuronal apoptosis cells 
compared to TBI rats with no treatment (n = 8 per group, *p < 0.05) (40). (C) Comparison of mean width of astroglial scar in TBI rats with different methods of MSC 
transplantation (100). (D) Cavitation percentages in different groups of rats subjected to TBI using a weight drop device. Rat groups were sham, matrigel treated, 
human UMSC, and human UMSC-derived neurospheres. Rats treated with human UMSC showed major improvement relative to the other groups (*p = 0.05, 
**p < 0.001) (102). Figures reproduced from Ref. (40, 99, 100, 102) with permissions from Wolters Kluwer Health and Springer publishing groups.
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rats with TBI because these cells have increased ability to survive 
and migrate in rat cerebral tissues. In fact, rat models of cerebral 
contusion in the motor-sensory cortex showed much higher 
improvement in neurological function when they received BDNF 
gene-modified UCMSCs than when they received UCMSCs 
alone (95, 102).

Notably, BMSCs labeled with superparamagnetic iron oxide 
in vitro can be tracked by susceptibility weighted imaging (SWI) 
sequence to study their survival and location in a rat model of TBI 
(105). SWI sequence might be a valuable tool in demonstrating 
the migration and distribution of the labeled BMSCs in the brain 
of TBI animals.

MSC THeRAPY OF TBi iN HUMANS

Furthermore, a recent study has shown that oxidative stress pro-
duction can be significantly manipulated by HMSCs, promoting 
cell migration and thus contributing to brain recovery following 
injury (106). Taken together, these studies demonstrate that the 
use of MSC-based approaches could serve as treatments for 
patients suffering from TBI. One study by Cox et al. implanted 
MSC into 10 children that had a TBI injury with a Glasgow 

Coma Scale (GCS) score between 5 and 8 and monitored them 
over the course of 6 months (97). In seven children, the outcome 
was positive showing improvement on the GCS. The other three 
children did not show a significant improvement to their quality 
of life. None of the children died or suffered adverse effects due to 
the use of the MSCs in their treatment. Subsequent to that study 
MSCs were studied to treat brain strokes in adults, presenting 
favorable results (107).

Tian et  al. showed that the use of MSCs have a window of 
efficacy after the onset of TBI (108). MSCs were implanted via 
lumbar puncture into 97 patients, 24 in a permanent vegetative 
state. Different patients had different time span between the TBI 
injury and their treatment. The study showed that the efficacy of 
MSC treatment is increased the earlier it is implemented. Patients 
who underwent the therapy clos e to the date of their injury 
showed better signs of improvement.

The delivery of autologous mesenchymal stromal cells to 
patients with TBI has been shown to be a safe and practical 
procedure that can potentially enhance neurological recovery by 
increasing the engraftment efficiency of transplanted cells at the 
site of brain injury (96). The procedure consisted of administer-
ing 107–109 cells directly into the injured area of the brain during 

http://www.frontiersin.org/Neurology/
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FiGURe 5 | The protective and recuperative effects of mesenchymal stem cell (MSC) on mice impacted with traumatic brain injury (TBi) via a 
controlled cortical impact (CCi) is observed compared to mice that suffered CCi but were only treated with phosphate buffer solution (PBS). (A–D) 
UMSC had protective effects on the sensorimotor and cognitive function of TBI mice. TBI mice that only received PBS showed motor function deficit assessed by 
beam walk [(A), n = 6–18, ***p < 0.001] and Neuroscore [(B), n = 16–18, ***p < 0.001]. Mice that received UMSC treatment showed attenuation of their motor 
deficits after the injury by 7 days and persisted until 28 days. UMSC-treated mice showed better learning capabilities assessed by the latency to locate the hidden 
platform in the Morris water maze 28–30 days after the surgery [(C), n = 16–18, **p < 0.01] Significant improvement was seen in locating the hidden platform in 
UMSC-treated rats on day 3, indicating better learning capabilities [(D), n = 16–18, ##p < 0.0] (90). (e,F) Infusion of MSCs in mice with CCI TBI-induced early and 
persistent improvement of the mice sensorimotor deficits as assessed by Neuroscore [(e), n = 8, **p < 0.01, ***p < 0.001] and beam walk tests [(F), n = 8, 
*p < 0.05, ***p < 0.001] (89). Figures reproduced from Ref. (89, 90) with permissions from Wolters Kluwer Health and Springer publishing groups.
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a cranial operation followed by the administration of 108–1010 
cells using intravenous infusion. This method renders this type 
of treatment feasible for facilities with ordinary equipment and 

procedures. The procedure was conducted on seven human 
patients (seven males and one female). None of the patients 
died or had any adverse effects due to the procedure conducted, 
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although one patient experienced two episodes of epilepsy in the 
first 2 months. The Barthel index score of all patients increased as 
the 6 months of treatment progressed.

CHALLeNGeS

Despite the several lines of evidence that support the great poten-
tial of MSCs in the treatment of TBI, a number of obstacles to the 
success of this approach remain. For instance, one major drawback 
of the use of MSCs is the limited knowledge on the way these cells 
target specific tissues (25). Karp and Teo addressed the problem 
of targeting MSCs to the intended tissues (25). Importantly, they 
highlighted the gap of knowledge that exists concerning the rela-
tive importance of the effects caused by MSCs engrafted locally 
and of those engendered from paracrine factors that are secreted 
and that also diffuse to the target tissues. Paracrine factors have 
been shown to have a positive role in the healing capacity of MSCs 
(106). However, the precise process by which MSCs are capable of 
regenerating defective tissues still needs to be understood.

Another critical issue that hampers the successful use of MSCs 
for the treatment of TBI is their potential correlation with tumors. 
Djouad et al. reported that the injection of MSCs might lead to 
suppressing the patient’s antitumor response (109). To explain 
this mechanism, Bartholomew et al. suggested that MSCs have 
an important role in suppressing the lymphocyte proliferation 
in vitro (34) causing a deficiency in the immune response. While 
this might be a favorable effect in the case of skin graft survival, 
the use of MSCs in treating TBI would require extra precaution, 
particularly to avoid the probable rise of any tumor in long-term 
cultured MSCs (44). In addition, there is now clear evidence that 
MSCs exhibit immunosuppressive effects under inflammatory 
conditions (34, 35). Therefore, given that secondary mechanisms 
following TBI include a severe inflammatory response (110), the 
employment of MSCs in the treatment could give rise to unin-
tended complications (32).

Kim et al. reported that while the transplanted stem cells in 
the animal models survived for a long period of time, not enough 
stem cells differentiated into neurons and astrocytes to be able 
to replace the tissue that is damaged. This motivated them to 
look into the use of HMSCs and track their effects on functional 
recovery (111). In this study, rats were intravenously treated with 
HMSCs 24 h after TBI. Neurological function was significantly 
recovered in the group that was treated with HMSCs 15  days 
post-TBI in comparison to the placebo group treated with saline. 
NGF, BDNF, and neurotrophin-3 levels showed an increase in 
expression after 2  days of treatment, though the expression 
decreased as time passed. The study shows that in the acute 
phase of TBI after injury, treatment with HMSCs can enhance 
the neurological functional outcome since the upregulation of the 
neurotrophic factors leads to a decrease in neural cell apoptosis.

As mentioned previously, Tian et al. showed that the use of 
MSCs has a window of efficacy after the onset of TBI. The study 
showed that the efficacy of MSC treatment is increased the earlier 
it is implemented. Patients who underwent the therapy close to 
the date of their injury showed better signs of improvement. An 
important challenge to overcome, therefore, is the effect of time 
on the efficacy of the treatment.

Another significant challenge in studying the effect of MSCs 
in the treatment of TBI in humans, is to have a defined protocol 
to gage the efficacy of the various studies against each other. The 
location of where the MSCs are harvested, the severity of the TBI, 
and the quantity of MSCs are just some parameters that are to be 
defined and implemented across all clinical studies.

CONCLUSiON AND FUTURe PROSPeCTS

The use of MSCs in treatment of TBI has gained enormous 
interest over the last decade. This is because, MSCs are relatively 
easy to harvest, they elicit no immune response, and they can 
differentiate into cells of neuronal lineages, thereby helping post-
TBI repair of neural tissues. Their prospective role in healing TBI 
relies more on their effects on the cells in the host tissue. They 
aid in decreasing the inflammation in the host tissue, as well as 
encourage recuperation and the regeneration of severed nerves 
(112, 113). Given that MSCs also have a tendency of homing 
near injury sites and an ability to migrate across the EC layers 
of injured tissue, more importantly the BBB, their use would 
circumvent one of the major hurdles in treating TBI, which is 
selective and targeted delivery to the injured tissues.

These advantages, however, are yet to be exploited to full effect. 
Further research is still required for better understanding the 
pathophysiology of TBI, the mode of action of MSCs and their 
trophic effects on inflamed host tissue, and the mechanisms of 
functions of MSCs in TBI in  vivo. Furthermore, better under-
standing of the mechanisms of MSC homing in TBI affected 
regions is also important in order to be able to employ them 
efficiently in clinical applications. Further research is needed 
to differentiate between the respective roles of paracrine effects 
(growth factor, for example), transdifferentiated or progenitor 
cells, and many other factors in tissue repair (38). Studies could 
be conducted to study if MSC secretomes are solely required for 
the regenerative effects of MSC therapy, or MSCs are essential 
to the success of therapy. Recently, there have been concerns 
over probable role of MSCs in the development of cancer and 
autoimmune diseases. This possible side effect requires further 
investigation (109). On another note, the in vivo studies reported 
so far on application of MSCs in TBI have mostly been in the 
order of days or months (94, 114). Longer term in vivo studies are 
required before a widespread clinical application of MSCs in TBI.
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