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Spasticity and weakness (spastic paresis) are the primary motor impairments after stroke 
and impose significant challenges for treatment and patient care. Spasticity emerges 
and disappears in the course of complete motor recovery. Spasticity and motor recovery 
are both related to neural plasticity after stroke. However, the relation between the two 
remains poorly understood among clinicians and researchers. Recovery of strength and 
motor function is mainly attributed to cortical plastic reorganization in the early recovery 
phase, while reticulospinal (RS) hyperexcitability as a result of maladaptive plasticity, is 
the most plausible mechanism for poststroke spasticity. It is important to differentiate and 
understand that motor recovery and spasticity have different underlying mechanisms. 
Facilitation and modulation of neural plasticity through rehabilitative strategies, such as 
early interventions with repetitive goal-oriented intensive therapy, appropriate non-in-
vasive brain stimulation, and pharmacological agents, are the keys to promote motor 
recovery. Individualized rehabilitation protocols could be developed to utilize or avoid 
the maladaptive plasticity, such as RS hyperexcitability, in the course of motor recovery. 
Aggressive and appropriate spasticity management with botulinum toxin therapy is an 
example of how to create a transient plastic state of the neuromotor system that allows 
motor re-learning and recovery in chronic stages.
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iNTRODUCTiON

According to the CDC, approximately 800,000 people have a stroke every year in the United States. 
The continued care of seven million stroke survivors costs the nation approximately $38.6 billion 
annually. Spasticity and weakness (i.e., spastic paresis) are the primary motor impairments and 
impose significant challenges for patient care. Weakness is the primary contributor to impairment in 
chronic stroke (1). Spasticity is present in about 20–40% stroke survivors (2). Spasticity not only has 
downstream effects on the patient’s quality of life but also lays substantial burdens on the caregivers 
and society (2).

Clinically, poststroke spasticity is easily recognized as a phenomenon of velocity-dependent 
increase in tonic stretch reflexes (“muscle tone”) with exaggerated tendon jerks, resulting from 
hyperexcitability of the stretch reflex (3). Though underlying mechanisms of spasticity remain 
poorly understood, it is well accepted that there is hyperexcitability of the stretch reflex in spastic-
ity (4–7). Accumulated evidence from animal (8) and human studies (9–18) supports supraspinal 
origins of stretch reflex hyperexcitability. In particular, reticulospinal (RS) hyperexcitability resulted 
from loss of balanced inhibitory, and excitatory descending RS projections after stroke is the most 
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plausible mechanism for poststroke spasticity (19). On the other 
hand, animal studies have strongly supported the possible role 
of RS pathways in motor recovery (20–36), while recent studies 
with stroke survivors have demonstrated that RS pathways may 
not always be beneficial (37, 38). The relation between spasticity 
and motor recovery and the role of plastic changes after stroke 
in this relation, particularly RS hyperexcitability, remain poorly 
understood among clinicians and researchers. Thus, manage-
ment of spasticity and facilitation of motor recovery remain 
clinical challenges. This review is organized into the following 
sessions to understand this relation and its implication in clinical 
management.

•	 Poststroke spasticity and motor recovery are mediated by 
different mechanisms

•	 Motor recovery are mediated by cortical plastic reorganiza-
tions (spontaneous or via intervention)

•	 Reticulospinal hyperexcitability as a result of maladaptive 
plastic changes is the most plausible mechanism for spasticity

•	 Possible roles of RS hyperexcitability in motor recovery
•	 An example of spasticity reduction for facilitation of motor 

recovery

POSTSTROKe SPASTiCiTY AND MOTOR 
ReCOveRY ARe MeDiATeD BY 
DiFFeReNT MeCHANiSMS

In the course of complete motor recovery, motor recovery follows 
a relatively predictable pattern regardless of stoke types (hemor-
rhagic or ischemic, cortical or subcortical) (39). Brunnstrom 
(40, 41) empirically described the stereotypical stages of motor 
recovery: (1) flaccidity; (2) appearance of spasticity; (3) increased 
spasticity with synergistic voluntary movement; (4) movement 
patterns out of synergy and spasticity begins to decrease; (5) 
more complex movements and spasticity continues to decrease; 
(6) spasticity disappears; and (7) full recovery of normal function 
with coordinated voluntary movements. Broadly speaking, there 
are three recovery stages: flaccid, spastic (emerging, worsening, 
and decreasing, stages 2–5), and recovered (voluntary control 
without spasticity, stages 6–7). During the course of motor 
recovery, stroke survivors could progress from one recovery stage 
to the next at variable rates, but always in an orderly fashion and 
without omitting any stage. However, recovery may be arrested 
at any one of these stages (39, 41). The classification of motor 
recovery stages is well accepted and used in clinical practice. The 
pattern of motor recovery and spasticity is confirmed in a recent 
longitudinal study in 2011 (42).

It is commonly observed that hyperreflexia and spasticity are 
gradually developed after stroke. There is no sudden change to 
hyperreflexia (43). The emergence of spasticity, though highly 
variable (44), is usually seen between 1 and 6 weeks after the ini-
tial injury (45). This implies that the development of poststroke 
spasticity is related to neuronal plastic changes within the central 
nervous system after the initial injury [see reviews (4–7, 45–47)]. 
Intensive therapy improves motor function, but has no effect 
on spasticity (48). A single dose of selective serotonin reuptake 
inhibitors (10 mg escitalopram) significantly increased spasticity 

(measured by reflex torque) without affecting muscle strength of 
spastic leg muscles after stroke (49). In contrast, another study 
(50) showed that cyproheptadine, an anti-serotonergic agent, 
helped reduction of muscle relaxation time possibly via reduction 
of RS excitability and spasticity reduction in the finger flexors, 
but without affecting muscle strength in spastic hand muscles 
after stroke. These findings indicate that (1) spasticity and motor 
recovery are mediated by different mechanisms; (2) the develop-
ment of spasticity is a milestone in the course of recovery, but 
reflects a phenomenon of abnormal plasticity; and (3) In chronic 
stroke, motor recovery is arrested or plateaued. Different stages 
of motor recovery in chronic stroke could reflect different 
underlying pathophysiology in the course of motor recovery and 
spasticity.

MOTOR ReCOveRY ARe MeDiATeD BY 
CORTiCAL PLASTiC ReORGANiZATiONS 
(SPONTANeOUS OR VIA iNTeRveNTiON)

Plastic reorganization occurs immediately after stroke. Following 
focal damage to the motor cortex and its descending pathways, 
the surviving portions of the brain usually undergo substantial 
structural and functional reorganization that occurs in the peri-
lesional areas, as well as in the ipsilesional and contralesional cor-
tices in an animal study (51), and human neuroimaging studies 
(52–66). These plastic changes reflect the capability of the brain, 
particularly the cerebral cortex, to alter the structure and function 
of neurons and their networks in response to damage caused by 
stroke. As such, neural plasticity provides a foundation for recov-
ery of motor function after stroke (67, 68). Motor rehabilitation 
relies on a combination of recovery and compensation through 
spontaneous recovery and motor learning during rehabilitation. 
True motor recovery means that undamaged brain regions gener-
ate commands to the same muscles to produce the same motor 
patterns, while motor compensation refers to new motor patterns 
(different muscles) that are controlled by alternative brain areas 
to accomplish the task goal (69, 70). Longitudinal studies have 
shown that motor recovery from hemiparesis proceeds through 
a series of fairly predictable stages over the first 6 months after 
stroke, regardless of the type of therapeutic intervention (71). 
During this period, there is a process of spontaneous recovery 
which peaks approximately in the first 4 weeks and then tapers off 
over 6 months. However, this does not impose physiological lim-
its in recovery. Through novel rehabilitation protocols and mass 
practice, considerable motor improvement could be realized in 
the chronic stages (>1 year) (72). Such motor rehabilitation pro-
grams should include repetitive and task-specific practice at high 
intensity in a multidisciplinary environment to promote neural 
plasticity for motor recovery (73, 74). These motor training pro-
tocols could be realized by a number of novel neurorehabilitation 
methods, such as constraint-induced movement therapy (CIMT) 
(75, 76), robotic training (77–79), and body weight-supported 
treadmill training (80, 81). Accumulated evidence has supported 
the idea that the recovery-related cortical plastic reorganization 
and activation changes after the above training methods are used 
in chronic stroke (57, 82–85). Pharmacological agent, e.g., early 
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prescription of fluoxetine, with physical therapy in the FLAME 
trial has shown to enhance motor recovery after stroke via modu-
lation of spontaneous neural plasticity (86).

Both ipsilesional and contralesional motor cortices undergo 
plastic reorganization following a stroke, as mentioned above. 
Activation of bilateral sensorimotor cortices during voluntary 
movement of the paretic hand in stroke patients was reported 
(87). Activation of the contralesional hemisphere is greater in 
patients with poor motor function (88, 89), but decreases over 
time with motor recovery (57). Such changes result in abnormal 
interhemispheric interaction. Specifically, there is an abnormally 
high inhibitory drive from the contralesional hemisphere to the 
ipsilesional hemisphere (90). This abnormal interhemispheric 
inhibition correlates negatively with motor function in stroke 
patients. It is viewed as maladaptive plasticity (91). Based on 
the interhemispheric competition model, two main strategies 
of modulation of motor cortex excitability using non-invasive 
brain stimulation have been used to restore the balance of 
interhemispheric inhibition between lesioned and contralesional 
hemispheres, i.e., upregulation of excitability of the motor cortex 
of the lesioned hemisphere and downregulation of excitability 
of the motor cortex in the contralesional hemisphere (92). 
Restoration of interhemispheric inhibition via tDCS (58, 93) 
or rTMS (59, 94, 95) has shown to facilitate recovery of motor 
function in stroke patients (96).

RS HYPeReXCiTABiLiTY AS A ReSULT OF 
MALADAPTive PLASTiC CHANGeS iS 
THe MOST PLAUSiBLe MeCHANiSM FOR 
SPASTiCiTY

Spasticity is resulted from hyperexcitability of the stretch reflex, 
which is gradually developed after stroke (4–7). It is attributed 
to disinhibition of stretch reflexes as a result of altered descend-
ing inputs to spinal stretch reflex circuits after stroke (97). 
Disruption of descending supraspinal inputs after stroke could 
lead to plastic rearrangement at segmental levels (4, 5, 7, 98). In a 
recent animal study, Sist et al. (98) have demonstrated that there 
is a time-limited period of heightened poststroke structural 
plasticity in both brain and spinal cord after a sensorimotor 
stroke. The spinal plastic change correlates with the severity of 
cortical injury.

Excitability of the stretch reflex circuit (afferent fibers, spinal 
motor neurons, and efferent fibers) is predominantly regulated 
by excitatory and inhibitory descending signals of supraspinal 
origins (4, 6, 7, 99, 100). In a neurologically intact person, the 
descending reticulospinal tract (RST) and vestibulospinal tract 
(VST) provide a balanced excitatory and inhibitory descending 
regulation. Other descending pathways are either not related 
to the spinal stretch reflex (corticospinal and tectospinal) (6, 8, 
100) or absent in humans (rubrospinal tract) (101). Dorsal RST 
descends in parallel with CST in the dorsolateral funiculus and 
provides a dominant inhibitory effect on the spinal stretch reflex, 
while medial RST and VST descend in the ventromedial cord, 
providing excitatory inputs. It is important to note that dorsal RST 
receives facilitation from the motor cortex via corticoreticular 

projections, which run in close proximity with the corticospinal 
tract. In stroke with cortical and internal capsular lesions, dam-
ages often happen to both CST and corticoreticular tracts due to 
their anatomical proximity, resulting in loss of cortical facilita-
tory input to the medullary inhibitory center, thus less inhibition 
from dorsal RST. This leaves the facilitatory medial RST and VST 
unopposed, since they are independent of cortical control, thus 
the stretch reflex hyperexcitability [see Figure 2 in Ref. (19)]. 
This mechanism could also explain why a stereotyped pattern 
of spasticity is observed regardless of affected areas (cortical or 
subcortical stroke).

There is experimental evidence from animal and human stud-
ies to support the important role of RST in spasticity [reviewed 
in Ref. (6, 8, 100)]. For example, surgical section of unilateral or 
bilateral VST in the anterior cord has little effect (102) or a tran-
sient effect (103) on spasticity. With more extensive cordotomies 
that damaged the medial RST, spasticity was drastically reduced 
(103). Given unilateral nature of vestibulospinal projections 
(104), the role of VST in spasticity was recently tested in chronic 
stroke (105). Vestibular-evoked myogenic potentials in the 
sternocleidomastoid muscle in response to high-level acoustic 
stimuli (130 dB) to the ears of stroke survivors were greater on 
the impaired side than the non-impaired side. There existed a 
strong positive relationship between the degree of asymmetry 
and the overall severity of spasticity from upper and lower limbs 
in spastic-paretic stroke survivors. The findings thus suggest a 
possible role of hyperexcitability of VST in poststroke spasticity 
(105). Yet, this level of acoustic stimuli is also likely to activate RS 
pathways via acoustic startle reflex (ASR) (106, 107).

Acoustic startle reflex has been used to examine RS excitability 
non-invasively in stroke survivors (17, 18, 108–111). In stroke 
survivors with cerebral infarcts normal, ASR responses could be 
elicited in flaccid muscles in the acute phase, although no muscle 
response to magnetic cortical stimulation of the primary motor 
cortex was elicited in these subjects (108). This suggests that the 
circuit of ASR remained intact in these patients. In chronic stroke, 
exaggerated ASR responses were observed in spastic muscles 
(109), indicating increased RS excitability. In a recent study (17, 
18), ASR responses were examined in chronic stroke at differ-
ent stages of motor recovery (flaccid, spastic, and recovered). 
Exaggerated ASR responses were observed only in spastic biceps 
muscles. Since motor recovery has been arrested in chronic stage, 
such findings support the important role of RS hyperexcitability 
in mediating poststroke spasticity. Given its role in maintaining 
joint position and posture against gravity (112), RS hyperexcit-
ability and its anti-gravity effect is expected to lead to a new neu-
romuscular balance, reflecting a shift in reference configuration 
after stroke (113, 114). This new balance could be reflected by a 
change in the resting angle of a joint. Bhadane et al. recently found 
that there were strong correlations between the resting angle of 
the elbow joint and severity of spasticity as reflected by clinical 
(MAS and Tardieu R1 angle) and biomechanical (reflex torque) 
measurements (115). Pharmacological agents acting on seroto-
nin, the primary neurotransmitter for RS pathways, could either 
increase (49) or decrease (50) spasticity. Collectively, emerging 
evidence supports the important role of RS hyperexcitability in 
poststroke spasticity.
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POSSiBLe ROLeS OF RS 
HYPeReXCiTABiLiTY iN MOTOR 
ReCOveRY

Contributions to motor recovery from ipsilesional and contral-
esional cortical reorganization through spontaneous recovery 
and facilitation and modulation of cortical plasticity are well 
recognized, as stated above. In contrast, RS hyperexcitability has 
been viewed consistently to play a major role in spasticity from 
both animal and human studies. The role of neural plasticity at 
the subcortical and bulbospinal pathways in motor recovery has 
been suggested from animal studies but remains controversial 
in human studies. In general, recovery of motor function after 
stroke depends on structural integrity, including both CST and 
RST (66, 116–118).

Findings from recent animal studies suggest the potential 
role of existing descending bulbospinal pathways, particularly 
RS projections to spinal interneurons and motoneurons (23, 
26–29, 36). Riddle and Baker (29) reported that RS (descend-
ing from medial brainstem) and corticospinal pathways 
descended in parallel and had largely overlapping effects on 
spinal interneurons and motoneurons; importantly, responses 
from spinal motoneurons to stimulation of either pathway at 
supraspinal levels were of similar amplitudes during a reach 
and grasp task. The findings suggest the important role of RST 
in the distal limb muscles, in addition to its known contribu-
tion to proximal limb muscles (30). Buford and colleagues also 
reported significant RS contributions to motor output (35) and 
motor recovery (36). The rubrospinal tract descending from 
the lateral brainstem is almost absent in humans (101). In 
the context of damage to M1 and/or corticospinal pathways, 
strengthening the existing intact RS projections is thus plau-
sible to compensate for the damage as demonstrated in these 
animal models (29, 32, 33, 35, 36).

The possible role of RS pathways in motor recovery after the 
corticospinal (CST) damage as result of a stroke in humans has 
been controversial (37, 38). Recently, Byblow and colleagues 
recommended that the importance of the cortico-reticulo-spinal 
pathway needs to be considered before using non-invasive brain 
stimulation to suppress contralesional motor cortex excitability 
because it may contribute to motor recovery, particularly in 
patients with severe paresis (37). However, they agreed with 
previous reports (58, 59, 62, 63) that suppression of contral-
esional cortical excitability is beneficial for those with less 
motor impairment. This view is further supported by findings 
of another recent study (38). Auditory stimulation improves 
motor performance of wrist extension in chronic stroke patients 
with spasticity and severe paresis (spastic paresis), but not in 
patients with more spasticity and relatively less paresis (spastic 
co-contraction) or with minimal paresis. The main mechanism is 
thought to be stimulation of RS pathway via auditory stimulation 
(38, 119, 120). Taken together, these studies in stroke survivors 
suggest that RS hyperexcitability and spasticity are phenomena of 
maladaptive changes in the course of motor recovery (19), and 
the role of RS hyperexcitability depends on the severity of motor 
impairments.

The findings (38) further suggest that RS pathway plays dif-
ferent roles at different stages of motor recovery, likely because 
of its potential role in spasticity after stroke. Individualized reha-
bilitation protocols utilizing RS pathways could be developed to 
facilitate motor recovery in some patients. In patients with severe 
motor impairment and spasticity, RS pathway activation via 
auditory stimulation training (38) may contribute to gross motor 
strength via synergistic activation (121), thus improving motor 
performance. However, such synergistic activation is not likely 
to improve performance of isolated wrist extension in patients 
with spastic co-contraction in both wrist flexors and extensors or 
in patients without spasticity (38). Furthermore, motor recovery 
after stroke follows a predictable pattern, from flaccid to spastic 
and to recovered stages. Auditory stimulation training via activa-
tion of the RS pathway (rhythmic cueing, music therapy, etc.) (38, 
122–125) may be recommended for use in patients with severe 
motor impairment and in acute and subacute phases; as such, 
this intervention could potentially facilitate the progress of motor 
recovery after stroke, i.e., moving through the recovery stages 
faster in some patients.

AN eXAMPLe OF SPASTiCiTY 
ReDUCTiON FOR FACiLiTATiON OF 
MOTOR ReCOveRY

Spasticity is an important milestone in the course of motor 
recovery. It emerges and disappears as the recovery progresses. 
In chronic stroke when motor recovery is plateaued or arrested, 
e.g., spastic stages (Brunnstrom stages 2–5), spasticity usu-
ally leads to synergistic patterns of abnormal movement and 
impaired motor control (39, 41, 126). A stroke survivor actually 
flexes the fingers in an attempt of voluntary finger extension, due 
to abnormal co-activation of spastic finger flexors overriding 
weak finger extensor muscles (127). In a study examining arm 
pointing movements to different targets on a horizontal surface, 
Levin reported that stroke subjects with severe spasticity were 
able to plan and move the arm to all parts of available workspace, 
but their actual movement was deviated from smooth straight 
lines with increased dispersion and segmentation (128). The 
results demonstrate deficits in inter-joint coordination of acti-
vation of spastic muscles in spastic stroke survivors. Hemiplegic 
stroke survivors could accurately perceive and reproduce a force 
within a limb either by the spastic-paretic limb or contralateral 
limb (129). Force produced by one limb could not be accurately 
perceived by the contralateral limb in hemiplegic stroke sur-
vivors (130). Interactions between two limbs are altered (17, 
18, 131). Impaired motor control in spastic stroke survivors is 
related to spontaneous firing of motor units and involuntary 
control of activation of spastic muscles (13, 14, 16), possibly 
caused by RS hyperexcitability (19). On the other hand, it is 
also important to point out that spasticity could be beneficial in 
the lower extremity. For example, spasticity in quadriceps may 
help stabilize the knee joint during the stance phase and thus 
help transfers.

Understanding of these two separate mechanisms underlying 
motor recovery and spasticity and of the role of spasticity in 
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impaired motor control is critical for its successful management. 
Aggressive management of spasticity with botulinum toxin 
(BoNT) in carefully selected muscles can purposefully reduce 
involuntary activation of spastic muscles, thus to improve vol-
untary control of movement and motor function. BoNT blocks 
the release of acetylcholine presynaptically at the neuromuscular 
junction and transiently weakens the muscle (132). BoNT 
injection induces synapse plasticity of muscular afferents and 
generates synaptic plastic reorganization at spinal motor neurons 
and interneuron system and beyond. As such, the central effect 
of BoNT therapy converts the neuromotor system into a tran-
sient labile state (133). This allows regrowth or strengthening of 
appropriate synapses and suppression of inappropriate ones, i.e., 
neural plasticity and motor re-learning, if coupled with sustained 
activity-based, goal-oriented training programs (134). This is 
particularly important for motor recovery in chronic stroke when 
motor recovery is usually plateaued or arrested. For example, 
injection of BoNT to spastic finger flexors weakens grip strength 
as expected, however, the patient is able to release her grip better 
with decreased co-activation from finger flexors and, therefore, 
to engage the spastic-paretic hand more in bimanual tasks (135). 
Similarly, suppression of involuntary activation of periscapular 
muscles improves arm function and thus activities of daily living 
(136). This concept of “therapeutic weakness” is further sup-
ported by a recent study (137). After BoNT injection to elbow, 
wrist, and finger flexors, spastic hemiparetic stroke survivors 
are able to perform reaching (elbow and wrist extension) tasks 
better. The authors have attributed this functional improvement 
to better voluntary control of antagonists (extensors), despite of 
weakness of injected flexors.

CONCLUDiNG ReMARKS

Neural plasticity is an important process mediating substantial 
recovery of motor function after stroke. However, some changes 
may be maladaptive. The RS hyperexcitability is the most plausible 
mechanism for spasticity, while recovery of strength and motor 
function is mainly related to cortical reorganization. It is important 
to differentiate and understand that motor recovery and spasticity 
have different mechanisms. Facilitation and modulation of neural 
plasticity through rehabilitative strategies, such as early interven-
tions with repetitive goal-oriented intensive therapy, appropriate 
non-invasive brain stimulation, and pharmacological agents are 
the keys to promote motor recovery after stroke. Individualized 
rehabilitation protocols could be developed to utilize or avoid 
the maladaptive plasticity, such as RS hyperexcitability in the 
course of motor recovery. Aggressive and appropriate spasticity 
management with BoNT therapy is an example of how to create a 
transient plastic state of the neuromotor system that allows motor 
re-learning and recovery in chronic stages.
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