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Background: Analyses of subcortical gray structure volumes in non-demented idio-
pathic Parkinson’s disease (PD) often, but not always, show volume loss of the putamen, 
caudate nucleus, nucleus accumbens, and hippocampus. There is building evidence 
that structure morphometry might be more sensitive to disease-related processes than 
volume.

Objective: To assess morphometric differences of subcortical structures (putamen, 
caudate nucleus, thalamus, globus pallidus, nucleus accumbens, and amygdala) as well 
as the hippocampus in non-demented individuals with PD relative to age and education 
matched non-PD peers.

Methods: Prospective recruitment of idiopathic no-dementia PD and non-PD peers as 
part of a federally funded investigation. T1-weighted isovoxel metrics acquired via 3-T 
Siemens Verio for all individuals [PD n = 72 (left side onset n = 27, right side onset n = 45); 
non-PD n = 48]. FIRST (FMRIB Software Library) applications provided volumetric and 
vertex analyses on group differences for structure size and morphometry.

results: Group volume differences were observed only for putamen and hippocampi 
(PD < non-PD) with hippocampal volume significantly associating with disease duration. 
Group shape differences were observed for bilateral putamen, caudate nucleus, and 
hippocampus with greater striatal atrophy contralateral to side of motor symptom onset. 
Hippocampal shape differences disappeared when removing the effects of volume.

conclusion: The putamen was the primary structure to show both volume and shape 
differences in PD, indicating that the putamen is the predominant site of basal ganglia 
atrophy in early- to mid-stage PD. Side of PD symptom onset associates with contralat-
eral striatal atrophy. Left-onset PD might experience more extensive striatal atrophy than 
right-onset PD. Hippocampus morphometric results suggest possible primary atrophy 
of CA3/4 and dentate gyrus.
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TaBle 1 | summary of research covering subcortical shape analyses in Parkinson’s disease (PD).

reference N PD duration 
(years)

hoehn and 
Yahr

shape method structures analyzed regions of shape significance

McKeown et al. (16) 18 PD:18 Non-PD 3.6 ± 2.6 2–3 SPHARM Thal Left and right thalamus

Apostolova  
et al. (15)

12 PDND, 8 PDMCI, 
15 PDD: 20 non-PD

14.3 ± 5.1 PDND, 
10.5 ± 4.3 PDMCI, 
13.1 ± 7.8 PDD

2–3 Radial distance 
mapping

Hipp, Caud, Lat Vent Left and right caudate head in  
PDMCI and PDD versus non-PD;  
PDD larger ventricles bilaterally  
versus non-PD and larger right  
versus PDND and PDMCI

Sterling et al. (11) 40 PD: 40 non-PD 4.1 ± 4.2 1.8 ± 0.6 SPHARM-PDM Puta and Caud Putamen and caudate; putamen  
atrophy greater contralateral  
than ipsilateral

Lee et al. (3) 49 PD: 53 non-PD 1.37 ± 1.21 2.0 ± 0.5 FSL FIRST vertex Thal, Caud, Puta, GP, Nuc 
Accu, Hipp, Amyg

Left and right posterolateral and  
ventromedial putamen

Mak et al. (21) 65 PD-NCI: 25 
PD-MCI

5.4 ± 4.3 PD-NCI, 
5.0 ± 2.7 PD-MCI

1.88 ± 0.39 FSL FIRST vertex Thal, Caud, Puta, GP, Nuc 
Accu, Hipp, Amyg

No PD-NCI and PD-MCI  
group differences

Menke et al. (17) 20 PD: 19 non-PD 1.8 ± 0.8 1.8 ± 0.4 FSL FIRST vertex Thal, Caud, Puta, GP, Nuc 
Accu, Hipp, Amyg

Right GP

Garg et al. (13) 244 PD: 191 non-PD Not specified Not specified Surface 
displacement 
based on LDDMM

Thal, Caud, Puta, GP Bilateral thalamus, caudate,  
putamen, GP

Nemmi et al. (14) 21 PD: 20 non-PD 7.4 ± 5.4 2.0 ± 0.2 FSL FIRST vertex Thal, Caud, Puta, GP, Nuc 
Accu, Hipp, Amyg

Left caudate, bilateral putamen

Nyberg et al. (18) 21 PD: 20 non-PD 5.5 ± 3.4 2.2 ± 0.7 FSL FIRST vertex Thal, Caud, Puta, GP, Nuc 
Accu, Hipp, Amyg

Right nucleus accumbens

Caligiuri et al. (12) 42 PD: 30 non-PD 1.33 ± 0.8 1.5 ± 0.6 FSL FIRST vertex Thal, Caud, Puta, GP, Nuc 
Accu, Hipp, Amyg

Bilateral putamen

SPHARM, spherical harmonics; SPHARM-PDM, spherical harmonics point distribution model; LDDMM, large deformation diffeomorphic metric mapping; PDND, Parkinson’s disease 
(PD) non-demented; PDMCI, PD mild cognitive impairment; PDD, PD dementia; PD-NCI, PD not cognitively impaired; PD-MCI, PD mild cognitive impairment; Thal, thalamus; Caud, 
caudate nucleus; Puta, putamen; GP, globus pallidus; Nuc Accu, nucleus accumbens; Hipp, hippocampus; Amyg, amygdala.
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inTrODUcTiOn

Analyses of subcortical gray structure volumes in non-demented 
idiopathic Parkinson’s disease (PD) show volume loss of the 
putamen (1–3), caudate nucleus (4, 5), nucleus accumbens (3), 
and hippocampus (6–8). Not all studies, however, show volume 
differences in non-demented PD relative to non-PD peers (9, 10). 
These findings likely indicate heterogeneity of disease progres-
sion and suggest that volume is not an optimal biomarker for PD 
pathology.

There is growing evidence that morphometric analyses are 
more sensitive to subcortical structural changes associated 
with PD than volumetrics alone. To date, there have been 10 
studies assessing subcortical shape in PD (Table 1). Patterns of 
subcortical change (including atrophy and hypertrophy) in PD 
are emerging with the putamen (3, 11–14) and caudate nucleus  
(11, 13–15) most consistently demonstrating local atrophy. 
Thalamus (13, 16), globus pallidus (13, 17), and nucleus accum-
bens (18) differences have also been shown. Not every study, 
however, included analyses of the same structures.

Two studies (11, 12) additionally addressed symptom lateral-
ity and lateralized atrophy with the suggestion that there were 
greater contralateral than ipsilateral shape changes in PD, but 
the results could benefit from replication with larger samples. 
An additional limitation of previous studies is that while atrophy 
of the hippocampus and related medial temporal lobe cortex are 

reported as common features in PD (7, 8, 19, 20), morphometric 
studies have either not addressed (11, 13, 16, 17) or found (3, 12, 
14, 15, 18, 21) hippocampal shape differences.

An additional consideration is the relationship between 
volumetric representation and side of onset. There is evidence 
of greater contralateral neuronal loss in the substantia nigra in 
PD (22) but findings with other neuroanatomical structures are 
mixed. Lewis and colleagues (23) demonstrated lateral ventricu-
lar volume asymmetry (contralateral to symptom laterality) in 
PD but lateral ventricles are only indirect measures of atrophy 
and the results have not been replicated by others (24). Basal 
ganglia neuronal loss also typically appears to be bilateral, 
regardless of side of onset (2). The idea of volumetric asymmetry 
(contralateral < ipsilateral) in PD is thus a tentative hypothesis. 
Assessing gross structural differences such as volume, however, 
likely obscures subtle within structure changes.

For these reasons, we designed the current study to assess differ-
ences in volumetrics and shape in the putamen, caudate nucleus, 
thalamus, globus pallidus, nucleus accumbens, amygdala, and 
hippocampus in a well-characterized group of non-demented 
individuals with PD compared to a closely matched group of 
peers without PD. The amygdala was included given previous 
research demonstrating pathology and atrophy of the structure 
in PD (25); it was also included because of its close connections 
to the hippocampus and to apathy, which is prevalent in PD (26). 
We hypothesized group morphometric differences (i.e., atrophy 
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in PD relative to non-PD) within striatal and hippocampal struc-
tures with striatal atrophy most prevalent. We also addressed side 
of onset as it relates to lateralized subcortical shape differences, 
with the hypothesis that greater volumetric and shape difference 
would occur contralateral to side of onset.

ParTiciPanTs anD MeThODs

Participants
Participants were recruited from an ongoing prospective feder-
ally funded investigation.

Inclusion criteria for PD participants included diagnosis by a 
movement disorder neurologist using the UK Parkinson’s Disease 
Society Brain Bank Clinical Diagnostic criteria (27), and scores 
of 1–3 on the Hoehn and Yahr Scale. Inclusion criteria for all 
participants included ≥age 60, at least a fifth grade reading level, 
right-handedness, absence of dementia based on scores on two 
screening measures [modified telephone interview of cognitive 
status score > 34 (28), dementia rating scale-2 raw score > 130 
(29)], and English as a first language. Exclusion criteria included 
secondary/atypical parkinsonism, deep brain stimulation surgery, 
major psychiatric disorders, and vascular diseases most likely to 
confound cognition (e.g., cerebrovascular accident within the past 
6 months, congestive heart failure, etc.), and axial/gait symptoms 
as initial PD symptom. Recruitment efforts for PD participants 
involved (1) direct neurology referrals from the UF Center for 
Movement Disorders and Neurorestoration (UF CMDNR), (2) 
identification of individuals from the UF CMDNR’s cognitive 
research database (n  >  600), and (3) advertisement at com-
munity PD support groups. Non-PD control participants were 
recruited from the UF Age Network Registry, family members of 
PD participants, community fliers, and free community memory 
screenings. Study participants were Caucasian, generally well-
educated, and lived in northern Florida.

At the time of this analysis, 126 individuals were enrolled in 
the larger parent study. Data from 72 individuals with PD and 48 
non-PD peers with artifact-free MRI and complete demographic 
and general cognitive measures were included in the current 
investigation. On medication, UPDRS scores were acquired at 
time of testing to represent typical participant function. Side of 
onset was based on participant self-report and medical record 
review (left side onset = L-PD, n = 27; right side onset = R-PD, 
n = 45). All included PD participants had tremor dominant onset. 
Data from a subset of these participants have been discussed in 
previous reports (20, 30, 31).

Mri acquisition and Processing
We acquired MRI data using a Siemens 3-T Verio scanner with an 
8-channel head coil. As a subset of a larger imaging protocol, we 
acquired a T1-weighted sequence with the following parameters: 
176 contiguous slices, 1 mm3 voxels, TR/TE = 2,500/3.77 ms.

Subcortical Structure Segmentation
We converted all T1 raw dicom images to Nifti format using 
dcm2niix (https://www.nitrc.org/projects/mricrogl/). To reduce 
segmentation errors, we ran FSL’s robustfov to remove neck 

before volumetric and shape processing. We verified that each T1 
included all portions of the head superior to the foramen mag-
num. Using FIRST (32), we segmented bilateral amygdala, cau-
date nucleus, globus pallidus, hippocampus, nucleus accumbens, 
putamen, and thalamus. The segmentation by FIRST is achieved 
by registering a template model to the individual T1 image to be 
segmented. The probability of the shape, based on the observed 
intensity, is then calculated. FIRST creates a surface mesh for each 
subcortical structure using a deformable mesh model. Each mesh 
is made up of a set of triangles with the apex of connecting tri-
angles called a vertex. FIRST sets the number of vertices for each 
structure to be equal in order for the corresponding vertices to be 
compared across individuals. The meshes are then converted to 
3D volumes using a boundary correction that defines each voxel 
as being inside or outside the structure. Visual inspection (Jared 
J. Tanner) of all segmentations revealed no failure.

Volumetric Analysis
We calculated volumes for each structure using fslstats. To adjust 
for head size differences, we divided the raw volumes by the total 
intracranial volume (TICV). We estimated TICV by adding all 
CSF, gray, and white matter voxels [brainmask.mgz created 
by FreeSurfer (33, 34)]. This estimation of TICV compared to 
the gold standard of manual segmentation is both reliable and 
robust [dice similarity coefficient  =  0.95, ICC  =  0.92, n  =  80 
(35)]. The final variable of interest was the ratio of subcortical 
volume to TICV.

Shape Analysis
Although each vertex represents the same point in space for 
different subjects for each structure, the surfaces are in native 
image spaces. Before any group level analysis can be performed, 
vertices are registered into a common space—in this instance, the 
mean surface of the sample represented in MNI152 space. For 
each participant, rotation and translation (pose) are removed by 
minimizing the sum-of-squares differences between the corre-
sponding vertices of the individual and mean surfaces. We used a 
six-degree of freedom (DOF) transformation to remove pose. The 
six DOF registration removes only translations and rotations of a 
rigid body transformation so that differences in both volume and 
shape are retained [we refer to this as a shape considering volume 
analysis (32)]. We also repeated the analyses adjusting the models 
for scale (first_utils—useScale) in order to limit changes just to 
shape, rather than shape and volume (we refer to this as a shape 
only analysis). To correct for head size differences, meshes were 
reconstructed in MNI space, which is the native model space.

Statistical Analyses
Subcortical volumes as a ratio to TICV were compared between 
groups (PD versus non-PD and left-onset PD versus right-onset 
PD versus non-PD) using MANCOVA in SPSS 22.0 (IBM, New 
York) with significance set at p < 0.05. We covaried for both age 
and sex. Total volumes were the sum of left and right structures.

We performed both shape considering volume and shape only 
morphometric difference analyses between all PD and non-PD 
peers, left-onset PD versus right-onset PD, left-onset PD versus 
non-PD peers, and right-onset PD versus non-PD peers. The 
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TaBle 2 | Demographic information.

all PD (n = 72) left-onset PD (n = 27) right-onset PD (n = 45) non-PD (n = 48)

Age 67.75 ± 5.86 67.19 ± 5.01 68.09 ± 6.34 68.17 ± 4.97
Education 16.28 ± 2.67 16.33 ± 2.29 16.24 ± 2.89 16.89 ± 2.24
Sex (M:F) 51:21 19:8 32:13 38:10
Disease duration 7.00 ± 4.98 5.37 ± 3.10** 7.98 ± 5.63** –
MMSE 28.59 ± 1.33* 28.59 ± 1.34 28.58 ± 1.31 29.26 ± 0.94*
WTAR estimated IQ 109.46 ± 7.34 109.52 ± 6.92 109.40 ± 7.76 109.64 ± 8.41
UPDRS part 3 18.04 ± 10.09* 17.74 ± 8.83 18.28 ± 10.92 2.96 ± 3.57*
LED 585.07 ± 334.34* 539.00 ± 232.69 631.13 ± 435.99 0.85 ± 5.83*,a

UPDRS part 3 is the motor symptom scale of the United PD Rating Scale; LED, Levodopa equivalence score; MMSE, mini-mental state examination; WTAR, Wechsler Test of Adult 
Reading.
aOne non-PD participant was taking levodopa for restless leg syndrome.
*Indicates significant PD/non-PD difference, p < 0.05.
**Indicates significant L-PD/R-PD difference, p < 0.05.
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significance of these tests was calculated using a Monte Carlo 
simulation together with a threshold-free cluster enhancement 
as implemented in FSL randomise (35). The groups were well 
matched on demographic variables in PD/non-PD between-
group statistical analyses. T-values obtained in the non-permuted 
data were compared against a null distribution calculated using 
10,000 random permutations of the data. We then thresholded 
images at p  <  0.05, corrected for multiple comparisons, for 
display. For participants with PD, we performed additional 
morphometric analyses correlating shape considering volume 
and shape only with disease duration in years while covarying 
for age.

resUlTs

Participants
Demographic information is displayed in Table  2. Groups 
were well matched for all variables not related to disease  
(all p-values > 0.42).

Volume analyses: amygdala, caudate 
nucleus, globus Pallidus, hippocampus, 
nucleus accumbens, Putamen,  
and Thalamus
The one-way between-group (PD versus non-PD) multivariate 
analysis demonstrated that volumes for subcortical nuclei in 
PD subjects were smaller (F = 4.34, p < 0.001; raw volumes are 
presented in Table S1 in Supplementary Material). Univariate 
differences were significant for only total putamen (F = 12.204, 
p  =  0.001) and total hippocampal (Pillai’s trace F  =  11.894, 
p  =  0.001) volumes, with a trend for total caudate nucleus 
(F = 3.685, p = 0.057). Globus pallidus, thalamus, nucleus accum-
bens, and amygdala volumes were not different between groups 
(all p-values > 0.391).

When groups with left and right side PD onset were analyzed 
separately, a one-way between-group (L-PD, R-PD, non-PD) 
MANCOVA with total caudate, putamen, nucleus accumbens, 
thalamus, globus pallidus, hippocampus, and amygdala volume 
(adjusted for TICV) with age and sex as covariates showed a sig-
nificant overall group effect (Pillai’s trace F = 2.433, p = 0.003; 

Bonferroni correction applied). Univariate (pairwise) com-
parisons controlling for age and sex demonstrated significant 
group differences in putamen (F = 6.126, p = 0.003), caudate 
nucleus (F  =  3.555, p  =  0.032), and hippocampus (F  =  5.99, 
p  =  0.003) volumes. No other structures were different (all 
p-values > 0.49).

Both L-PD and R-PD had smaller total putamen (L-PD versus 
non-PD: p = 0.012; R-PD versus non-PD: p = 0.011) volume than 
non-PD. R-PD had smaller total hippocampus volume than non-
PD (p = 0.004) with L-PD at trend significance (p = 0.053). Only 
L-PD had smaller total caudate nucleus volumes than non-PD 
(p = 0.027; R-PD versus non-PD p > 0.54). L-PD and R-PD did 
not differ for any total structure volumes (all p-values > 0.20).

When assessing structure volume by hemisphere, L-PD had 
smaller right caudate nucleus volumes than non-PD (p = 0.038; 
see Figure 1 and Figure S1 in Supplementary Material) and trend 
significance for left putamen (p = 0.080). R-PD had smaller left 
putamen volumes than non-PD (p  =  0.035; see Figure  1) and 
trend significance for right putamen (p = 0.072) and right hip-
pocampus (p = 0.074). L-PD and R-PD did not differ significantly 
for any structure volume (all p-values > 0.066).

Hippocampus volume negatively associated with disease dura-
tion when controlling for age (partial r = −0.299, p = 0.013). The 
hippocampus/disease duration relationship was significant only 
for R-PD (partial r = −0.315, p = 0.042; L-PD partial r = −0.263, 
p = 0.195). Putamen volume showed a trend relative to disease 
duration (partial r = −0.218, p = 0.073).

shape analyses: amygdala, caudate 
nucleus, globus Pallidus, hippocampus, 
nucleus accumbens, Putamen, and 
Thalamus
Parkinson’s disease (n = 72) relative to non-PD (n = 48) had shape 
considering volume differences on the medial and lateral surfaces 
of left and right putamen (primarily dorsal), posteriomedial, and 
posteriolateral surfaces of the left caudate nucleus, medial surface 
of right caudate nucleus, and medial and lateral regions of left and 
right hippocampi (Figure 2A). All areas of significant difference 
represented atrophy in PD relative to non-PD (i.e., there were no 
areas of hypertrophy). No other structures showed differences.

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


FigUre 2 | Parkinson’s disease (PD) and non-PD subcortical shape considering volume differences. Note: areas in red indicate where groups are 
significantly different (FDR-corrected p < 0.05). Areas in red indicate significant F-values, which in this case are all areas of atrophy (inward vertex displacement) in 
PD relative to non-PD peers. Relative to non-PD, L-PD have more right than left putamen and caudate nucleus atrophy and R-PD have more left than right putamen 
and caudate nucleus atrophy (see Table 3). (a) All PD (n = 72) versus non-PD (n = 48); (B) left onset PD (n = 27) versus non-PD (n = 48); (c) right onset PD 
(n = 45) versus non-PD (n = 48).

FigUre 1 | right-onset Parkinson’s disease (PD) (n = 45) and 
left-onset PD (n = 27) versus non-PD (n = 48) volumetric differences. 
Note: all values are the group mean ratios of structure volume relative to total 
intracranial volume (TICV). Error bars indicate ±1 SD. *Indicates L-PD or 
R-PD < non-PD, p ≤ 0.05.
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Parkinson’s disease (n = 72) relative to non-PD (n = 48) had 
shape only (adjusted for structure scale, which removes the effects 
of volume) differences for bilateral putamen and caudate nuclei. 
Group differences were more extensive medially than laterally 
with more differences anterior and dorsal (Figure 3A). Without 
considering volume, there were no left or right hippocampal 
group differences. Disease duration within PD group and regard-
less of group did not significantly correlate with putamen, caudate 
nucleus, or hippocampus morphometry.

Left-Onset PD Relative to Non-PD
Shape considering volume differences in left PD onset (n =  27) 
relative to non-PD peers (n  =  48) were significant only for 
bilateral medial putamen and bilateral medial caudate nucleus 
(Figure 2B). In the shape only analysis, there were medial differ-
ences for bilateral putamen and caudate nuclei. There were also 
lateral right caudate nucleus shape differences (Figure 3B).

Right-Onset PD Relative to Non-PD
Shape considering volume differences in right PD onset (n = 45) 
relative to non-PD peers (n = 48) were significant for medial and 
lateral putamen bilaterally (more extensive on the left) and left 
posteriolateral caudate nucleus (Figure  2C). Differences in the 
putamen tended to be dorsal and anterior in the structure. There 
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TaBle 3 | ratios of left and right structures relative to non-PD peers.

structure l-PD r-PD all PD

Volume only Putamen 1.17 1.24 1.22

Caudate nucleus 0.83 0.32 1.27

Hippocampus 0.99 0.86 0.90

Shape considering volume Putamen 1.36 0.39 0.68

Caudate nucleus 1.71 0.00 0.44

Hippocampus – – 0.54

Shape only Putamen 2.84 2.30 0.84

Caudate nucleus 2.23 0.00 0.91

Hippocampus – – –

 More left structure atrophy relative to right

 More right structure atrophy relative to left

All values >1 indicate more right side atrophy whereas all values <1 indicate more 
left side atrophy. For volume only, the value was calculated as the PD mean volume 
difference from non-PD mean volume as a ratio of mean non-PD volume (left mean 
non-PD structure volume—left mean PD structure volume/left mean non-PD volume) 
to (right mean non-PD structure volume —right mean PD structure volume/right mean 
non-PD volume); the ratio is thus left/right where a value >1 = smaller right structure 
than left and value <1 = smaller left than right. For both shape considering volume 
and shape only, the value was calculated as the ratio of [right number of significantly 
different voxels (PD relative to non-PD)/total structure voxels] to [left number of 
significantly different voxels (PD relative to non-PD)/total structure voxels]; the ratio is 
thus right/left where a value >1 = more atrophy on the right than left and <1 = more 
left atrophy than right. – indicates no group difference and thus no way to assess 
asymmetry.

FigUre 3 | Parkinson’s disease (PD) and non-PD subcortical shape only differences. Note: areas in red indicate where groups are significantly different 
(FDR-corrected p < 0.05). Areas in red indicate significant F-values, which in this case are all areas of atrophy (inward vertex displacement) in PD relative to non-PD 
peers. Relative to non-PD, L-PD have more right than left putamen and caudate nucleus atrophy and R-PD have more left than right caudate nucleus atrophy but 
more right than left putamen atrophy (see Table 3). (a) All PD (n = 72) versus non-PD (n = 48); (B) left onset PD (n = 27) versus non-PD (n = 48); (c) right onset PD 
(n = 45) versus non-PD (n = 48).
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were no right caudate nucleus group differences. In a shape only 
analysis, there were medial putamen differences bilaterally (more 
extensive on the right) and left posteriolateral caudate nucleus 
differences (Figure 3C).

Left-Onset PD Relative to Right-Onset PD
Left-onset PD (n = 27) versus right-onset PD (n = 45): there were 
no shape considering volume differences between L-PD and R-PD. 
A post hoc analysis covarying for disease duration also showed no 
between-group differences for any structure.

DiscUssiOn

This study revealed that the putamen, caudate nucleus, and 
hippocampus have unique volume and shape profiles in non-
dementia PD. The putamen was the only structure to show 
differences in both volume and shape. While finding putamen 
atrophy in PD is not novel (3, 11–14), our analysis extends the 
understanding of putamen morphology relative to the caudate 
nucleus and hippocampus in PD. The caudate nucleus, in contrast 
to the putamen, had only shape differences on the lateral surface 
and was more pronounced contralateral to side of onset. The 
hippocampus, the only cortical structure of interest, showed a 
significant volumetric difference relative to non-PD peers (5.96% 
less), yet no external shape difference. These findings suggest 
that volume loss is driven by internal structural differences  
(e.g., dentate gyrus) rather than the external shape morphology 
that occurs for the putamen and caudate nuclei.

striatal Patterns
The putamen and caudate show medial and lateral differences—
but the extent of these differences varies when we correct for 

structure volume. For PD, the putamen’s primary morphmetric 
difference was on the medial surface, whereas the caudate nuclei 
had both clear lateral and medial atrophy.
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When assessing volume only, there were no clear patterns of 
structure asymmetry relative to side of motor onset (see Table 3). 
In contrast, while shape differences were evident bilaterally for 
both L-PD and R-PD relative to non-PD peers, contralateral puta-
men or caudate nuclei generally showed larger areas of atrophy 
(see Table 3). This result thus matches previous morphometric 
research (11, 12) and demonstrates the limitations of assessing 
asymmetry using traditional volumetrics (2). That there were also 
ipsilateral shape differences was expected because of the mean 
disease duration and manifestation of bilateral clinical symptoms. 
We also found that L-PD had extensive caudate nucleus mor-
phometric and volume differences relative to non-PD peers. In 
contrast, the caudate nucleus was less affected in R-PD. Our result 
provides tentative evidence of increased susceptibility for caudate 
nucleus atrophy with left-onset PD relative to R-PD.

Taken together, our results demonstrate greater contralateral 
striatal atrophy relative to side of motor onset in PD and a medial-
to-lateral progression of atrophy within the striatum (12). An 
alternative interpretation is that the medial sides of the putamen 
and caudate nucleus might be the sides of the structures that 
shift with neurodegeneration. In other words, the lateral surfaces 
might be relatively “fixed” in place so atrophy anywhere within 
the striatal structures shifts the medial surface.

Striatal atrophy can be expected given the location and 
spread of PD pathology. Alpha-synuclein aggregation and/or 
dopaminergic (DA) denervation, however, do not necessarily 
indicate atrophy. DA neurons in the substantial nigra pars com-
pacta (SNc) and ventral tegmental area (VTA) of the midbrain 
undergo significant degeneration in PD, although the VTA to a 
lesser extent than the SNc, because of PD pathology. Both regions 
project directly to the striatum and other subcortical gray matter 
structures via the mesostriatal pathway (36). While the striatum 
exhibits a posterior/anterior gradient of striatal dopamine loss 
in PD (37, 38), our results do not clearly demonstrate a poste-
rior > anterior atrophy pattern. The lack of this pattern indicates 
that atrophy of the striatum is not a structural MRI marker of DA 
denervation.

Importantly, our results also suggest more extensive striatal 
atrophy contralateral to side of motor symptom onset, bolstering 
the findings of previous research (11, 12, 23). This is particularly 
evident for the lateral (away from lateral ventricles) side of the 
contralateral caudate nucleus.

Progression of striatal pathology has implications for brain 
networks. The striatum connects broadly to many areas of the 
cortex (39). An fMRI connectivity analysis showed that blood-
oxygen-level-dependent (BOLD) activity in the medial portion 
of the putamen (regions where the shape only analysis primar-
ily showed group differences) is associated with BOLD signal 
in the SMA with possible DLPFC and amygdala involvement. 
Similarly, affected regions of the caudate nuclei possibly con-
nect to calcarine, inferior temporal, insula, superior temporal, 
cingulate, medial prefrontal, orbitofrontal, and medial temporal 
regions (40).

The loss of gray matter within the striatum has broad conse-
quences for cognition, particularly, speed of processing, which is 
the primary cognitive deficit of early-stage PD (30). It is still not 
clear, however, exactly how PD pathology, atrophy, and clinical 

symptoms interact. There are individuals who have widespread 
PD pathology at death but who did not exhibit symptoms of PD, 
which is part of the controversy regarding the spread of pathol-
ogy in PD (41–47). In order to track pathology progression more 
reliably and predict clinical symptoms, detecting in vivo markers 
of PD pathology spread is necessary. PET and SPECT imaging 
are promising methods to detect spread of pathology but are hin-
dered by intra- and inter-individual variability [for a brief review, 
refer to Ref. (48)]. MRI-based imaging markers of PD pathology 
spread are less clear, but no less important, for understanding 
the asymmetry and/or symmetry of progression of PD brain and 
clinical changes.

Previous research finding no asymmetry of structural changes 
in PD were limited by less sensitive metrics (i.e., volume), leading 
to the conclusion that side of onset does not affect gross gray mat-
ter structure (2). Whole structure volume is important but has 
the potential to mask subtle differences and changes. Using more 
sensitive MRI metrics, a number of studies including this one 
have started to show contralateral structure changes in PD (49, 
50). Asymmetric structural alterations associated with PD are 
thus becoming clear. A caveat is that functional deficits become 
less lateralized as PD progresses (38), so it is also possible that 
detection of asymmetric atrophy becomes more difficult as the 
disease progresses. Longitudinal data are necessary to clarify this 
hypothesis. However, structural asymmetry, as the quality of MRI 
data and sensitivity of analyses increase, has the potential to be 
considered along with other proposed markers as useful for the 
detection of prodromal PD (51).

hippocampal Patterns
While the striatum appears to be the primary site of atrophy 
within PD, we found the hippocampus was the only structure 
where volume associated with disease duration, even when 
controlling for age and UPDRS part 3 score. We conclude that 
areas within the temporal lobe might serve as biomarkers of 
disease progression in PD, although such a conclusion is tentative 
without longitudinal data.

There were extensive bilateral hippocampal shape differences 
when including effects of volume. This pattern was expected given 
the smaller hippocampal volumes in PD, which has been shown 
in other studies (7, 52) in addition to ours. When including vol-
ume effects, hippocampal differences appeared to affect mainly 
the hippocampal head and CA1 bilaterally with less extensive 
CA2/3 atrophy. However, because the PD/non-PD hippocampus 
group differences disappeared when removing effects of volume 
(i.e., focusing on external shell of the structure independent from 
internal volume), we speculate that changes with PD are involving 
CA2/3 and dentate rather than CA1. This interpretation is sup-
ported by previous research, which showed that non-demented 
individuals with PD have smaller CA2/3 and dentate gyrus 
volumes relative to non-PD peers with the rest of hippocampus 
subregions (including CA1) remaining relatively intact early in 
the disease process (53). Loss of gray matter in CA3 and dentate 
gyrus has implications for white matter connectivity important 
for memory in light of atrophy of entorhinal cortex in PD (8, 20) 
and the white matter (e.g., perforant pathway) connecting both 
regions. This remains an area requiring further research.
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While there are significant between-group volume dif-
ferences, our findings in conjunction with Pereira et  al. (53) 
demonstrate the local nature of hippocampal changes associ-
ated with PD. That is, extensive portions of the hippocampus 
are relatively unaffected by cell loss in early- to mid-stage PD. 
Therefore, assessing whole structure volumes, even with sig-
nificant differences, hides important localized changes, which 
might be apparent earlier in the disease process. This is impor-
tant because patients with PD who have hippocampal atrophy 
relative to peers are at increased risk of future dementia (19). 
There is a need to associate cognitive ability and change over 
time, as there are subgroups of PD with amnestic mild cognitive 
impairment profiles (20).

We recognize that the current research is limited by statistical 
power to examine side of onset differences particularly in the left 
side onset sample. Further, side of onset is based on self-report of 
first symptoms and is limited by patient recall. The results could 
be improved by using a more direct measure of disease severity 
and laterality (e.g., off medication UPDRS); those data were not 
available, so we opted for disease duration as an indirect marker 
of disease severity. Additionally, we recognize that the testing 
was conducted while on-medication to represent typical patient 
functioning, which limits information about the extent of disease 
severity. We also recognize the disease duration differences 
between the L-PD and R-PD groups. The groups, however, did 
not have significant shape differences or shape/disease duration 
correlations, which indicates that the disease duration differences 
did not have a detectable effect on our analyses. We also note 
that the asymmetry results presented in Table 3 are qualitative 
as no formal statistical tests were performed to assess right/left 
differences. All asymmetrical atrophy results are thus preliminary 
and tentative until further research is conducted. We encourage 
future researchers to conduct research replicating our findings 
but also to examine structural profiles relative to cognitive per-
formance and, in particular, performance over time and dementia 
prediction.

Despite these limitations, the current study provides compel-
ling data showing that the striatum is a primary site of cell loss 
in early- to mid-stage PD; the putamen and caudate primarily 
have medial shape changes with this dominantly contralateral 
to symptom onset. Individuals with left-onset symptoms also 
appear to have more extensive striatal atrophy, which finding 
needs to be investigated further. Additionally, PD associates 
with hippocampal volumetric loss (not shape) suggesting greater 
demise within the hippocampus (e.g., dentate gyrus) as the 
disease progresses. Future studies are encouraged to conduct 

shape and volume assessments relative to cognitive and memory 
performances in PD.
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