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Dystonia, which causes intermittent or sustained abnormal postures and movements, 
can present in a focal or a generalized manner. In the limbs, focal dystonia can occur in 
either the upper or lower limbs and may be task-specific causing abnormal motor perfor-
mance for only a specific task, such as in writer’s cramp, runner’s dystonia, or musician’s 
dystonia. Focal limb dystonia can be non-task-specific and may, in some circumstances, 
be associated with parkinsonian disorders. The true prevalence of focal limb dystonia 
is not known and is likely currently underestimated, leaving a knowledge gap and an 
opportunity for future research. The pathophysiology of focal limb dystonia shares some 
commonalities with other dystonias with a loss of inhibition in the central nervous system 
and a loss of the normal regulation of plasticity, called homeostatic plasticity. Functional 
imaging studies revealed abnormalities in several anatomical networks that involve the 
cortex, basal ganglia, and cerebellum. Further studies should focus on distinguishing 
cause from effect in both physiology and imaging studies to permit focus on most rel-
evant biological correlates of dystonia. There is no specific therapy for the treatment of 
limb dystonia given the variability in presentation, but off-label botulinum toxin therapy is 

Abbreviations: BOLD, blood oxygen level dependent; BoNT, botulinum neurotoxin; CSP, cortical silent period; DBS, deep 
brain stimulation; DMN, default more network; fMRI, functional magnetic resonance imaging; GPi, globus pallidus interna; 
LTP, long-term potentiation; M1, motor cortex; PAS, paired associative stimulation; PET, positron emission tomography; PMC, 
premotor cortex; RD, runner’s dystonia; rTMS, repetitive transcranial magnetic stimulation; STDT, somatosensory temporal 
discrimination threshold; tDCS, transcranial direct current stimulation; TMS, transcranial magnetic stimulation.
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often applied to focal limb and task-specific dystonia. Various rehabilitation techniques 
have been applied and rehabilitation interventions may improve outcomes, but small 
sample size and lack of direct comparisons between methods to evaluate comparative 
efficacy limit conclusions. Finally, non-invasive and invasive therapeutic modalities have 
been explored in small studies with design limitations that do not yet clearly provide 
direction for larger clinical trials that could support new clinical therapies. Given these 
gaps in our clinical, pathophysiologic, and therapeutic knowledge, we have identified 
priorities for future research including: the development of diagnostic criteria for limb 
dystonia, more precise phenotypic characterization and innovative clinical trial design 
that considers clinical heterogeneity, and limited available number of participants.

Keywords: dystonia, limb, task-specific, research priorities, inhibition, deep brain stimulation, botulinum toxin

such as abnormal flexion or extension of the fingers and may 
be accompanied by abnormal wrist postures as well. It may not 
always be possible, however, to differentiate between abnormal 
posture as a manifestation of the dystonia and a compensatory 
contraction or movement. In this regard, voluntary movement 
of the contralateral (unaffected) hand may elicit the primary 
dystonic posture in the affected hand. This is “mirror dystonia,” 
which refers to a phenomenon in which voluntary movements 
contralateral to the affected limb provoke dystonic movements 
on the affected side (10, 11). For instance, in writer’s cramp when 
writing with the unaffected non-dominant hand, the normal 
voluntary movement can provoke or cause recapitulation of the 
dystonic movements in the affected hand, even though it is not 
engaged in the writing task. Assessing the abnormal posture in 
the affected hand brought out by “mirror dystonia” may be helpful 
in selecting the most appropriate muscles for botulinum toxin 
(BoNT) injection.

Writer’s cramp has been described in the literature since 1830 
and was originally classified as one of the “occupational neuroses” 
(12). Gowers may have been the first to recognize the aspect of 
“overuse” or repetitive action that typically precedes the develop-
ment of the dystonic hand posture (12). He described that the 
abnormal spasm initially occurred only with writing, but later 
involved other actions—even affecting the non-dominant hand if 
used for writing (12). Given the relationship to repetitive action, 
writer’s cramp must be differentiated from overuse syndromes 
and nerve entrapments (9). Sensory changes, in addition to pain 
and weakness, may be helpful in identifying peripheral nerve 
pathology rather than a dystonic etiology as a cause of the symp-
toms. In general, the remainder of the neurological exam should 
be normal in writer’s cramp. If abnormalities are found, focal 
structural lesions as well as neurodegenerative causes of dystonia 
should be considered (Table 1).

Musician’s dystonia of the hand and arm is a focal task-specific 
dystonia that classically affects performing artists at the peak of 
their careers with an average age of onset at 36 years of age (13). 
Musician’s dystonia can also affect the embouchure. This unusual 
condition has afflicted famous musicians in the last two centuries, 
including Robert Schumann, Leon Fleisher, Gary Graffman, 
Peter Oundjian, and, likely, Yehudi Menuhin (14). Unlike all 
other forms of focal dystonia, musician’s dystonia of the arm 
has a striking male to female predilection at 4:1 with prevalence 

iNTRODUCTiON

The dystonias are a group of disorders characterized by sustained 
or intermittent muscle contractions causing abnormal and often 
repetitive movements, postures, or both (1, 2). Clinically the 
dystonias are classified according to the area of the body that is 
affected, their age at onset, temporal characteristics such as man-
ner of onset or task specificity, and whether they are combined 
with other neurological or medical features. Etiologically, they 
are classified according to whether or not there is any associated 
brain pathology or evidence for a genetic basis. In this review, we 
will focus mainly on isolated limb dystonia that usually presents 
in adult life, most commonly is of unknown origin, and can be 
task-specific. We will summarize the current knowledge in the 
areas of clinical features, pathophysiology, as well as current 
therapeutic strategies. Then, we will identify priorities for future 
research based on the knowledge gaps revealed.

CLiNiCAL FeATUReS

Dystonia of the Upper Limb
In epidemiological studies conducted in different parts of the 
world, the most commonly affected regions of the body include 
the neck and craniofacial areas (3, 4). The upper limbs are the third 
most commonly affected area, with estimated crude prevalence 
rates of approximately 5–70 cases per million (3, 4). The majority 
of upper limb dystonias first emerge in adulthood, with approxi-
mately 10–20% progressing to other body regions over 5–10 years 
(5–7). Upper limb dystonias less commonly emerge in children; 
although when they do present in children, there is greater risk of 
progression to generalized dystonia (8). The commonly reported 
features of upper limb dystonia include abnormal extension or 
flexion of the wrist or fingers, pain in the hand or forearm, and 
tremulous movements. Sometimes, there is pain in the hand or 
forearm, but this is typically not a prominent symptom and may 
be due to excessive muscular contraction.

In writer’s cramp, a task-specific upper limb dystonia, patients 
initially report excessive tightness in hand or forearm muscles—
sometimes described as a “cramp” (9). Even though there may 
be tightness, patients often can still perform the motor task, but 
over time, motor performance degrades with variable loss of 
dexterity, fatigue, or even pain. Abnormal postures can occur 
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between 1 and 2% of musicians (15, 16). The hand that performs 
the more complex motor task appears to be preferentially affected 
(e.g., right hand in pianists, left hand in violinists, right hand in 
guitarists) (13). Musician’s dystonia can be encountered with 
essentially all musical instruments, but certain instruments are 
overrepresented in clinical series of musician’s dystonia, such 
as keyboard, guitar, and violin. The age at initiation of musical 
instruction appears to influence risk for development of the 
disorder, with instruction before age 10 being protective against 
the development of dystonia.

Typically musician’s dystonia of the hand and arm begins as 
an insidious deterioration in previously automatic performance, 
followed by involuntary posturing within months of symptom 
onset (17). Dystonia may affect the fingers, wrist, upper arm, 
and even the shoulder girdle. Frequently, the pattern of dystonia 
segregates with certain instruments, for example adjacent finger 
flexion in pianists, wrist flexion in percussionists, and shoulder 
girdle involvement in the bow arm of violinists.

Current Knowledge Gaps and Areas of 
Controversy in Upper Limb Dystonia
The epidemiological studies of upper limb dystonia are widely 
believed to underestimate true prevalence rates, because many 
cases go unrecognized for many years or they are misdiagnosed 
as more common conditions, such as repetitive injury syndromes, 
Parkinson’s disease, or tremor. One of the most common forms of 
task-specific dystonia is dystonic writer’s cramp, but the prevalence 
of this form of focal dystonia has not been studied. In fact, one study 
revealed an average latency of more than 10 years from symptom 
onset to diagnosis for upper limb dystonias (18). Furthermore, 
agreement on diagnosis for upper limb dystonias is modest, even 

among experts (19, 20). The lack of widely accepted diagnostic 
criteria and reliable biomarkers for upper limb dystonias likely 
contribute to the poor diagnostic recognition and agreement.

Although there are multiple reports describing the clinical 
features for relatively large numbers of patients with cervical 
dystonia and craniofacial dystonia, few address upper limb 
dystonias. Most reports have included only relatively small num-
bers of patients with upper limb dystonia or they have focused 
on specific subtypes, such as writer’s cramp (21–24), musician’s 
dystonias (see below), or the dystonia associated with Parkinson-
related neurodegenerative diseases (25–28).

The cause of musician’s dystonia is obscure, but certainly 
seems multifactorial with different factors more important in 
different persons. The settings in which it most often develops 
involve repetitive performance of a movement that requires great 
skill. This setting implies the disorder is acquired due to certain 
environmental factors. While there are some genetic studies that 
have linked musician’s dystonia in the arm and writer’s cramp 
with variants in the arylsulfatase G gene, it remains unclear how 
genetics, environmental influences, and their interactions result 
in the development of the disorder (29). Classically considered to 
be an irreversible phenomenon, recent work has raised the possi-
bility that early identification of patients and prompt initiation of 
treatment might rescue some patients, allowing them to continue 
their performing careers (30).

Although it is often claimed that 10–15% of patients with idi-
opathic Parkinson’s disease may present with focal dystonia of the 
upper or lower limb, especially in early-onset cases, surprisingly 
few studies report the prevalence of this phenomenon, or of the 
clinical characteristics, that help to distinguish these cases from 
non-degenerative adult-onset focal limb dystonia (31, 32). The 
paucity of large clinical studies comparing the clinical features 
distinguishing the limb dystonias of degenerative Parkinson-
related disorders from the limb dystonias of non-degenerative 
adult-onset isolated focal dystonias likely contributes to frequent 
misdiagnoses. Indeed, multiple studies have described patients 
with isolated limb dystonia who were misdiagnosed as having 
Parkinson’s disease (33–36).

Some patients exhibit semi-rhythmical movements of the 
hand and arm, with little or no postural abnormality. When 
these movements occur only with writing, they are often called 
primary writing tremor. It remains controversial whether these 
types of abnormal movements should be classified as a subtype of 
dystonia (e.g., dystonic tremor), as a subtype of essential tremor, 
or as a distinct entity (37–44). Without a reliable biomarker for 
either dystonia or essential tremor, the exact classification will 
remain a matter of debate.

Dystonia of the Lower Limb
Focal or segmental dystonia confined to the lower limb is an 
uncommon focal dystonia and requires a meticulous assessment 
and testing to exclude other conditions, such as parkinsonism, 
stiff-person syndrome, and other movement disorders (45, 46). 
Runner’s dystonia (RD), an important but often undiagnosed or 
misdiagnosed type of lower limb dystonia, is defined as a task-
specific focal or segmental dystonia of the lower limb or trunk 
triggered by running (47). Patients with RD often describe their 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


4

Pirio Richardson et al. Research Priorities in Limb and Task-Specific Dystonias

Frontiers in Neurology | www.frontiersin.org May 2017 | Volume 8 | Article 170

initial symptom as a subtle change in their gait or running stride, 
a limp or a sense of pulling, cramping, or stiffness triggered by 
running and improved with rest. At first, they often attribute their 
symptoms to overuse, a change in shoes or a different running sur-
face. They may also suspect “foot drop,” an injury (muscle strain/
sprain), or other musculoskeletal complaint (48). Commonly 
reported symptoms in RD include a limp when running, drag-
ging of the foot or leg, inversion of the foot, scuffing of the toe, 
clipping an ankle with the opposite foot, trunk tilt, and/or pain. 
Similar to other focal dystonias, patients with RD may report an 
alleviating maneuver (also referred to as “geste antagoniste” or 
“sensory trick”), which improves their symptoms (49, 50).

When symptoms persist or worsen, a patient commonly self-
refers to an athletic trainer/coach, physical therapist, sports medi-
cine, or orthopedic physician—delaying the correct diagnosis 
often by many months or even by years (51). A missed diagnosis 
may also lead to unnecessary therapies and/or invasive procedures 
(52). By the time a patient with RD consults with a movement dis-
order specialist, their symptoms have often generalized to involve 
walking, and running may be limited or impossible. A possible 
clinical clue to the diagnosis of RD is a marked improvement in, 
or complete absence of, symptoms when the patient walks or runs 
backwards (i.e., task specificity).

Assessment of patients with suspected RD includes a history 
and physical examination with special attention to the musculo-
skeletal and neurological systems. The differential diagnosis of 
RD includes a focal dystonia presenting as the initial symptom 
of primary generalized dystonia, a secondary process (stroke, 
Parkinson’s disease), trauma, and functional (psychogenic) causes  
(45, 53, 54). If not previously performed, the diagnostic work up 
may include electrodiagnostic testing, spine/brain/skeletal imag-
ing, and laboratory studies including metabolic and, potentially, 
genetic testing. Functional assessment in RD includes observa-
tional and videotaped assessment of the patient at rest, standing, 
walking, and running. Video assessment may reveal subtle find-
ings that are missed during real-time observation and can be used 
to evaluate the response to an intervention.

When RD is suspected and questions remain about the diagnosis 
after history and clinical exam, 3D computerized motion analysis 
may provide useful information about which muscles are involved. 
This method may help identify specific causes for this difficulty and 
guide treatments (55). Careful analysis of the electromyography 
(EMG) data is required paying special attention to the timing and 
duration of muscle activation, the relationship to kinematics, and 
side-to-side comparison. Abnormalities of muscle activation in 
patients with dystonia include onset, timing, duration, magnitude 
of recruitment, depression or prolongation of phasic bursts, and 
co-contraction; however, no studies have proven these tests to be 
diagnostic. Other abnormalities considered to be consistent with 
dystonia include activity at rest, an inability to relax when a move-
ment ends, and overflow to an unwanted body part.

Current Knowledge Gaps and Areas of 
Controversy in Lower Limb Dystonia
Lower limb dystonia is less common than other focal dystonias, 
such as cranial and cervical dystonias, but its true prevalence 
is not known and is likely currently underestimated. Clinical 

features such as task specificity and the use of sensory tricks can 
be seen in lower limb dystonia, similar to other forms of dys-
tonia. The relationship between isolated leg dystonia and other 
neurodegenerative diseases (i.e., Parkinson’s disease) is not well 
understood.

Key Research Priorities in Clinical 
Features of Upper and Lower Limb 
Dystonias
•	 Development of clinical diagnostic criteria for upper and 

lower limb dystonias, taking into consideration their clinical 
heterogeneity

•	 Clarify the relationship between dystonia, tremor, and dys-
tonic tremor

•	 Clarify the relationship between dystonia and mirror dystonia
•	 Systematic characterization of clinical characteristics of 

patients presenting with isolated limb dystonia who are likely 
to progress to Parkinson’s disease or a related degenerative 
parkinsonian condition

•	 Characterize the genetic and environmental influences on the 
development of musician’s dystonia

Posttraumatic Dystonia, Peripherally 
induced Dystonia, and Complex Regional 
Pain Syndrome (CRPS)
Central (brain) trauma has been long recognized as a cause of 
dystonia, but peripherally induced dystonia, triggered by trauma 
to the cranial or peripheral nerves or roots, is still controversial 
(56). In a review of 190 articles presenting findings on 596 
patients with peripherally induced movement disorders, the 
most frequently reported movement disorder was dystonia 
(74%), followed by tremor (23%), myoclonus (15%), spasms 
(11%), painful limbs moving extremities (6%); and another 2% 
had parkinsonism, chorea, and tics (57). Most studies reported 
latencies of less than 1 year (median = 21 days), but in 27 cases 
(5%) the reported interval between injury and the onset of move-
ment disorder was greater than 1 year. Only 170 patients (29%) 
showed evidence of a nerve injury. Pain was an important feature 
in the majority of patients (81%) and preceded the onset of move-
ment disorder in 20% of the cases. CRPS was diagnosed in 42% 
of the reported cases but only 8% had nerve injury. BoNT was 
the most frequently applied therapy (21%) in this review, with 
57% of patients treated with BoNT reporting mild or moderate 
improvement in symptoms. Physical therapy and oral medica-
tions, such as trihexyphenidyl, baclofen, and muscle relaxants, 
provide only limited benefit in this population. Due to a concern 
of abnormal sympathetic drive in this disorder, chemical and sur-
gical sympathectomies have been used in this patient population, 
but due to common complications after sympathectomy and lack 
of evidence of clear long-term benefit, it is now rarely used (58). 
Deep brain stimulation (DBS) has been only rarely reported to 
be beneficial in patients with peripherally induced dystonia (59).

Despite strict diagnostic criteria, including the requirement 
for anatomically and temporally related injury, the cause-and-
effect relationship between the peripherally induced injury and 
subsequent movement disorder may not be obvious in all cases. 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


FiGURe 1 | Diagram of hypothesis of peripherally induced movement 
disorders.

5

Pirio Richardson et al. Research Priorities in Limb and Task-Specific Dystonias

Frontiers in Neurology | www.frontiersin.org May 2017 | Volume 8 | Article 170

Although the pathophysiological mechanisms of peripherally 
induced movement disorders are not well understood, emerging 
evidence suggests that individual (e.g., genetic) predisposition, 
coupled with central reorganization in response to the altered 
peripheral input, plays an important role in the pathogenesis 
of peripherally induced movement disorders (Figure  1). Arm 
immobilization, a form of peripheral injury, can lead to decreased 
thickness in the contralateral primary motor and somatosensory 
cortical area and a decrease in the white matter fractional ani-
sotropy in the contralateral corticospinal tract (60). Cortical 
reorganization in the primary sensorimotor cortex occurs fol-
lowing arm amputation (61). Abnormal activation on functional 
magnetic resonance imaging (fMRI) in regions such as the basal 
ganglia and other brain regions reported in patients with CRPS 
have not been confirmed by other studies (62). This may be partly 
explained by heterogeneous population of patients, small sample 
size, and methodological issues related to fMRI (63).

Current Knowledge Gaps and Areas  
of Controversy in Peripherally  
induced Dystonia
One of the major sources of debate related to peripherally induced 
dystonia is its possible relationship to functional (psychogenic) 
movement disorders. This controversy is particularly highlighted 
by the phenomenon of “fixed dystonia.” In the classic report by 
Schrag et  al., the authors described the clinical features of 103 
patients presenting with fixed dystonia, primarily (90%) involv-
ing the limb (64). They followed 41 patients prospectively for a 
mean of 3.3 years. In 63% of patients, the dystonia was preceded 
by a peripheral injury and in 56% the dystonia spread to other 
body regions. During the follow-up period, only 27% achieved 
partial or complete remission. Pain was a major complaint in 41% 
of the patients, and 20% met the criteria for CRPS. Although only 

37% of the patients fulfilled diagnostic criteria for “documented 
or clinically established psychogenic dystonia,” the authors con-
cluded that “many patients fulfill strict criteria for a somatoform 
disorder/psychogenic dystonia” and that fixed dystonia “usually, 
but not always, occurs after a peripheral injury and overlaps with 
CRPS” (64). Other studies have failed to establish direct con-
nection between CRPS and an abnormal psychological profile 
(65). Many patients with CRPS, however, share demographic and 
clinical features with those diagnosed as functional (psychogenic) 
movement disorders, such as female preponderance, young age, 
and abrupt onset (64). Although no specific abnormalities in 
brain structure or function have been consistently identified in 
patients with CRPS, it would be premature to conclude that CRPS 
is a functional (psychogenic) disorder (62).

In addition, there are other controversies concerning the 
diagnosis and the pathophysiology of peripherally induced or 
posttraumatic dystonia. Besides peripheral injury, prolonged 
immobilization seems to be an important risk factor. One dis-
tinguishing clinical feature from other dystonias is the frequency 
of pain as a presenting complaint. Although local injections of 
BoNT into the muscle of the dystonic limb or an intradermal 
injection in the region of the pain may improve the motor and 
sensory aspects of CRPS-related dystonia, therapeutic options for 
this disorder currently are limited and have not been systemati-
cally studied to date (66).

Key Research Priorities in Peripherally 
induced Dystonia
•	 Systematic clinical and neurophysiological characterization of 

patients with peripherally induced dystonia compared to focal, 
idiopathic limb dystonia, and to healthy controls

•	 Investigation of patients with pre-existing dystonia following 
peripheral injury and/or immobilization using epidemiologic, 
phenomenologic, neurophysiologic, and imaging studies to 
identify any factors that might exacerbate underlying dystonia 
to provide insights to peripherally induced dystonia

•	 Development of a suitable animal model that can explore the 
effects of peripheral injury on spinal cord and brain and its 
role in centrally mediated dystonic symptoms

•	 Design and conduct double-blind, controlled clinical trials 
of BoNT in patients with peripherally induced dystonia to 
establish the level of evidence that this treatment modality is 
safe and effective in this population

PATHOGeNeSiS

inhibition in Dystonia: Motor and Sensory
The pathophysiology of dystonia is characterized by a loss of inhi-
bition, which has been shown at multiple levels in the nervous 
system, from the spinal cord to the brainstem to the motor and 
sensory cortical regions (67). This loss of inhibition manifests in 
the periphery with abnormally long muscle bursts as measured 
by EMG, co-contraction of agonist and antagonist muscles, and 
overflow into adjacent muscles not needed for the particular 
motor task (67).
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Several measures of cortical excitability examined in focal 
limb dystonia have revealed abnormalities including short 
intracortical inhibition, mediated through GABA-A receptors, 
and long intracortical inhibition, mediated by GABA-B (68). 
Another measure of cortical excitability is the cortical silent 
period (CSP). The CSP is a pause occurring during voluntary 
movement after a pulse of transcranial magnetic stimulation 
(TMS) is applied to the contralateral motor cortex. There are 
both spinal cord and cortical inhibitory contributors to the CSP, 
the latter likely mediated through GABA-B receptors (69, 70). 
In writer’s cramp, the CSP is shortened compared to controls, 
indicating an overall loss of inhibition in the motor system (71). 
Interestingly, this finding has been seen only in the symptomatic 
hand and not in the asymptomatic side. Further specificity was 
seen in a study of writer’s cramp where the CSP was significantly 
shorter in the patient group only during a pincer grasp but not 
during a power grip condition, suggesting some task specificity in 
this abnormality (72). During a pilot trial examining individuali-
zation of therapeutic repetitive TMS in two focal hand dystonia 
patients, one of the response variables used was the CSP (73). 
The investigators found that the subject with the shortened CSP 
responded favorably to the repetitive TMS (rTMS) and had both 
a physiological response with lengthened CSP and a subjective 
clinical improvement (73).

While as noted above, the pathophysiology of focal dystonia 
has generally shown a loss of inhibition, there are some examples 
in the literature of enhanced inhibition in dystonia patients in 
particular cortical pathways. A dorsal premotor to primary motor 
cortex abnormality has been identified in writer’s cramp patients 
at rest, where the writer’s cramp show enhanced inhibition com-
pared to healthy controls (74). This inhibitory influence from the 
premotor cortex (PMC) was found to be supraspinal in nature, 
as the H-reflex did not change with premotor conditioning. 
Evaluating this abnormal premotor–motor interaction through 
a biomarker analysis showed an area under the curve of 0.825 
with a sensitivity of 84% and specificity of 74% (74). Whether 
this abnormality is a primary manifestation of the disease or is 
a compensatory change is not clear, but a pilot trial enhancing 
inhibition over the PMC in cervical dystonia has shown some 
promise (75).

Abnormalities in inhibition in the sensory system have also 
been identified in focal dystonia—specifically in the somatosen-
sory temporal discrimination threshold (STDT). The STDT is the 
shortest time interval necessary for a pair of tactile stimuli to be 
perceived as two (76). STDT has been shown to be abnormal in 
dystonia, including focal hand dystonia (77, 78) and in cervical 
dystonia (79). However, abnormalities in STDT are not specific 
for dystonia as they may be seen in other patient populations 
(e.g., Parkinson’s disease) (80). The pathophysiology of abnor-
mal STDT has been demonstrated to be due to a loss of a short 
latency inhibitory process (78). Using inhibitory non-invasive 
neurostimulation, the STDT was increased in healthy volunteers 
(81). This led to the clinical effect of overall decreased ability to 
discriminate between paired inputs, suggestive of at least part of 
the phenotype seen in dystonia. This may be an instructive tool 
to improve our interpretation of abnormal STDT and recapitulate 
part of the phenotype in a human “model.”

Plasticity in Dystonia
Another theme that has emerged in the pathophysiology of focal 
dystonia is aberrant cortical plasticity. One widely used method 
to assess cortical sensorimotor plasticity is paired associative 
stimulation (PAS). Repeated pairs of peripheral nerve stimula-
tion, typically median nerve stimulation at the wrist, followed by 
TMS of the motor cortex (M1) between 21 and 25 ms later, induce 
cortical plasticity. This produces a spike-timing dependent, long-
term potentiation (LTP)-like plasticity at the level of the M1, also 
known as associative plasticity. Initial studies in patients with 
writer’s cramp showed excessive plasticity with abnormal spread 
of the induced plasticity to non-targeted muscles (82, 83). The 
increased LTP-like plasticity extends to body parts unaffected by 
dystonia. For example, patients with cervical dystonia, blepha-
rospasm, and oromandibular dystonia, all had excessive plasticity 
measured in their unaffected hand muscles (84).

The ability to regulate plasticity to keep excitability within a 
useable range, known as homeostatic plasticity, is also impaired in 
dystonia (85). In addition to examining motor cortical plasticity, 
studies have also measured somatosensory-evoked potentials 
and found increased LTP-like plasticity in the somatosensory 
cortex in patients with focal hand dystonia (86). Taken together, 
these studies lead to the attractive hypothesis that task-specific 
hand dystonia is related to excessive plasticity, possibly due to 
abnormal association between sensory input and motor output 
with deficient homeostatic control (87).

It should be noted, however, that several studies did not find 
increased sensorimotor plasticity in focal hand dystonia using 
PAS, and the results from different studies have varied (88). Some 
of these conflicting results may be due to the inherent variability 
of the effects of PAS even in healthy subjects (89, 90). In addi-
tion, there is also variability in the PAS paradigms resulting in 
differing times between median nerve stimulation and TMS (e.g., 
21.5 vs. 25 ms) (91). Other factors including the repetition rate, 
the stimulus strength and the number of paired stimuli delivered, 
the state of muscle activity, the time of the day, attention to the 
stimuli, and genetic factors, all are important factors in measure-
ments of plasticity (92). Another form of LTP-like cortical plastic-
ity induced by intermittent theta burst stimulation, which does 
not involve sensory input, showed abnormal plasticity but was 
decreased rather than increased in focal hand dystonia (93). These 
findings suggest that abnormal processing of sensory input may 
underlie increased associative plasticity in focal hand dystonia, 
but the direction of change is variable depending on the study 
paradigm and the exact part of the sensorimotor cortex probed.

One way to understand the role of plasticity in dystonia is 
through the relationship between associative plasticity and the 
effects of DBS, a therapy used to treat generalized dystonia and 
less often, focal dystonia. DBS targeting the globus pallidus interna 
(GPi) decreases excessive associative plasticity in patients with 
generalized dystonia (94). However, the time of the maximum 
decrease in plasticity occurred before the subsequent, maximum 
clinical improvement, raising the possibility that the reduction 
in excessive plasticity may drive clinical improvement (94). 
Moreover, in patients with generalized dystonia who had the DYT1 
gene mutation, the degree of associative plasticity correlated with 
the maintenance of clinical benefit after GPi DBS was turned off 
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for 2 days (95). In these patients, associative plasticity seemed to 
reflect an ability to store normal movements and to resist abnormal 
signals from the basal ganglia even while the therapy was turned 
off. Direct measurement of GPi activity during DBS implantation 
has also provided evidence that short-term plasticity is abnormal 
in dystonia patients, with impaired paired-pulse depression seen 
(96). This and other studies suggest that the impaired inhibition 
seen cortically in associative plasticity studies is also reflected at 
the basal ganglia level in direct recordings (96–98).

Task Specificity
One of the most fascinating features of limb dystonia is task speci-
ficity. This refers to the situation where dystonia is manifested 
only during a single task or several closely related tasks, such as 
in writer’s cramp and in musician’s dystonia (e.g., pianist’s cramp 
is only manifested when playing the piano). Although more 
common in the upper limbs, task-specific dystonia can also affect 
the face (e.g., embouchure dystonia) and the leg (e.g., RD). As 
discussed earlier, the dystonia appears to be triggered, at least in 
part, by repetitive skilled action, and virtually any task can be 
affected. At onset, the dystonia can be very highly selective; some 
cases of writer’s cramp, for example, have begun with involvement 
of only a few specific letters. Moreover, the dystonic posture can 
be highly focal involving only one or two fingers. While many 
patients with a task-specific dystonia remain with relatively 
restricted involvement, the dystonia can spread to involve more 
muscles, becoming segmental dystonia or even more generalized 
dystonia. In some patients, the task specificity is gradually lost 
with dystonia affecting more tasks or even appearing at rest.

Why does repetitive activity drive the development of a 
task-specific dystonia? Much evidence suggests that repetition, 
in-and-of-itself, is not the sole driver, but that it is the interac-
tion of repetitive activity with multiple factors. One likely factor 
is a genetic predisposition. Another is inherent biomechanical 
abnormality of the hand (99). If the hand is anatomically abnor-
mal, then the motor control program might require modification 
in order to accomplish the intended motor task. Another critical 
factor seems to be abnormal plasticity processes in the brain. 
As noted above, good evidence suggests that patients with limb 
dystonia have abnormal homeostatic mechanisms to control 
the upper and lower bounds of plasticity as well as heightened 
plasticity overall, which is widespread both anatomically as well 
as within the different dystonia types (100). The abnormalities of 
plasticity suggest an endophenotype, not necessarily the cause of 
dystonia by itself, but predisposing to the development of dysto-
nia. The combination of repetitive activity, heightened plasticity, 
and failure of limiting plastic change may well be the particular 
combination needed to drive the development of dystonia.

How is it possible to have a task-specific deficit? Considering 
writer’s cramp, for example, motor control in the hand itself is 
basically working since all actions except writing are done well. 
Moreover, the motor program for writing remains intact since 
writing can be done normally with other limbs, albeit somewhat 
clumsily. Hence, task specificity arises just with the particular 
conjunction of a specific limb with a specific task. The pattern 
of brain activation with a specific body part is well established 
with somatotopic involvement of the primary motor cortex, 

cerebellum, and lateral and medial PMC. The motor program for 
writing has also been studied and includes parts of the PMC and 
parietal areas. A special area in the PMC concerned with writing 
is Exner’s area—near and analogous to Broca’s area for speech. A 
specific subset of the overlap between these two regions must be 
responsible for writing with the dominant hand, the usual limb for 
writing and, therefore, the body part at risk for the development 
of dystonia. In an fMRI experiment to determine task-specific 
activation, stronger activations in the left dorsal prefrontal 
cortex, left intraparietal sulcus, and right cerebellum in writing 
were found compared with all other tasks. Additionally, the left 
anterior putamen was active at onset for all the tasks, but only 
showed sustained activation during the right-hand writing. An 
exploratory analysis showed clusters in the left ventral PMC and 
inferior and superior parietal cortices that were only significantly 
active for right-handed writing (101).

A similar experiment was conducted in patients with writer’s 
cramp. The regions that were task-specific in the normal indi-
viduals were less active in patients. Moreover, the connectivity 
between the parietal and premotor areas was less strong (102). 
Hence, it appears that a specific parietal–premotor pathway was 
malfunctioning. In some sense, this is not surprising. Individual 
parietal–premotor pathways do seem specialized for specific 
tasks. This has been demonstrated most clearly for a reach-to-
grasp movement, where there are separate pathways for each 
component (103). Moreover, large lesions of either parietal or 
premotor areas will cause apraxia with a loss of many skilled 
movements (104). Thus, a task-specific deficit could arise from 
the interaction of a pathway where a specific task was learned 
together with excessive motor repetition of that particular task in 
the setting of uncontrolled plasticity.

Functional imaging of Limb Dystonia
Functional imaging in isolated limb dystonia has helped to iden-
tify underlying pathophysiologic mechanisms, as exemplified in 
the previous section. Various functional neuroimaging methods 
have been used with other goals in mind and include molecular 
imaging focusing primarily on brain hemodynamics or changes 
in dopaminergic pathways and fMRI of resting-state blood oxy-
gen level dependent signals.

Positron emission tomography (PET) measures of regional 
cerebral blood flow can identify local blood flow responses to vari-
ous stimuli. The general strategy has been to measure blood flow 
with the participant at rest in the scanner and then repeat the PET 
measure during an activation procedure. Local changes in either 
blood flow or metabolism reflect local neuronal activity or the 
changes in activity of terminal fields projecting to that area (105). 
Initial studies of brain responses to hand movements in people 
with isolated upper limb dystonia revealed differences in blood 
flow responses. However, differences in how someone with hand 
dystonia and a control subject move the hand could substantially 
confound interpretation of such studies. This methodologic ambi-
guity and the observation of sensorimotor integration problems in 
people with hand dystonia led to studies of blood flow responses 
to sensory driven stimuli.

Vibration of a hand produces a blood flow response in con-
tralateral sensorimotor cortex and supplementary motor area. 
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People with isolated hand dystonia, including a subgroup with only 
right-handed writer’s cramp, show an approximately 25% reduc-
tion in these blood flow responses (106, 107) similar to findings 
in other isolated dystonias (108). The vibratory stimulus elicited a 
cramp in some of the dystonic participants, but these participants 
did not have a different blood flow response from those who did 
not have cramping. The healthy controls who simulated a dystonic 
posture during the vibratory stimulus had an increased, rather 
than decreased blood flow response. Similarly, a patient with 
dopa-responsive dystonia showed reduced blood flow response 
to vibration that normalized after a dose of l-DOPA (109). This 
observation suggested that the vibration-induced blood flow 
responses could be influenced by dopaminergic pathways.

Positron emission tomography also can provide direct 
measures of dopaminergic receptors with most studies finding a 
 reduction in D2-like dopaminergic receptors. MPTP, a neurotoxin 
selective for dopaminergic neurons, when given via one internal 
carotid artery in non-human primates, produces contralateral 
transient limb dystonia followed by chronic parkinsonism 
(110, 111). During the transient dystonic phase, striatal D2-like 
receptor binding is reduced about 25–30% but then increased 
several fold during early parkinsonism. The increased D2-like 
receptor binding gradually returned toward normal. However, 
mRNA selective for D2R (selective for D2R over D3R) revealed 
no change whereas mRNA for D3R did increase coinciding with 
the D2-like receptor changes (112). These findings presaged 
studies in humans with isolated limb dystonia that revealed a 
similar reduction in striatal D2-like binding in those with either 
isolated, idiopathic hand, or cranial dystonia (113–115). In fact, 
the site of change in the putamen seems to relate somotopically 
to the part of the body involved (116). Some have used [11C]
raclopride as the D2-like radioligand. This particular radioligand 
can be displaced by increased release of endogenous dopamine. 
This characteristic has permitted measures of striatal dopamine 
release in response to drugs or tasks. In particular, a finger-tap-
ping task elicited less dopamine release (measured as a change in 
striatal uptake of [11C]raclopride) in people with writer’s cramp 
whereas a speech task in those same subjects yielded greater 
striatal dopamine release (115). Key findings from these studies 
is that striatal D2-like receptor binding is likely abnormal in limb 
dystonia and changes in dopamine release may also occur.

The selectivity of these changes for specific D2-like dopamine 
receptors remains unclear. PET measures with a D2 highly selec-
tive radioligand [18F]N-methyl benperidol (D2 ≫ D3 selectivity) 
did not reveal any changes in people with either hand or cranial 
dystonia (117). This suggests that the findings with less selec-
tive D2-like radioligands may reflect a change in D3 dopamine 
receptors, which would be consistent with the observation in 
MPTP-induced transient dystonia in monkeys (110–112); how-
ever, confirmation of this notion awaits development of a highly 
selective D3 radioligand for PET. Nevertheless, D1-like dopamine 
receptors appear to be normal in hand and cranial dystonia (118). 
Thus, these studies indicate a change in dopamine receptors pos-
sibly due to a change in striatal D3 specific dopamine receptors 
in dystonia patients.

At this point, the focus has been on neuroimaging find-
ings that relate to changes in striatal function or activity. Yet, 

increasing data suggest that the dystonia also may reflect changes in  
cerebellar function that may result from either direct involvement 
of cerebellum by functional connections with other brain regions 
or networks. Resting-state functional connectivity studies with 
magnetic resonance imaging (rs fcMR) have demonstrated strong 
functional connectivity in humans between striatum and a large 
area extending from upper and middle brainstem into cerebellum 
(119). These findings do not necessarily reflect direct anatomic 
connections but evidence for direct connections in non-human 
primates between the cerebellum and the subthalamic nucleus 
via the pons (120). The cerebellar vermis also has direct connec-
tions to primary motor and premotor areas (121)—areas that also 
have functional connectivity with the striatum. Thus, dysfunction 
in a brain network, either precipitated by direct involvement of a 
specific node or modulation at the network level, may provide the 
underlying pathophysiology of limb dystonia.

In support of this notion, rs fcMR studies indicate reduced 
functional connectivity between inferior parietal lobule and 
dorsal PMC contralateral to right-handed writer’s cramp patients 
(122). Another rs fcMR studied revealed increased functional 
connectivity with the left putamen as a component of the default 
mode network (DMN) in 16 people with right hand writer’s 
cramp compared to controls. Although the putamen is not typi-
cally considered part of the DMN, a network that includes pre-
frontal, anterior and posterior cingulate, lateral parietal, inferior 
and middle temporal area, cerebellar areas, and thalamus (123), 
the comparison of the independent component containing the 
DMN between the writer’s cramp and control groups revealed 
this increased putamen functional connectivity (124). In this 
same study, the writer’s cramp group had reduced functional 
connectivity with the left PMC that was part of the sensorimotor 
network. Both of these findings were affected by BoNT injections. 
The advantage of these resting-state studies is that they are not 
confounded by either behavioral changes during the scanning 
sessions or performance differences that could differ between 
those with limb dystonia and control groups.

Current Knowledge Gaps and Areas  
of Controversy in Dystonia Pathogenesis
The pathophysiology of focal limb and task-specific dystonia 
is characterized by a loss of inhibition, impaired sensorimotor 
integration, and aberrant cortical plasticity as seen through non-
invasive neurostimulation studies. How precisely task specificity 
emerges from these underlying neurophysiologic changes is not 
known; but, factors such as an underlying endophenotypic trait of 
abnormal plasticity combined with repetitive task-specific move-
ment generated in a particular sensorimotor network—all appear 
relevant. This issue is a key area to focus on moving forward in 
order to clarify how plasticity abnormalities translate into the 
clinical expression of dystonia. In addition, functional neuroim-
aging studies have revealed changes in dopaminergic pathways 
in the striatum and altered striatal and cerebellar pathways in 
dystonia patients. Together, these various findings suggest that 
changes at the network level underlie limb dystonia and raise 
questions about whether cortical–striatal–thalamo cortical 
networks are really segregated from cerebellar–thalamic–cortical 
networks. In particular, the relationship with the dopaminergic 
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system in dystonia is intriguing and worthy of future exploration. 
This includes further invasive and non-invasive paired-pulse 
studies (such as in GPi DBS for dystonia). As mentioned earlier, 
the relationship between isolated focal limb dystonia and post-
traumatic, peripherally induced dystonia is unclear. There have 
been several studies aiming to explore at this question. A recent 
study looking at patients with a fixed hand posture and CRPS 
compared to healthy controls found sensorimotor abnormali-
ties potentially compatible with a psychogenic dystonia and in 
contrast to findings found in isolated focal hand dystonia (125). 
Identifying similarities and contrasts between the underlying 
pathophysiology of these disorders will be helpful moving for-
ward perhaps both in diagnosis and in treatment.

Key Research Priorities in Limb  
and Task-Specific Dystonia Pathogenesis
•	 Further studies to distinguish cause from effect in both physi-

ology and imaging studies, so that attention can be directed to 
the most relevant biological correlates of dystonia

•	 Development of a diagnostic battery using neurophysiologic 
and imaging tests, including identifying whether one test will 
be sufficient for all focal dystonias

•	 Identification of therapeutic targets
•	 Understand the variability and reproducibility of PAS and 

other non-invasive measurement tools in healthy subjects and 
dystonia patients and standardization of study protocols to 
minimize variability across studies

•	 Determine how exactly abnormal plasticity affects the specific 
parietal–premotor pathway and how this relates to spread of 
dystonia beyond a particular task or limb

THeRAPY

boNT for Treatment of Limb  
and Task-Specific Dystonias
Botulinum toxin has a well-recognized role in the treatment of 
limb and task-specific dystonias; although, the amount of Level I 
evidence available is limited (126). Currently, three BoNT type A 
formulations (onabotulinumtoxinA, abobotulinumtoxinA, and 
incobotulinumtoxinA) are approved for upper limb spasticity 
and only one, onabotulinumtoxinA, for lower limb spasticity 
(127). None of these are approved, however, specifically for focal 
limb dystonia.

Several randomized, double-blind, controlled studies in limb 
dystonia have been performed investigating abobotulinumtoxinA 
(128, 129) and onabotulinumtoxinA (130–132). When compar-
ing these studies, outcome measures and populations enrolled 
have marked variability. This highlights one characteristic of 
focal limb dystonia that makes obtaining reliable data on efficacy 
challenging. Standardized scales or outcome measures capturing 
all types of task-specific or limb dystonia are lacking. In addition, 
the very nature of task specificity makes it difficult to generalize, 
and its clinical manifestation and prevalence tend to change with 
occupational skills relevant to the era and to the particular society 
(133). The impact on quality of life is very patient-dependent, 
and treatment response is at times radically different from other 

conditions responsive to BoNT therapy (134). Another area of 
interest is the choice of toxin for specific indications. To date, 
no Level I studies have been performed allowing a comparison 
of available formulations for limb and task-specific dystonia. 
Comparative studies have been conducted in blepharospasm and 
cervical dystonia populations, but it is not clear to what extent the 
results can be extrapolated to focal limb dystonia.

Regarding injection technique, accurate targeting of the 
relevant muscles, and avoidance of toxin spread to adjacent 
structures are clearly desirable. Little data are available, however, 
on the best guidance tools among the available options. There is 
some evidence that using a guidance method, such as EMG,  
is  superior in accuracy to anatomic guidance alone (135) but 
it is not clear how this translates into efficacy. This issue of 
efficacy has been studied in limb spasticity, comparing electrical 
stimulation and ultrasound guidance (136, 137) but not in limb 
dystonia. Studies are ongoing comparing guidance techniques in 
this patient population (Clinical Trials identifiers NCT02334683; 
NCT02326818), and more are needed.

Rehabilitation interventions for Limb 
Dystonias
Given the sparse literature on the topic and the rarity of the dis-
order, there are no clinical practice guidelines on rehabilitation in 
upper or lower limb dystonia. However, conventional rehabilita-
tion methods, such as stretching, strengthening exercises, manual 
therapy, and splinting programs, are frequently used in clinical 
settings when patients are referred for physical or occupational 
therapy. These therapies are also often tested as a control interven-
tion or combined with other therapies in research investigating 
efficacy of a novel intervention protocol (138–140).

In limb dystonia patient populations, investigators have 
proposed various forms of intensive motor training to recover 
voluntary motor control. These approaches have been frequently 
explored in treatments of musician’s dystonia using the methods 
known as “slow down therapy” and “sensorimotor retraining” 
(141). Other approaches have prioritized the reorganization of 
the cortical somatosensory map using methods, such as Braille 
training (142, 143), “learning-based sensorimotor training”  
(138, 139, 144), or prolonged immobilization of the affected limb 
(this method is no longer used) (145, 146). Attempts to normalize 
muscle activity to restore voluntary control using biofeedback, 
vibration, or electrical stimulation have also been used (147–151). 
Similar to constraint-movement therapy, a method often used in 
stroke rehabilitation, some investigators have used motor practice 
combined with constraining the unaffected joints with the goal 
of decreasing compensatory movements (152, 153). Finally, 
combining neuromodulation methods with motor training in 
an attempt to normalize brain excitability and further improve 
motor performance has been tried either with transcranial direct 
current stimulation (tDCS) (154–156) or with rTMS (140).

Despite the different theoretical bases of the interventions, 
when considered together, rehabilitation studies in limb dystonia 
suggest positive outcomes (157–159). Significant improvements  
have been reported in rating scales of dystonia severity, arm dis-
ability, quality of musical performance, and quality of life (140, 144, 
153, 160, 161). Studies that focused on sensory reorganization have 
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reported increase in sensory discrimination (138, 139, 142, 144). 
Furthermore, improved motor performance in writing, gait, and 
musical performance has also been reported (142, 153, 161, 162).

Limitations of the above studies are typical of small-scale trials 
and include lack of control groups, blinding, or randomization. 
It is also likely that the interventions tested were of insufficient 
duration, considering that limb dystonia likely develops over a 
long period of time. As the rehabilitation research in limb dys-
tonia develops, it will be important to investigate comparative 
effectiveness of interventions to understand which approach 
holds the most promise and the neurophysiological mechanism 
of effect. Given the nascent stage of rehabilitation research in 
focal dystonias, full-scale clinical trials have yet to be conducted. 
Thus, definitive statements cannot yet be made regarding efficacy 
and clinical implementation of a particular methodology.

A major challenge of rehabilitation intervention studies in 
general is determining an appropriate control and clearly specify-
ing the interventions to improve reproducibility. The hallmark 
of rehabilitation is that it involves active participation by the 
patient and is tailored to each patient’s unique need, which can 
create problems for reproducibility. For a control to be effective, it 
must be believable as a true intervention but not contain the key 
components of the experimental condition. Indeed, blinding and 
control are essential for future studies, as care from a therapist 
may impart benefits secondary to feeling cared for in addition 
to a pure placebo effect. Consequently, future investigations in 
dystonia need to carefully address this issue by comparing dif-
ferent treatment strategies with similar frequency, duration, and 
interaction between patient and therapist.

Study designs in a rare and heterogeneous disorder, such as 
dystonia, require careful consideration outside of the gold stand-
ard multisite, randomized controlled trial. Small-scale trials are 
appropriate given our limited understanding. However, studies 
should utilize robust small n methodology such as single subject 
experimental design studies with repeated measures (163).

Non-invasive brain Stimulation  
and Hand Dystonia
Non-invasive brain stimulation techniques, such as rTMS and 
tDCS, have been applied in both basic research into the patho-
physiology of hand dystonia and in therapeutic trials (164). Both 
methods can alter brain excitability in sensorimotor networks, 
which can be used to reduce abnormal excitation in sensorimotor 
cortex. The precise neurophysiological mechanisms underlying 
this change in excitability are not fully understood; however, 
high frequency rTMS and anodal tDCS are able to increase excit-
ability of the sensorimotor cortex (165). Low-frequency rTMS 
and cathodal tDCS achieve excitability changes in an inhibitory 
direction (165). The effects of non-invasive neurostimulation are 
far more complex than unidirectional excitability change and are 
not limited to the site of the stimulating electrodes but extend to 
frontal and parietal networks as well as to the basal ganglia and 
to the cerebellum (166, 167).

Several small controlled therapeutic trials of writer’s cramp 
have been done with inhibitory low-frequency rTMS (164). 
Studies typically included less than 10 mostly writer’s cramp 
subjects and most used a crossover design with a single session of 

stimulation targeting the contralateral hemisphere to the dystonic 
hand. Siebner et al. found that M1 stimulation modestly improved 
focal hand dystonia (168); however, Murase et  al. showed that 
PMC was a better target than M1 and supplementary motor area 
to reduce writer’s cramp symptoms (169). Subsequently, more 
studies used PMC as the target in multi session interventions 
and showed promising results either by physiologic or behavioral 
measures (170, 171). rTMS combined with sensorimotor retrain-
ing did not provide objective improvements in patients despite 
subjective improvement in six of nine (73). The results of these 
small-scale clinical trials with low-frequency rTMS have been 
mixed, and it is not currently ready for clinical application in this 
population.

In the last years, tDCS has gained popularity, partly due to its 
simple application combined with its low cost and low risk for 
adverse events. In patients with musician’s dystonia (e.g., profes-
sional guitarists), a single session of cathodal tDCS targeting the 
affected M1 did not improve the performance of guitar playing 
(172). Similarly in pianists, a single session of cathodal or anodal 
tDCS of the affected M1 combined with simultaneous retraining 
consisting of slow, voluntarily controlled movements on the piano 
did not result in any improvement in dystonia (173). The same 
strategy did not help patients with writer’s cramp (174). In contrast, 
cathodal tDCS of the affected M1 and simultaneous anodal tDCS 
of the unaffected M1 in dystonic pianists improved the rhythmic 
accuracy of sequential finger movements with the affected hand, 
but only if concurrent bimanual mirrored finger movements were 
performed (155). This improvement lasted for 4  days after the 
intervention. Neither a reversed montage of electrodes (anodal 
tDCS of the affected M1, cathodal tDCS of the unaffected M1) 
nor unilateral anodal tDCS of the unaffected M1 or sham stimula-
tion yielded any improvement (155). Furthermore, the amount of 
motor improvement correlated directly with the severity of the 
symptoms, that is, the most severely affected patients benefited 
most from the intervention. These findings suggest therapeutic 
potential in behavioral training assisted by bihemispheric and 
polarity-specific tDCS in restoring fine motor control in musician’s 
dystonia. A further single-case study showed augmented therapeu-
tic effects through bihemispheric tDCS combined with bimanual 
mirrored retraining over two successive days (175). Another group 
explored biparietal tDCS during neurorehabilitation and showed 
improvement in dystonia severity in musicians (156).

DbS and Limb Dystonia
Deep brain stimulation targeting GPi is a highly effective treat-
ment for medically refractory isolated generalized dystonia, 
supported by high quality case series and randomized controlled 
trials (176). Patients with cervical dystonia who respond neither 
to medications nor targeted injections of BoNT may also benefit 
from DBS, but less reliably so (177). In contrast, the experience 
treating focal limb dystonia with DBS is quite sparse, most likely 
because this form of dystonia is uncommon and rarely debilitat-
ing, so that the potential risks of DBS surgery seem unwarranted. 
On the other hand, task-specific dystonias may force an indi-
vidual to forego an activity that makes his or her life meaningful 
and BoNT injections can yield significant weakness in both the 
treated and adjacent muscles, denying the individual the fine 
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TAbLe 2 | Themes in focal limb dystonia research priorities.

Diagnosis Development of 
diagnostic criteria

•	 Upper limb
•	 Lower limb
•	 Peripherally induced

Standardize 
neurophysiologic tests

•	 CMA
•	 Paired associative  

stimulation (PAS)

Development of 
diagnostic battery using 
neurophysiology and 
imaging tests

•	 Somatosensory temporal 
discrimination threshold

•	 Functional magnetic resonance 
imaging

Phenotypic 
characterization

Isolated focal limb 
dystonia

•	 Relationship to neurodegenerative 
disease

Peripherally induced 
dystonia

•	 Identify factors that are protective 
or promoting

Tremor, dystonia, 
dystonic tremor

•	 Clarify the relationship of tremor 
with dystonia

Genetic and 
environmental 
influences

•	 Isolated limb dystonia and task-
specific dystonia

Pathophysiology Loss of inhibition •	 Understand how a loss at a 
network level translates to a focal 
symptom

Abnormal plasticity •	 Understand the variability in PAS 
response

Task specificity •	 Understand the relationship 
between repetition and abnormal 
plasticity

Peripherally induced, 
posttraumatic

•	 Understand commonalities and 
differences between isolated 
dystonia and posttraumatic

Therapy Clinical trial 
development 

•	 Innovative designs with small n
•	 Duration of therapy needed for 

a disease that took years (or 
decades) to develop

•	 Harness the inter-patient 
variability

•	 Standardize outcome measures

Development 
of therapeutic 
targets for invasive 
and non-invasive 
neurostimulation

•	 Target localization for all focal 
limb dystonias

•	 Systematic assessment of 
duration and stimulation 
parameters
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motor skills required to perform the practiced task despite relief 
of their abnormal dystonic posture.

A review of the literature regarding stereotactic surgery for 
focal limb dystonias reveals the following: (1) fewer than 50 
patients who have undergone a brain surgery for either writer’s 
cramp or musician’s dystonia are reported in the literature; (2) all 
of these patients were operated in either Korea or Japan; (3) the 
majority were treated with ventralis oralis thalamotomy, the rest 
with thalamic DBS; and (4) the results were uniformly positive, 
though assessed in an un-blinded fashion with relatively short 
follow-up (178–181). There is virtually no literature regarding the 
use of pallidal surgery (ablation or DBS) for focal limb dystonia.

Given these reported results, the fact that DBS is a safe inter-
vention in skilled hands (incidence of serious neurologic injury: 
1–2%), and the opportunity to address an unmet need with 
this targeted intervention, it would seem that a more rigorous 
evaluation of thalamic DBS for focal limb dystonia is appropriate. 
However, the small but real risk of catastrophic stroke/hemorrhage 
and the fact that focal limb dystonia is neither life-threatening 
nor always debilitating, mandate that these studies be conducted 
at comprehensive movement disorders centers that include both 
an experienced DBS surgeon with a documented low surgical 
complication rate and neurologists facile both in the treatment of 
focal limb dystonia and the programming of DBS devices.

Current Knowledge Gaps and Areas  
of Controversy in Therapy in Focal  
Limb Dystonia
Botulinum toxin therapy is often applied in an off-label manner 
in focal limb and task-specific dystonia but only limited evidence 
supports this practice due to the heterogeneity of the condition 
and to a lack of standardization in practice and data collection. 
Despite limitations, studies of rehabilitation in limb dystonias, 
as well as anecdotal reports, suggest a potential for improved 
outcomes for patients with rehabilitation intervention delivered 
by a therapist trained in the unique needs of a patient with 
dystonia, but definitive efficacy of a specific approach remains to 
be demonstrated. Non-invasive (rTMS and tDCS) and invasive 
(DBS) therapeutic modalities have been explored in only a small 
number of limb and task-specific dystonia patients and in stud-
ies with design limitations, which hampers the ability to move 
forward currently to larger clinical trials and to expand these 
potential therapies into clinical practice.

Key Research Priorities in Therapy  
in Focal Limb Dystonia
•	 BoNT: refine the role of BoNT therapy by optimizing prac-

tice, developing new formulations, and use of combination 
therapeutic modalities (such as BoNT combined with physical 
therapy or neuromodulation)

•	 Rehabilitation: determine appropriate controls, understand the 
neurophysiological effects of rehabilitation for limb dystonias, 
determine best frequency and duration for interventions given 
that a long period of time likely is required for symptom devel-
opment, determine duration of benefits after rehabilitation  
interventions

•	 Non-invasive brain stimulation: future trials to take into con-
sideration the dose and duration of stimulation protocol, pre-
dictive markers for responders, designs which allow between 
and within subject effects to be explored and combination 
with specific motor retraining procedures

•	 Invasive brain stimulation: design randomized controlled 
trials with good subject characterization

•	 Identifying the triggering movement, and differentiating 
primary vs. compensatory movements is critical for selection 
of the best muscles for BoNT injection in musician’s dystonia

•	 Development of an effective therapeutic strategy including 
early identification of patients, prompt initiation of treatment 
as well as new and better therapies, and modification of the 
“every three months” BoNT injection paradigm to fit the 
schedule and needs of a performing artist
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SUMMARY
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such as the adult-onset nature of the disease and the presence 
of sensory tricks that can temporarily ameliorate dystonic 
symptoms. However, the focal limb dystonias have a clinical 
heterogeneity (e.g., pianists dystonia and RD), which makes 
design of studies complicated from choosing specific anatomical 
targets for therapeutic interventions to developing compre-
hensive outcome measures that can fully quantify change in 
symptoms given high variability at baseline (Table 2). Focus on 
the research priorities as outlined here aims both to advance 
diagnostic capabilities and knowledge of the pathophysiology 
of this disorder, but also, to develop innovative therapeutic 
strategies to keep focal limb dystonia patients writing, running 
and performing.
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