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Introduction: Aging and age-associated disorders such as Parkinson’s disease (PD)
are often associated with turning difficulties, which can lead to falls and fractures. Valid
assessment of turning and turning deficits specifically in non-standardized environments
may foster specific treatment and prevention of consequences.

Methods: Relative orientation, obtained from 3D-accelerometer and 3D-gyroscope data
of a sensor worn at the lower back, was used to develop an algorithm for turning
detection and qualitative analysis in PD patients and controls in non-standardized
environments. The algorithmwas validated with a total of 2,304 turns≥90° extracted from
an independent dataset of 20 PD patients duringmedication ON- andOFF-conditions and
13 older adults. Video observation by two independent clinical observers served as gold
standard.

Results: In PD patients under medication OFF, the algorithm detected turns with a
sensitivity of 0.92, a specificity of 0.89, and an accuracy of 0.92. During medication ON,
values were 0.92, 0.78, and 0.83. In older adults, the algorithm reached validation values
of 0.94, 0.89, and 0.92. Turning magnitude (difference, 0.06°; SEM, 0.14°) and duration
(difference, 0.004 s; SEM, 0.005 s) yielded high correlation values with gold standard.
Overall accuracy for direction of turning was 0.995. Intra class correlation of the clinical
observers was 0.92.
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Conclusion: This wearable sensor- and relative orientation-based algorithm yields very
high agreement with clinical observation for the detection and evaluation of ≥90° turns
under non-standardized conditions in PD patients and older adults. It can be suggested
for the assessment of turning in daily life.

Keywords: six degrees of freedom, accelerometer, daily activities, gyroscope, older adults, Parkinson’s disease,
turning

INTRODUCTION

Turning is a regularly performed movement relevant for the suc-
cessful performance of daily life activities. It requires multi-limb
coordination and continuous change of center of mass (1) and
thus provides information about dynamic balance aspects (2). It
is, therefore, not surprising that turning deficits are associated
with increased risk of falling (3, 4), with consequences such as
fractures (5) and increased risk of mortality (6). Turning deficits
are commonly observed in older adults (7) and patients with
Parkinson’s disease (PD) (8, 9). For example, older adults with
difficulties in turning show more staggering during turns, take
more steps, and show a longer duration to complete one turn
than do young adults. PD patients turn slower and require more
steps to complete one turn, compared to young adults. Therefore,
valid assessment of this movement and its deficits, in particular
in unobserved environments in these cohorts, may have a large
potential for the design of specific treatment approaches and for
prevention of severe consequences.

Assessment of turning is not trivial. Optical systems, which
have been widely used in previous experiments (7, 10–12), are
costly and can only be used in the laboratory. Wearable sensors
are a promising alternative (13–16). They are relatively small
(therefore minimally obstruct normal behavior), cheap, assess
unlimited movement areas as they are worn on the body, collect
data independently from other sources, and have the ability to
measure over days and even weeks. As a consequence, they are
ideal data collectors in non-standardized (i.e., unconstrained, nat-
ural, home) environments over long periods of time. Algorithms
for the analysis of turning movements for young and older adults
(17) and PD patients (9) have already been published. However,
they suffer from downsides that may hinder a wide use in clinical
routine and large studies. A particularly interesting publication
with regard to the results presented here (9) analyzed a circuit,
walked by 21 PD patients and 19 older adults in the lab, with
short straight walks interspersed with 10 turns of 45°, 90°, 135°,
and 180° under slow, self-preferred, and fast speeds. During the
assessments, participants wore a sensor at the lower back. An
algorithm built on nine degrees of freedom (9DOF, which means
using data from accelerometer, gyroscope, and magnetometer)
fusion extracted turning frequency, which was then compared
against video observation and motion capture analysis. The algo-
rithm yielded a sensitivity of 0.75 (rater 1) and 0.77 (rater 2),
and a specificity of 0.60/0.69. This previously published algorithm
was validated only in standardized conditions, where the path of
walking and the number and magnitude of turns have been pre-
defined. Thus, the accuracy under free-living like conditions has
not been determined in previous work.

Based on these preliminary but promising results, we set out
to develop an improved algorithm for turning detection and

analysis for PD patients and older adults in a non-standardized
environment based on six degrees of freedom (6DOF, using data
from accelerometer and gyroscope) signal information, using data
extracted from a sensor worn on the lower back. This method was
validated in non-standardized free-living-like conditions, during
a reasonably long testing period (90min for controls and 180min
for PD patients). The method also redefined turn hesitations,
to cover more discrete turns. Here, we present details of the
algorithm and results on its validation.

METHODS

Study Participants and Settings
The study was performed at the University Hospital Tübingen.
Twenty-five patients were recruited from the ward and the out-
patient clinic. Fourteen spouses of the patients served as controls.
Inclusion criteria were age between 50 and 90 years and, for PD
patients, a Hoehn and Yahr (H&Y) score between 1 and 3. Exclu-
sion criteria were deep brain stimulation and a Mini-Mental State
Examination score <24. Patients were diagnosed by experienced
movement disorders specialists. Controls underwent a neurolog-
ical examination to exclude presence of neurological symptoms
indicative of a neurodegenerative process. Details are provided
in Ref. (18). The protocol (nr. 399/2012BO2) was approved by
the local ethics committee on 27 September 2012 and was in
accordance with the Declaration of Helsinki. All participants gave
informed written consent before the assessments.

Duration of the assessment was approximately 90min per par-
ticipant and medication condition. PD patients were assessed
during medication ON and OFF. Comparable to Ref. (19), medi-
cation OFF was defined as overnight withdrawal from dopamin-
ergic medication, and medication ON as the study participant’s
perception of having a “Good On Phase,” after regular intake
of medication. The assessment consisted of daily activity-like
procedures, such as walking in the rooms and corridors of the
lab environment without restriction, opening and closing doors,
climbing stairs, performing transfers such as sit-to-stand, sit-to-
walk, stand-to-sit and walk-to-sit, brushing teeth, making coffee,
drinking a cup of tea, and ironing (18). During the assessments,
the participants wore a sensor on the lower back (OPAL system,
APDM, Inc., Portland, OR, USA). One of the coauthors followed
and recorded the objects with a video camera. The camera has
a resolution of 1,920× 1,080 pixels, and a sampling frequency
of 50Hz. The synchronization between sensors and videos was
guaranteed with an additional inertial measurement unit (IMU)
worn on the ankle, when participants performed specific move-
ments [foot tapping during Unified Parkinson’s Disease Rating
Scale (UPDRS) performance]. The IMU at the back and the IMU
on the ankle were synchronized as described on the homepage of
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the IMU provider (APDM) (20). These videotapes were evaluated
by two independent clinical observers. For both the algorithm and
the clinical observers, a turn was defined as a movement around
the vertical axis during standing or walking within 0.1 to 10 s.
Clinical observers rated every vertical rotation ≥45° as a turn,
while the algorithm rated ≥45°, ≥60°, ≥70°, ≥80°, ≥90°, ≥100°,
≥110° as different turn thresholds. All turns detected during the
blind-spot periods (i.e., when the hip of the study participants
was out of the camera field) were removed (8% of sensor-detected
turns). In addition, the motor part of the UPDRS (UPDRS-III)
was administered in PD patients during medication ON and OFF
separately (21).

The cohort was then split into a training cohort for algo-
rithm development and a test cohort for algorithm validation.
For the iterative algorithm development process [phase A accord-
ing to Ref. (22)], sensor and videotape data of the above-
mentioned daily activity-like procedures from five PD (both ON-
and OFF-conditions) patients and one control were included.
We selected PD patients with relatively “difficult” conditions,
such as dyskinesia and tremor, for the detection of turns, to
give the algorithm developer (MHP) the opportunity to itera-
tively train the algorithm under challenging conditions. Turns

TABLE 1 | Demographic and clinical data of the training and test cohorts.

PD Older adults

Training cohort
N (females) 5 (3) 1 (1)
Age (years) 71 (4) 51
UPDRS III (0–132) 23 (10) 3 (0)
H&Y (0–5) 2 (1) 0 (0)
LED (mg) 713 (640) (0)

Test cohort
N (females) 20 (10) 13 (6)
Age (years) 66 (9) 60 (10)
UPDRS III (0–132) 32 (12) 2 (4)
H&Y (0–5) 3 (1) 0 (0)
LED (mg) 839 (622) 0 (0)

Data are shown as mean±SD, except gender and observed turns.
H&Y, Hoehn & Yahr; LED, Levodopa equivalent dose; PD, Parkinson’s disease; UPDRS,
Unified Parkinson’s Disease Rating Scale III, motor part of the revised Unified PD Rating
scale.

of this cohort were also used to define the most useful mag-
nitude threshold of a turn to be implemented in the algorithm
for further analyses. For the validation phase [phase B accord-
ing to Ref. (22)], sensor and clinical observer data of the daily
activity-like procedures from the remaining 20 PD patients and
13 controls were included. Detailed demographic and clinical
information about the training and test cohorts is provided in
Table 1.

Algorithm Development and Structure
The development of the algorithm for turning detection and anal-
ysis was performed with MATLAB R2015b and consisted of three
steps: 6DOF attitude estimation, turning detection, and turning
analysis (Figure 1).

6DOF Attitude Estimation Based on Relative
Orientation
The basic principle of the 6DOF attitude estimation is built on
the relative orientation of the sensor with respect to the reference
frame (global frame, G-frame), using a rotation matrix GSR (S
stands for sensor frame, S-frame). Each frame is considered by
definition a triad of the orthogonal vectors X, Y , Z (Figure 2A).
GSR expresses the difference between the G- and S-frame in a
3× 3 matrix. The definition of GSR will then be [GS X G

S Y G
S Z]T,

where G
S X G

S Y G
S Z describe the axes of the G-frame expressed in

the S-frame.
The inclination of the sensor is described by the angle ø rela-

tive to gravity, which is chosen to be our Z vector (Figure 2B):
GZ=[0 0 1]T, and G

S Z = normalize (g[sinø cosø 0]T) =
[sinø cosø 0]T. G

S Z is calculated from the first phase of the mea-
surement when five samples of the accelerometer data (ax ay az)
are stable (in the first 3.9% of a second in case of a sampling
rate of 128Hz, “stable” is defined as peak-to-peak change in
accelerometer amplitude < 0.2

m
s2 ).

Then, G
S X was randomly chosen as [1 0 0]T. The cross prod-

uct between G
S X and G

S Z gives G
S Y . From this result, the cross

product between G
S Y and G

S Z was again calculated, to guarantee
orthogonality:

G
S X = [1 0 0]T

G
S Y = G

S Z × G
S X

G
S X = G

S Y × G
S Z

FIGURE 1 | General structure of the algorithm for turning detection and analysis. A turn was defined as a yaw angle (angle change around vertical axis) with
a magnitude ≥90° and a duration of 0.1–10 s (for details see Section “Methods” Figures 2 and 3).
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FIGURE 2 | Six degrees of freedom attitude estimation. (A) Relationship
between global frame (G-frame) and sensor frame (S-frame) was described by
rotation matrix GSR. During stable phases, the accelerometer measures
gravity g, and the gyroscope measures angular velocity [wx wy wz], in sensor
frame S. (B) Presence of an inclination angle ø led to a change from vertical
axis GZ to G

SZ (gravity g was split into cosine and sine terms).

The magnitudes of the respective vectors G
S XG

S YG
S Z were nor-

malized to assure that they have unit length. Then they constitute
the initial relative orientation of the sensor, GSR.

Changes in orientation were then determined from GSR and Gw,
where Gw was calculated from the sensor gyroscope output Sw
(=[Swx

Swy
Swz]T), based on the formula

Gw = GSR ∗ Sw.

GSR is updated every sample (1/fs) by the following formula (23)

GS
newR = GS

transformR ∗ GS
oldR

GS
transformR = t ∗ wx

2 + c t ∗ wx ∗ wy + s ∗ wz t ∗ wx ∗ wz − s ∗ wy
t ∗ wx ∗ wy − s ∗ wz t ∗ wy

2 + c t ∗ wy ∗ wz + s ∗ wx
t ∗ wx ∗ wz + s ∗ wy t ∗ wy ∗ wz − s ∗ wx t ∗ wz

2 + c


with c is cos(θ), s is sin(θ), t is 1− cos(θ), and θ is the angle
of rotation=Norm(w)/fs. Note that the S before the w is not
displayed for readability issues.

In a final step of the 6DOF attitude estimation, GSR was con-
verted to Euler angles (roll–pitch–yaw) for the detection of turn-
ing, where roll represents the angle displacements around X,
pitch around Y , and yaw around Z. Only yaw (i.e., the angular
displacement around the Z axis) was considered for the next step
(seeTurningDetection).Note thatwith choosing G

S X to be [1 0 0]T,
yaw was initially chosen as 0.

Turning Detection
Angular displacement around the Z axiswas then plotted as shown
in Figure 3A (blue line). This line was then cut into pieces
(Figure 3B), where the start of a turn to the right was defined by a
change from an increase to a decrease and the end by the change
from a decrease to an increase. For the definition of a turn to the
left, the situation was defined vice versa. The duration (horizontal
component of the line) and magnitude (vertical component of the
line) of each turn were determined between the start to end of the
turn.

Initially, a threshold of 45° for the magnitude of a turn was
introduced, and the training data set was analyzed and compared
with data obtained from clinical observation. We learned from

this analysis that the algorithm split some turns into two turns,
when the clinical observers only saw one turn. When analyzing
this issue in more detail, we realized that this phenomenon could
be explained by subtle hesitations within turns (Figure 3C), which
were detected by the algorithmbut not by the clinical eye. To adapt
the algorithm to the gold standard, a movement with a duration
less than 0.5 s and a magnitude less than 10% of the magnitude of
the previous and following turns (each must be greater than 10°
and have the same direction) was defined as a hesitation, and two
turns separated by such a hesitation were defined as one single
turn.

Turning Analysis
Turn magnitude and duration were extracted using flags from
the previous turning detection part (Figure 3A). Turn direction
was identified by integration of raw data from the gyroscope. A
negative integration value was defined as a left turn and a positive
integration as a right turn.

Statistical Analysis
The degree of agreement for turn detection between the two clin-
ical observers was calculated using interclass correlation. Turns
that were differently classified by the clinical observers (LH and
ME) regarding presence (present/absent), were discussed posteri-
orly until consensus was reached, to provide a gold standard data
set with perfect agreement for the validation of the algorithm. In
case of doubt, a third clinical observer (WM) was involved in the
decision process.

Then, data from the training cohort were used to calculate true
positive, true negative, false positive, and false negative values for
presence of turns based on increasing magnitude thresholds of
turns (45°–110°) implemented in the algorithm (comparing with
45° threshold for turns detected by clinical observers). The thresh-
old for automatic detection was selected, taking into account the
occurrence of turns detected in the analysis and the agreement to
the clinical-observer-determined turns. Inter-rater agreement to
detect turns and also the agreement between the clinical observers
and the algorithm to identify these episodes was compared with
Cohen’s kappa value.

The turns extracted from the test data by the algorithm and
the clinical observers were used to calculate sensitivity, speci-
ficity, accuracy, positive predictive value, and negative predictive
value for turns above the selected threshold. Agreement on time
at which turns were detected by algorithm and by the clinical
observers was assessed using Bland–Altman plots.

Turn magnitude, duration, and direction were extracted from
videos by LH and ME. These results were compared with
results yielded by the algorithm using Bland–Altman plots
and Chi square. Analyses were performed using JMP 12.2.0
software.

RESULTS

Cohorts
Demographic and clinical data of PD patients and controls
included in the training and test cohorts, respectively, are
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FIGURE 3 | (A) Turning pattern example from a test person. Six gray rectangular regions reflect turns detected by the algorithm, with flags at the beginning and the
end of the turn. The abrupt change when yaw reaches 180° (to −180°) or −180° (to 180°) does not indicate a turn (24). Flags were used to extract turn metrics
(magnitude, duration, and direction). (B) The area indicated by the circle in (A) shown at higher magnification, with turning patterns as reflected by yaw angle cut into
small pieces. The end of the previous turn is the beginning of the following turn, marked by flags (vertical dashed lines). (C) Turns including hesitations were identified
by the algorithm and defined as one turn when ≥10° angular displacements with identical directions and ≤0.5 s separation occurred.

presented inTable 1. Cohen’s kappa value between the two clinical
observers for the detection of turns in the video tapes was 0.92.

Algorithm Development Group
A total number of 1,035 turns ≥45° were detected by the algo-
rithm, and 758 by the clinical observers. Comparison between
algorithm and clinical observer data, using ascending turnmagni-
tude thresholds in the algorithm, revealed that the most practical
result was obtained using a threshold of 90° (Table 2). This thresh-
old was then implemented in the algorithm and used for further
analyses.

Algorithm Validation Group
Based on the 90° turn magnitude threshold, the Bland–Altman
plots for the detection of a turn showed a mean difference

of −0.03 s (SEM, 0.02 s; 95% confidence interval, −2.25 to
2.20 s) for the detection of corresponding turns (Figure 4).
Accuracies for detection of turns were 0.91 (overall cohort),
0.92 (PD patients under medication OFF-condition), 0.83 (PD
patients under medication ON-condition), and 0.92 (controls).
Turn magnitude as calculated by the algorithm was similar
to gold standard (155.09° with clinical observers, 155.15° with
the algorithm). The mean difference was −0.06° (SEM, 0.14°).
Turning duration as calculated by the algorithm was also sim-
ilar to gold standard (2.44 s with clinical observers, 2.43 s with
the algorithm). Turning duration difference between gold stan-
dard and algorithm was 0.004 s (SEM, 0.005 s). Turn direction
identification reached an accuracy of 0.995. Table 3 presents
detailed results about the validation of turn detection and
evaluation.
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TABLE 2 | Validation values for the algorithm, based on increasing turn magnitudes, from the training cohort.

Turning angle Cohen’s kappa Accuracy Sens Spec PPV NPV True positive turns False positive turns

≥45° 0.15 0.66 0.92 0.21 0.67 0.59 694 341
≥60° 0.53 0.78 0.91 0.61 0.76 0.82 627 194
≥70° 0.64 0.83 0.91 0.71 0.82 0.85 607 148
≥80° 0.68 0.84 0.90 0.77 0.83 0.87 586 123
≥90° 0.72 0.86 0.90 0.82 0.85 0.88 565 98
≥100° 0.76 0.88 0.90 0.86 0.87 0.89 529 82
≥110° 0.77 0.89 0.89 0.88 0.88 0.90 511 72

758 turns ≥45° defined by video observation were included.
As expected, validation values improved with increasing magnitude of turns, at the expense of number of turns included in the analysis. Based on these values, we decided to use a
threshold magnitude of 90° for validation purposes.
NPV, negative predictive value; PPV, positive predictive value, Sens, sensitivity; Spec, specificity.

FIGURE 4 | Bland–Altman plot illustrating the agreement between the time of turn detection from the algorithm and from the clinical observers.
Dashed lines indicate mean and 95% confidence intervals of the difference of observation in seconds. The illustration indicates the high agreement between the two
methods (mean turn duration was 2.4 s).

DISCUSSION

In this study, we present an improved method for the analysis of
turns in a real-life-like environment based on 6DOF data from a
sensor worn on the lower back, with very high sensitivity, speci-
ficity and accuracy, and highly accurate turn metrics, compared
against video observation. We focused on turning, as this activity
is highly relevant for the proper performance of daily activities: on

average, this movement is performed about 1,000 times per day
[(8) and own observations in PD patients]. It is associated with
dynamic balance capacity (2) and risk of falling (3, 4) in both, older
adults and PD patients.

The algorithm reached aCohen’s kappa value of 0.72with visual
observation. This value reflects a substantial agreement (25) of the
algorithm with the gold standard and supports the usefulness of
the algorithm for unobservedmeasurements. However, it does not
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TABLE 3 | Validation values for detection of 90° turns, separated by groups.

Cohorts Cohen’s
kappa

Acc Sens Spec NPV PPV Turns
detected by
algorithm

Turns
detected by

clinical
observers

True
positive
turns

False
positive
turns

True
negative
turns

False
negative
turns

All 0.82 0.91 0.93 0.89 0.90 0.92 2,393 2,304 2,150 243 1,884 154
PD ON-med. 0.68 0.83 0.92 0.78 0.74 0.93 681 652 602 79 609 50
PD OFF-med. 0.84 0.92 0.94 0.89 0.92 0.93 934 905 843 91 688 62
Controls 0.84 0.92 0.94 0.89 0.91 0.93 778 747 705 73 587 42

Acc, accuracy; NPV, negative predictive value; PD, Parkinson’s disease; OFF, medication off state; ON, medication on state; PPV, positive predictive value; Sens, sensitivity; Spec,
specificity.
Validation values on a sample by sample basis are comparable (not shown).

consider possible errors in activities such as driving and cycling.
These potential sources of error need further investigation.

The increase of accuracy with increasing magnitude of a turn
(as shown in Table 2) is mainly driven by (shortcomings of) the
gold standard and not by algorithm limitations. It is difficult to
estimate turn magnitude with naked eyes. This explains why the
performance improves with increasing thresholds, as larger turns
are more evident. Nevertheless, we feel that a validated algorithm
collecting turning information with this magnitude or larger in
free-living environments should cover most daily relevant aspects
of this movement.

The algorithm experienced relatively low specificity for PD
patients under medication ON-condition. When going into the
video data, we learned that the algorithm had problems in detect-
ing turns with large radius in these patients. The algorithm split
the large turns into several little turns below 45° threshold, which
led to more false negative turns. When we increased the hesita-
tion values included in the algorithm, it decreased the sensitivity
values, accordingly.

When these issues are sufficiently considered, we believe that
the algorithm, which can be applied to almost all currently avail-
able sensor systems (i.e., with accelerometer and gyroscope) worn
at the lower back, is applicable for home-based assessment of
turning in the investigated cohorts. The algorithm for turning
detection and analysis presented here can be of particular value,
as it also provides highly valid parameters for the estimation of
the quality of respective turns, such as magnitude, duration, and
direction of the turn.

This algorithm has some limitations. First, as illustrated in
Figure 3A, the orientation estimates during the periods from 0 to
10, 25 to 30, 43 to 50, and 55 to 60 s, during which the participant
was not moving, slightly decrease. The reason is that gyroscopes
have small biases, which will be integrated over time and will
change yaw. However, this slow tendency has a negligible effect
on detection of faster dynamics such as turning. Hence, no further
action was taken to eliminate this error, also to keep computa-
tional load as low as possible. This yaw integration error could
be reduced with a magnetometer (compass), i.e., using a 9DOF
sensor. However, we abstained from includingmagnetometer data
in our algorithm, as it could reduce the specificity of results.
Magnetometers are influenced by ferromagnetic objects, which
are regularly encountered in daily life environments. Another
limitation may be the videotaping approach. We followed the

study participants with a hand-held camera and missed some
turns when they were out of camera range. However, we argue
that the number of turns during those periods were only 8% of
the total number of turns. A strength of the algorithm is that
it takes turn hesitations into consideration, i.e., the algorithm
decides, based on an empirically defined threshold, when a no-
turning phase is too short to separate one turn from another. This
is a relevant addition particularly for PD patients, as hesitations
during a turn occur relatively often and would lead to an overesti-
mation of the numbers of turns and to relevant issues when qual-
itative parameters are extracted from respective turns. Moreover,
sensors without magnetometer are readily available and easily
accessible.

In conclusion, this study reports about high validity values of
an algorithm for the detection and analysis of turns in older adults
and PD patients based on 6DOF inertial sensor data worn on the
lower back.
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