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l-Cysteine is a semi-essential amino acid and substrate for cystathionine-β-synthase 
(CBS) in the central nervous system. We previously reported that NaHS, an H2S donor, 
significantly alleviated brain damage after subarachnoid hemorrhage (SAH) in rats. 
However, the potential therapeutic value of l-cysteine and the molecular mechanism 
supporting these beneficial effects have not been determined. This study was designed 
to investigate whether l-cysteine could attenuate early brain injury following SAH and 
improve synaptic function by releasing endogenous H2S. Male Wistar rats were subjected 
to SAH induced by cisterna magna blood injection, and l-cysteine was intracerebroven-
tricularly administered 30 min after SAH induction. Treatment with l-cysteine stimulated 
CBS activity in the prefrontal cortex (PFC) and H2S production. Moreover, l-cysteine 
treatment significantly ameliorated brain edema, improved neurobehavioral function, 
and attenuated neuronal cell death in the PFC; these effects were associated with a 
decrease in the Bax/Bcl-2 ratio and the suppression of caspase-3 activation 48 h after 
SAH. Furthermore, l-cysteine treatment activated the CREB–brain-derived neurotrophic 
factor (BDNF) pathway and intensified synaptic density by regulating synapse proteins 
48 h after SAH. Importantly, all the beneficial effects of l-cysteine in SAH were abrogated 
by amino-oxyacetic acid, a CBS inhibitor. Based on these findings, l-cysteine may play 
a neuroprotective role in SAH by inhibiting cell apoptosis, upregulating CREB–BDNF 
expression, and promoting synaptic structure via the CBS/H2S pathway.

Keywords: l-cysteine, h2s, cystathionine-β-synthase, subarachnoid hemorrhage, early brain injury

Abbreviations: AOAA, amino-oxyacetic acid; BDNF, brain-derived neurotrophic factor; CBS, cystathionine-β-synthase; CNS, 
central nervous system; CREB, cAMP response element binding protein; p-CREB, phospho-cAMP response element binding 
protein; DAB, diaminobenzidine; DAPI, 4′,6-diamidino-2-phenylindole dihydrochloride; EBI, early brain injury; H2S, hydro-
gen sulfide; IHC, immunohistochemical staining; NNDPD, N,N-dimethyl-p-phenylenediamine sulfate; SAH, subarachnoid 
hemorrhage; TEM, transmission electron microscopy.
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inTrODUcTiOn

In patients with subarachnoid hemorrhage (SAH), early brain 
injury (EBI) is the primary cause of high mortality and morbidity  
(1). Multiple factors, including cell death, oxidative stress, 
abnormal inflammatory responses, and cerebral vasospasm, are 
involved in the mechanisms underlying EBI after SAH (2). Thus, 
identification of early neuroprotective strategies for potential 
clinical use is urgently needed.

l-Cysteine is a semi-essential amino acid and is important 
for regulating human metabolism (3). The three traditional 
endogenous sources of l-cysteine include absorption from the 
diet, the transsulfuration pathway, and protein degradation. 
Disruption of the extracellular l-cysteine/l-cystine ratio may 
be associated with oxidative stress (4, 5). Kimura et  al. dem-
onstrated that in the central nervous system (CNS), l-cysteine 
may be catalyzed by cystathionine-β-synthase (CBS), which 
is expressed in astrocytes, and may then produce endogenous 
hydrogen sulfide (H2S) (6, 7). Moreover, amino-oxyacetic 
acid (AOAA), a widely used selective CBS inhibitor, has been 
reported to block CBS-mediated H2S production in several 
organs (7, 8).

H2S plays multiple roles in the CNS under both physiological 
and pathological conditions (9). Interestingly, accumulating evi-
dence has suggested that exogenous H2S can function as a power-
ful neuroprotective agent. Kimura and Kimura reported in 2004 
that H2S protected primary rat cortical neurons from oxidative 
stress-induced injury (10). H2S also exerts a number of cyto-
protective anti-apoptotic, antioxidant, and anti-inflammatory  
effects on the CNS (6, 11, 12). Our previous studies showed that 
H2S exhibited neuroprotective potential in an animal model of 
cerebral hypoxia injury (13, 14). Importantly, we observed that 
l-cysteine promoted the proliferation and neuronal differentia-
tion of neural stem cells via the CBS/H2S system in vitro (15). 
Administering AOAA to animal models of cerebral hypoxia 
injury could inhibit H2S generation and induce physiological 
changes in blood pressure regulation or associative learning  
(7, 16).

Only limited information is available about the neuropro-
tective effects of H2S on SAH (17, 18). Furthermore, whether 
l-cysteine can safely exert protective effects on EBI after SAH by 
triggering CBS to produce H2S and the molecular mechanisms 
underlying these effects are still unknown. Thus, the aim of this 
study is to elucidate the potential therapeutic effect of l-cysteine 
on EBI after SAH and determine whether l-cysteine is associated 
with H2S function.

aniMals anD MeThODs

animals
Male Wistar rats (280–350 g) were purchased from the Laboratory 
Animal Center, Shandong University. Upon arrival, the animals 
were housed under standard laboratory conditions (temperature 
20 ± 2°C, 12 h:12 h light/dark cycle, lights on at 0800 h), provided 
free access to food and water and allowed to habituate to their 
new environment for 1 week.

sah Model
Experimental SAH was induced in the rats using double blood 
injection according to our previous study (18). Briefly, esthesia 
was induced under 3.5% isoflurane and changed to continuous 
narcosis with 2.5% isoflurane during surgery. A catheter was 
inserted into the femoral artery under sterile conditions to with-
draw blood and measure blood pressure. Two hundred microliters 
of autologous blood was withdrawn from the femoral artery and 
injected into the cisterna magna over a 3-min period.

experimental Design
A total of 134 surgeries were conducted. The rats were ran-
domly assigned to the following five groups: Sham (n  =  22), 
Sham + l-cysteine (n = 22), SAH (n = 30), SAH + l-cysteine 
(n = 30), and SAH + l-cysteine + AOAA (n = 30). At 48 h after 
SAH, these rats were euthanized, and the prefrontal cortex (PFC) 
tissues were removed and prepared for analysis. The individual 
group mortality within 48 h after surgery was as follows: Sham 
0% (0/22), Sham  +  l-cysteine 0% (0/22), SAH 23.3% (7/30), 
SAH + l-cysteine 10% (3/30), and SAH + l-cysteine + AOAA 
16.7% (5/30).

Drug administration
l-Cysteine (Sigma-Aldrich) was dissolved in vehicle (PBS) at a 
working concentration of 100 mM as determined by our previous 
research (15), and 30 µL of the l-cysteine solution was intracer-
ebroventricularly administered 30 min after SAH. AOAA (Sigma-
Aldrich) was dissolved in vehicle (PBS), and a 5 mg/kg dose was 
intraperitoneally administered with l-cysteine.

cBs activity assay and Measurement  
of h2s Production
The CBS activity of brain tissue was detected by a CBS assay kit 
(Genmed Scientifics Inc., China). This assay indirectly measures 
CBS activity by detecting CBS metabolites that interact with 
NADPH. Absorbance was measured at 340 nm using a micro-
plate reader (Spectra Max 190, Molecular Devices, Sunnyvale, 
CA, USA).

To quantify H2S, we used the traditional methylene blue 
method. Briefly, the PFC tissue was homogenized and incubated 
with zinc acetate, which generates zinc sulfide that subsequently 
reacts with N,N-dimethyl-p-phenylenediamine sulfate (NNDPD). 
The absorbance value was determined at 670  nm, and the H2S 
level was calculated against an NaHS calibration curve.

neurological scores
At 48 h after SAH, neurological function was evaluated by two 
“blinded” investigators using a modified Garcia scoring system 
(19, 20). This system comprises the following seven subtests: 
spontaneous activity (0–3 points), reaction to side stroking 
(1–3 points) and to vibrissae touch (1–3 points), limb symmetry 
(0–3 points), forelimb outstretching (0–3 points), and climbing 
(0–3 points) and beam walking (0–4 points) abilities. The total 
score of these subtests reflected neurological function. High 
Garcia scores indicated better neurological function, and low 
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TaBle 1 | Pcr primers used in this study.

gene Forward (5′→3′) reverse (5′→3′)

Bax GGT TGC CCT CTT CTA CTT TGC TCT TCC AGA TGG TGA GCG AG
Bcl-2 GGA TGA CTT CTC TCG TCG CTA C TGA CAT CTC CCT GTT GAC GCT
Brain-derived neurotrophic factor AGC TGA GCG TGT GTG ACA GT ACC CAT GGG ATT ACA CTT GG
Synaptophysin CAAGAAATACCGCTACCAAGATG CCCTCTGTTCCATTCACCTG
PSD95 ATGGCACGTAATGGAGACTAC TCTTGTGTAGTCGAACCATCTG
β-actin CTA TTG GCA ACG AGC GGT TCC CAG CAC TGT GTT GGC ATA GAG G
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scores indicated worse function, with the worst performances 
receiving 2 points (21).

Brain Water content
Brain edema was determined according to the wet/dry method, 
where% brain water content  =  [(wet weight − dry weight)/ 
wet weight]  ×  100%. Briefly, each brain sample (both cerebral 
hemispheres) was removed from the skull and weighed immedi-
ately. Then, the sample was dried at 100°C for 48 h and weighed 
to determine the dry weight.

hematoxylin and eosin staining
Animals were perfused under deep anesthesia with 10% chloral 
hydrate followed by 4% paraformaldehyde. The brains were then 
removed and post-fixed in formalin. After fixation and dehydra-
tion in an ethanol gradient, the brain tissue was embedded in 
paraffin and sliced into 4-μm thick coronal sections using a sec-
tion cutter (Leica, Germany). The sections (3 sections/rat) were 
stained with hematoxylin and eosin (H&E). In addition, four rats 
in each group were prepared for H&E staining. The morphology 
of the PFC (the cerebral cortex that covers the anterior portion 
of the frontal lobe) was observed under a light microscope 
(Olympus Corporation, Japan).

Transferase dUTP nick end labeling 
(TUnel) staining
Four samples from each group were prepared for terminal 
deoxynucleotidyl TUNEL staining. Apoptosis was detected using 
a TUNEL kit according to the manufacturer’s protocol (DeadEnd 
Fluorometric kit, Promega, WI, USA). Slides were then counter-
stained with 4′,6-diamidino-2-phenylindole (DAPI), washed, 
coverslipped with a water-based mounting medium, and sealed 
with nail polish. Three microscope fields (20×) containing 
TUNEL-positive cells in the cortex were selected and imaged. 
The number of TUNEL/DAPI-positive cells was calculated as the 
mean of the numbers obtained from six images per rat. Counting 
was performed in a blinded manner.

immunofluorescence imaging
Slides (n = 4 samples per group) were fixed in 4% paraformalde-
hyde for 20 min and blocked with 10% goat serum in PBS. The 
slides were subsequently incubated overnight in a humidified 
chamber at 4°C with the following primary antibodies: NeuN 
(1:100, Abcam, Cambridge, MA, USA) and cleaved caspase-3 
(1:100, Cell Signaling Tech., MA, USA). After primary antibody 

incubation, the samples were washed and incubated with an 
appropriate fluorescent-conjugated secondary antibody (1:500 
dilution, Sigma-Aldrich) for 1  h. Images were captured using 
a Nikon TE2000U microscope. Three microscope fields (20×) 
containing cleaved caspase-3/NeuN double-positive cells in the 
cortex were chosen and imaged. The number of active caspase- 
3/NeuN double-positive cells was calculated as the mean of the 
numbers obtained from six images per rat. Counting was per-
formed in a blinded manner.

immunohistochemistry
The sections were deparaffinized using a standard procedure and 
washed with PBS as described previously. Briefly, after blocking 
for 30  min at room temperature, the sections were incubated 
with the following primary antibodies: CBS (1:200, Santa Cruz 
Biotechnology, Santa Cruz, CA, USA) at 4°C overnight. After 
primary antibody incubation, the samples were washed and 
incubated with secondary antibodies for 2 h at room temperature. 
The sections were washed and then incubated with an avidin–
biotinylated enzyme complex for 1 h at room temperature. The 
sections were visualized with diaminobenzidine. Nuclei were 
counterstained with hematoxylin. Finally, the sections were dehy-
drated in an alcohol gradient and cleared with xylene. Images 
were captured using a Nikon TE2000U microscope.

sample Preparation for Transmission 
electron Microscopy (TeM)
For TEM, we sacrificed three rats per group. PFC specimens, with 
an approximate volume of 1 mm3, were dissected quickly on ice 
and fixed in 2.5% glutaraldehyde for 2 h at 4°C. Following several 
washes in PBS, the specimens were fixed in 1% osmium tetroxide 
for 2 h and then dehydrated in a graded ethanol series. The tissues 
were subsequently infiltrated with 50/50 propylene oxide over-
night and embedded. The tissues were prepared for sectioning 
on an Ultramicrotome (EM UC 7, Leica, Germany) and cut into 
50-nm thick sections. After being stained with uranyl acetate, the 
sections were examined under a Hitachi H-7500 TEM.

reverse Transcription Polymerase chain 
reaction (rT-Pcr)
Total RNA was extracted from the PFC using a TRIzol reagent 
(Gibco, Invitrogen) according to the manufacturer’s instructions. 
The RNA concentration was determined using a spectropho-
tometer (Bio-Rad Labs) at 260  nm. Identical amounts of RNA 
(2 µg) were reverse transcribed into cDNA using a commercial 
RT-PCR kit (Fermentas, Vilnius, Lithuania) according to the 
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FigUre 1 | effects of l-cysteine on endogenous cystathionine-β-synthase (cBs) activity. (a) The expression of CBS in cells (red arrows indicated) was 
determined by immunohistochemistry at 48 h after subarachnoid hemorrhage (SAH). Scale bar = 50 μm (n = 4). (B) CBS was quantified by reverse transcription 
polymerase chain reaction and Western blotting at 48 h after SAH. Each value was normalized to β-actin. The bar graphs showing the quantification of mRNA and 
protein levels of CBS were generated by Image-Pro Plus 6.0 (n = 4). (c) CBS activity was assessed at 48 h after SAH (n = 6). (D) Production of endogenous H2S 
was evaluated by the methylene blue method at 48 h after SAH (n = 8). The values represent the means ± SD. *p < 0.05, **p < 0.01, ***p < 0.001 SAH vs Sham, 
#p < 0.05, ##p < 0.05, ###p < 0.001 SAH + l-Cys vs SAH, +p < 0.05, ++p < 0.01, +++p < 0.001 SAH + l-Cys + AOAA vs SAH + l-Cys. AOAA, amino-oxyacetic acid.
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manufacturer’s instructions. Then, the cDNA was subsequently 
amplified by PCR with specific primers (Table  1). The PCR 
products, which were separated on a 1.2% agarose/TAE gel, were 
visualized by staining with ethidium bromide. The densitometric 
values were normalized to those of β-actin. Band intensity was 
determined using Image-Pro Plus 6.0 software.

Western Blot analysis
Protein concentration in the PFC was determined using a 
BCA protein assay kit (Pierce Biotechnology, Inc.). A quantity 
of 30–50  µg of total proteins was loaded onto a 4–20% gradi-
ent polyacrylamide gel, electrophoretically transferred to a 
polyvinylidene difluoride membrane and probed with the 

following primary antibodies: Bax antibody (1:1,000, Santa Cruz  
Biotechnology, CA, USA), Bcl-2 antibody (1:1,000, Santa Cruz 
Biotechnology), cleaved caspase-3 (1:500, Cell Signaling Tech. 
MA, USA), caspase-3 (1:1,000, Cell Signaling), phospho-cAMP 
response element binding protein (p-CREB) (1:1,000, Cell 
Signaling Tech., MA, USA), CREB (1:1,000, Cell Signaling Tech., 
MA, USA), and brain-derived neurotrophic factor (BDNF) 
(1:1,000, Santa Cruz Biotechnology). β-actin (1:2,000; Sigma-
Aldrich) was used as an internal control. The secondary antibody 
was horseradish peroxidase conjugated to goat/mouse anti-rabbit 
IgG (1:8,000, Sigma-Aldrich). The membranes were developed 
using an enhanced chemiluminescence detection system (Pierce, 
Rockford, IL, USA).
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FigUre 2 | l-cysteine ameliorated subarachnoid hemorrhage (sah)-induced brain injury. (a) Neurological scores were recorded at 48 h after SAH (n = 6). 
(B) Brain water content of the cerebral cortex was measured at 48 h after SAH (n = 6). (c) H&E staining was performed on brain tissues at 48 h after SAH. 
Pathological changes included focal edema in the prefrontal cortex (black arrows indicated) (n = 4). Scale bar = 100 μm. The values represent the mean ± SD. 
**p < 0.01, ***p < 0.001 SAH vs Sham, #p < 0.05, ##p < 0.01 SAH + l-Cys vs SAH, +p < 0.05 SAH + l-Cys + AOAA vs SAH + l-Cys. AOAA, amino-oxyacetic acid.
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statistical analysis
SPSS 22.0 was used for statistical analysis. The neurological scores 
were analyzed by Kruskal–Wallis one-way analysis of variance 
(ANOVA) on ranks followed by Dunn’s post hoc test. Other data 
are presented as the mean ± SD; these data were analyzed by one-
way ANOVA followed by Tukey’s post hoc analysis. Differences 
were considered significant at p < 0.05.

resUlTs

The effect of l-cysteine on cBs activity 
and h2s Production in sah-insulted Brain 
Tissue
Cystathionine-β-synthase has been reported to mainly localize 
to astrocytes in the CNS and catalyze l-cysteine to produce 
endogenous H2S (22, 23). Here, we investigated SAH-induced 
changes in CBS expression and CBS activity in response to 
l-cysteine treatment at 48  h after SAH. In agreement with 
previous findings, our immunohistochemical analysis revealed 
numerous CBS-positive cells in the PFC tissue of the Sham and 
Sham + l-cysteine groups, whereas CBS-positive cells were very 
rare in the SAH group (Figure  1A). Surprisingly, l-cysteine 

treatment significantly upregulated CBS expression in the SAH 
group (Figure  1A). Moreover, CBS expression in the PFC was 
evaluated at 48 h after SAH by Western blot and RT-PCR, and 
the results revealed that l-cysteine also increased the protein and 
mRNA expression levels of CBS (Figure 1B).

We further assessed CBS activity, which affects l-cysteine. Both 
the Sham +  l-cysteine and SAH +  l-cysteine groups exhibited 
dramatic upregulation of CBS activity, whereas the SAH group 
showed low CBS activity (Figure  1C). Next, we measured H2S  
production in the PFC of the different groups because H2S produc-
tion is an indirect measure of CBS activity (24). The l-cysteine-
treated groups (Sham  +  l-cysteine and SAH  +  l-cysteine) 
produced more H2S than the Sham or SAH groups. Exposure to 
SAH slightly decreased H2S levels in the PFC, but the levels in 
the SAH group were not significantly different from those in the 
Sham group (Figure 1D). Co-treatment with AOAA suppressed 
the effects of l-cysteine on SAH.

administration of l-cysteine reduced 
Brain edema and improved neurological 
Behavior at 48 h after sah
Compared to the Sham group, the SAH groups had significantly 
lower neurological scores at 48  h (Figure  2A). l-Cysteine 
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FigUre 3 | l-cysteine attenuates subarachnoid hemorrhage (sah)-induced apoptosis. (a) The detection of transferase dUTP nick end labeling (TUNEL)-
positive cells in the prefrontal cortex was performed at 48 h after SAH. Scale bar = 50 μm. (B) Bar graphs showing the quantification of TUNEL-positive cells (n = 4). 
Scale bar = 50 μm. The values represent the means ± SD. ***p < 0.001 SAH vs Sham, ###p < 0.001 SAH + l-Cys vs SAH, ++p < 0.01 SAH + l-Cys + AOAA vs 
SAH + l-Cys. AOAA, amino-oxyacetic acid.
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treatment improved neurological scores, but this treatment effect 
was reversed by AOAA (Figure 2A).

Brain edema (including both cerebral hemispheres) was 
evaluated immediately after the neurological assessment. The 
SAH-injured brain tissue had a significantly higher water content 
than that of the Sham and Sham + l-cysteine brain tissue. Post-
SAH injection of l-cysteine reduced brain water content, but this 
outcome was reversed by AOAA administration (Figure 2B).

In the Sham and Sham  +  l-cysteine groups, the brain tis-
sues had organized structural layers and cortical neurons with 
well-defined borders. However, in the SAH group, the cells were 
arranged sparsely, and the cell outline was fuzzy. Moreover, in the 
SAH group, we identified substantial edema in the PFC, which 
was pale in appearance, and shrunken neurons. l-Cysteine treat-
ment ameliorated the edema and morphological damage induced 
by SAH (Figure 2C).

Additionally, a 5 mg/kg dose of AOAA did not induce further 
neuronal damage post-SAH (see Figure S1 in Supplementary 
Material).

l-cysteine attenuated sah-induced Brain 
injury by reducing neuronal apoptosis
In the PFC of rats in the Sham and Sham + l-cysteine groups, 
TUNEL-positive cells were rarely detected, while in the SAH 
group, many TUNEL-positive cells were identified. The apoptosis 
in response to SAH was significantly ameliorated by treatment 
with l-cysteine, but this effect was inhibited by AOAA adminis-
tration (Figure 3).

l-cysteine inhibited sah-induced 
caspase-3 activation
We used cleaved caspase-3/NeuN double staining to evaluate 
how l-cysteine treatment inhibited apoptosis after SAH. Few 
cleaved caspase-3-positive cells were detected in the Sham 
and Sham  +  l-cysteine groups, whereas numerous cleaved 
caspase-3/NeuN double-stained cells were seen in the SAH 
group (Figures 4A,B). l-Cysteine dramatically reduced cleaved 
caspase-3 expression levels, but this effect was blocked by AOAA. 
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FigUre 4 | The effect of l-cysteine on caspase-3 activation in subarachnoid hemorrhage (sah). (a) Immunofluorescence staining revealed the 
colocalization of cleaved caspase-3 and NeuN in the prefrontal cortex at 48 h after SAH. Scale bar = 50 μm. (B) The bar graphs showing the quantification of 
cleaved caspase-3/NeuN-positive cells (n = 4). (c) The expression of cleaved caspase-3 was assessed using Western blot analysis. (D) Bar graphs showing the 
quantification of the protein levels of cleaved caspase-3 and caspase-3 were generated by Image-Pro Plus 6.0. The results are expressed as the cleaved 
caspase-3/caspase-3 ratio (n = 3). The values represent the mean ± SD. *p < 0.05, ***p < 0.001 SAH vs Sham, #p < 0.05, ###p < 0.001 SAH + l-Cys vs SAH, 
+p < 0.05, +++p < 0.001 SAH + l-Cys + AOAA vs SAH + l-Cys. AOAA, amino-oxyacetic acid.
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The effect of l-cysteine on SAH-induced caspase-3 activation was 
confirmed by Western blot (Figures 4C,D).

l-cysteine restored Bcl-2 and Bax 
expression levels after sah
Because Bcl-2 and Bax are key regulators of the mitochondrial 
apoptosis pathway in cells, we evaluated the expression levels of 
Bcl-2 and Bax at both the mRNA and protein levels. As shown 
in Figure  5, SAH markedly increased the Bax/Bcl-2 ratio at 
the mRNA and protein levels at 48  h after injury. However, 
the increased Bax/Bcl-2 ratio was reduced by treatment with 
l-cysteine. The effect of l-cysteine on the SAH-induced elevation 
in the Bax/Bcl-2 ratio was reversed by AOAA (Figures 5A,B).

l-cysteine increased the expression of 
BDnF Following sah-induced injury
To determine whether l-cysteine can affect production of 
neuroprotective factors, the BDNF concentration of the PFC 
was measured at 48 h after SAH. As shown in Figure 6A, the 
BDNF mRNA expression level was significantly lower at 48 h 
in the SAH group than that in the Sham group. l-Cysteine 
significantly increased the expression level of BDNF mRNA 
in the PFC 48 h post-SAH exposure (Figure 6A). Consistent 
with the changes in the mRNA, the SAH-induced decrease 
in the BDNF protein levels was also reversed by l-cysteine 
treatment, but the effect of l-cysteine was reversed by AOAA 
(Figure 6B).
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FigUre 5 | effects of l-cysteine on Bax and Bcl-2 at the mrna and protein levels. (a) The relative expression levels of Bax and Bcl-2 mRNA in the 
prefrontal cortex (PFC) were analyzed by semi-quantitative reverse transcription polymerase chain reaction. The densities of the protein bands were analyzed and 
normalized to β-actin (n = 3). (B) Representative Western blots showing the levels of Bax and Bcl-2 in the PFC and bar graphs showing the quantification of the 
protein levels of Bax and Bcl-2 (n = 3). The mRNA and protein levels were obtained from three independent experiments. The values represent the means ± SD. 
**p < 0.01, ***p < 0.001 subarachnoid hemorrhage (SAH) vs Sham, #p < 0.05, ###p < 0.001 SAH + l-Cys vs SAH, +p < 0.05, ++p < 0.01 SAH + l-Cys + AOAA vs 
SAH + l-Cys. AOAA, amino-oxyacetic acid.

FigUre 6 | The effect of l-cysteine on brain-derived neurotrophic factor (BDnF) expression levels at the mrna and protein levels. (a) The BDNF 
expression levels at the mRNA level in the prefrontal cortex was assessed by semi-quantitative reverse transcription polymerase chain reaction at 48 h after 
subarachnoid hemorrhage (SAH). Each value was normalized to β-actin. Bar graphs showing the quantification of the BDNF mRNA levels were generated by 
Image-Pro Plus 6.0 (n = 4). (B) The BDNF protein expression level was analyzed by Western blotting at 48 h after SAH, and β-actin was used to evaluate protein 
loading. The bar graphs showing the quantification of the protein levels of BDNF were generated by Image-Pro Plus 6.0 (n = 3). The values represent the 
mean ± SD. *p < 0.05, ***p < 0.001 SAH vs Sham, #p < 0.05, ###p < 0.001 SAH + l-Cys vs SAH, +p < 0.05, ++p < 0.01 SAH + l-Cys + AOAA vs SAH + l-Cys. 
AOAA, amino-oxyacetic acid.
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administration of l-cysteine improves 
creB phosphorylation In Vivo
Phosphorylated CREB regulates the transcription of several 
genes that code for molecules involved in neuronal plasticity, 

including BDNF, tyrosine hydroxylase, and neural cell adhe-
sion molecule; these molecules are associated with the stress 
response. Thus, we examined the CREB phosphorylation levels 
after SAH and l-cysteine treatment. As shown in Figure  7, 
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FigUre 7 | effects of l-cysteine on creB phosphorylation after 
subarachnoid hemorrhage (sah). At 48 h after SAH, whole prefrontal 
cortex extracts were subjected to Western blot analysis using antibodies 
against phospho-cAMP response element binding protein (p-CREB) and 
CREB. Bar graphs showing the quantification of the expression levels of 
p-CREB/CREB were generated by Image-Pro Plus 6.0 (n = 3). The values 
represent the means ± SD. ***p < 0.001 SAH vs Sham, ###p < 0.001 
SAH + l-Cys vs SAH, ++p < 0.001 SAH + l-Cys + AOAA vs SAH + l-Cys. 
AOAA, amino-oxyacetic acid.

phosphorylated CREB expression significantly decreased at 
48 h after SAH compared to that in the Sham group. Treatment 
with l-cysteine significantly increased the expression level of 
phosphorylated CREB in the PFC at 48 h post-SAH exposure. 
Additionally, the effect of l-cysteine on the SAH-induced CREB 
phosphorylation levels was reversed by AOAA.

effects of l-cysteine on synaptic 
structure and expression of 
synaptophysin and PsD95 after sah
Neuronal damage, including synapse collapse, occurs after SAH; 
therefore, we investigated the morphological changes in the 
synapses of the PFC using TEM. Compared with the Sham and 
Sham + l-cysteine groups (Figure 8), the SAH group exhibited 
vague structural changes in the synapses, which included swollen 
borders and dark staining that indicated degeneration. In addi-
tion, the number of normal synapses decreased in the SAH group. 
l-cysteine treatment dramatically ameliorated the synaptic dam-
age and upregulated the number of synapses in the SAH group, 
whereas the effects of l-cysteine were abrogated by AOAA.

Next, we measured the level of the presynaptic marker synap-
tophysin and the postsynaptic marker PSD95. Synaptophysin was 
significantly decreased at both the mRNA and protein levels in 
the SAH group. Treatment with l-cysteine significantly increased 
the expression of synaptophysin in the PFC at 48  h post-SAH 
exposure. However, compared with the Sham group, the mRNA 
and protein levels of PSD95 were significantly increased at 48 h in 
the SAH group (Figures 9A,B). l-cysteine significantly decreased 
the expression of PSD95 in the PFC at 48 h post-SAH exposure. 

FigUre 8 | effects of l-cysteine treatment on synaptic changes in the prefrontal cortex (PFc). Representative transmission electron microscopy images  
of the PFC from each group. The arrows indicate regular synaptic structures. The stars denote collapsed synapses. Scale bar = 500 nm.
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AOAA reversed the effects of l-cysteine on the synaptophysin 
and PSD95 expression levels.

DiscUssiOn

In the current research, we demonstrated that l-cysteine could 
enhance H2S levels in the brain via an interaction with CBS; 
additionally, l-cysteine played a neuroprotective role in SAH by 
ameliorating cerebral edema and neuronal apoptosis. Moreover, 
l-cysteine sensitized the CREB–BDNF pathway and upregulated 
the expression of proteins related to synaptic plasticity. The 
positive effects initiated by l-cysteine were significantly abrogated 
when the CBS antagonist AOAA was administered.

Cystathionine-β-synthase is a pyridoxal-5′-phosphate-
dependent enzyme that catalyzes β-replacement in which the 
β-position of the substrate is substituted by a nucleophile YH 
(25) and transforms substrates to 2-mercaptoethanol and H2S 
(26, 27). A close association between mutations in several regions  
of the human CBS gene and mental disorders and vascular diseases  
has been identified (28). In the rat brain, CBS was more highly 
expressed than cystathionine γ lyase and was mainly responsible 
for H2S generation (7). l-cysteine, an amino acid containing the 
electronegative substituent -SH, is the preferred substrate for H2S, 
which accounts for 70% of H2S production (29). Li et al. dem-
onstrated that l-cysteine administration upregulated the produc-
tion of H2S, whereas AOAA markedly attenuated the effects of 
l-cysteine in a dose-dependent manner (30). In Kmamt’s study, 
administration of NaHS, a, H2S donor, reversed the decreased 
expression of CBS, an H2S-metabolizing enzyme (31). In our 

study, l-cysteine was first administered to the animals via intrac-
erebroventricular injection at 30  min post-SAH and increased 
CBS activity and expression in the PFC, which is consistent with 
the H2S production levels. We suggest that l-cysteine provokes a 
potential feedback loop to increase CBS activity in response to 
SAH and increase H2S production to exert neuroprotective effects.

Cell apoptosis is a major characteristic of EBI, and the 
mitochondrial pathway may also be involved (32). Additionally, 
exogenous H2S was recently shown to protect against global and 
focal cerebral ischemia/reperfusion injury (33, 34). However, 
whether H2S can preserve neurons through l-cysteine metabo-
lism after SAH remains unknown. In our study, we observed 
numerous TUNEL-positive cells in the CNS of the SAH group, 
which is consistent with Chen’s report (35). l-cysteine admin-
istration can reduce the number of apoptotic cells induced by 
SAH. Meanwhile, we further investigated the Bax/Bcl-2 ratio. The 
Bcl-2 family member Bax was markedly upregulated after SAH, 
which resulted in the release of cytochrome c to the cytosol (32). 
We found that the SAH-induced upregulation of the Bax/Bcl-2 
ratio could be reversed by l-cysteine administration. Moreover, 
we analyzed the activation of caspase-3; cytochrome c release 
triggers the cleavage of the caspase-3 protein, which results in 
DNA fragmentation and apoptosis (36). Inhibition of cleaved 
caspase-3 could reduce neuronal loss in SAH models (37). Our 
data revealed that treatment with l-cysteine prevented the SAH-
induced increase in cleaved caspase-3 in the PFC. Our findings 
suggest that l-cysteine could protect neurons from apoptosis after 
SAH. However, when AOAA was administered with l-cysteine, 
all the beneficial effects on apoptosis were abolished. Thus, we 

FigUre 9 | effects of l-cysteine treatment on synaptophysin and PsD95 expression levels in the prefrontal cortex (PFc). (a) The mRNA levels of 
synaptophysin and PSD95 were measured by semi-quantitative reverse transcription polymerase chain reaction. Each value was normalized to β-actin. Bar graphs 
showing the quantification of the mRNA levels of synaptophysin and PSD95 were generated by Image-Pro Plus 6.0 (n = 3). (B) At 48 h after subarachnoid 
hemorrhage (SAH), whole PFC extracts were subjected to Western blot analysis using antibodies against synaptophysin and PSD95. The bar graphs showing the 
quantification of the mRNA levels of synaptophysin and PSD95 were generated by Image-Pro Plus 6.0 (n = 3). The values represent the mean ± SD of three 
independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 SAH vs Sham, #p < 0.05, ##p < 0.01 SAH + l-Cys vs SAH, +p < 0.05 SAH + l-Cys + AOAA vs 
SAH + l-Cys. AOAA, amino-oxyacetic acid.
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hypothesize that the neuroprotective effects of l-cysteine on SAH 
may be due to an increase in endogenous H2S.

Brain-derived neurotrophic factor is a growth factor and 
supports neuronal survival, plasticity and neurogenesis (38, 39). 
Moreover, BDNF is involved in the pathophysiology of SAH. For 
example, clinical evidence has shown that a BDNF polymorphism 
is associated with poor patient recovery from SAH (40, 41). Animal 
experiments have demonstrated that exogenous BDNF infusion or 
upregulation of its expression improves neurobehavioral outcomes 
after SAH (42, 43). Regarding the underlying mechanisms of the 
neuroprotective effect of BDNF on neuronal apoptosis, some stud-
ies have shown that these effects are dependent on the activation of 
the PI3K/Akt and/or ERK signaling cascade, which subsequently 
activates CREB phosphorylation and promotes neuronal survival 
(44, 45). Previous studies have reported that H2S promotes BDNF 
expression, and blocking the BDNF-TrkB pathway reverses the 
H2S-mediated neuroprotection against apoptosis and oxidative 
stress in neurons (46, 47). Moreover, H2S can activate the CREB 
signaling pathway and prevent ischemia-reperfusion injury in the 
brain (48). In our study, the expression levels of p-CREB and BDNF 
increased after l-cysteine administration, which suggests that H2S 
could activate the CREB signaling pathway and increase the expres-
sion of its downstream pro-survival gene, BDNF. Importantly, these 
findings raise the possibility that H2S exerts anti-apoptotic effects 
via upregulation of p-CREB and BDNF in the PFC. Considering 
that AOAA blocks CBS, an l-cysteine catalyst, and reduces H2S 
production, we hypothesize that l-cysteine simulates CREB–BDNF 
expression in the CNS via inducing H2S during SAH.

Recently, Shen et al. reported that neuronal damage, includ-
ing synapse collapse, occurs after SAH (49). Synapses are 
critical structural units for transmitting information in the brain. 
Accumulating evidence has demonstrated that changes in syn-
apse density are highly correlated with cognitive status (50, 51).  
Synaptophysin and PSD95 are reliable markers to indirectly 
evaluate the integrality and function of the synapses (52, 53). 
Synaptophysin is a marker of the presynaptic nerve terminal 
density, which is essential for vesicle fusion and the release of 
neurotransmitter (54). The decrease in synaptophysin in CNS 
diseases indicates a reduction in synaptic plasticity (55). PSD95 
is a scaffold protein that anchors and organizes NMDA receptors 
and controls the number and size of dendritic spines (56). We 
demonstrated that injection of l-cysteine after SAH significantly 
attenuates synaptic damage by ameliorating structural degen-
eration and upregulating the number of healthy synapses. At the 
mRNA and protein levels, a decrease in synaptophysin occurs in 
SAH, and synaptophysin levels are improved by l-cysteine admin-
istration, which indicates the potential role of H2S in stimulating 
changes in synaptophysin levels. To our surprise, we observed 
that PSD95 was upregulated after SAH; in contrast, previous 
studies have shown that PSD95 expression is decreased in diverse 
brain diseases (57, 58). We additionally showed that l-cysteine 
could suppress PSD95 expression. We postulate that interactions 
between PSD95 and the NMDA receptor are increased after 
SAH, which leads to neuronal injury. However, AOAA did not 
block the effect of l-cysteine on PSD95 expression in SAH. The 
improvement induced by l-cysteine may not be achieved through 
the regulation of PSD95 by H2S as we expected.

There are several limitations to our study. First, we used AOAA 
to block CBS activity and l-cysteine function, but the CNS contains 
other enzymes that can produce H2S, such as 3-mercaptopyruvate 
sulfurtransferase, which need to be investigated in future studies 
(6). Second, although apoptosis is a major contributor to EBI, 
other factors, including cerebral vasospasm, inflammation and 
oxidative stress, may also be responsible for the development of 
EBI in SAH (2, 59). Determining whether l-cysteine has a benefi-
cial effect on these factors and exploring the potential underlying 
mechanism of its effects will require further study. Third, how 
l-cysteine regulates the expression of synaptophysin and PSD95 
and how these factors affect neurological function were not deter-
mined (31, 60). Finally, the route, timing and dosage of l-cysteine 
treatment need to be further elucidated.

In summary, l-cysteine treatment could alleviate the develop-
ment of EBI induced by SAH through multiple mechanisms, 
including reducing cell apoptosis, upregulating BDNF–CREB 
expression, and improving synapse density, by activating the 
CBS/H2S system.
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