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Previous studies have shown that temporal lobe epilepsy (TLE) involves abnormal 
structural or functional connectivity in specific brain areas. However, limited compre-
hensive studies have been conducted on TLE associated changes in the topological 
organization of structural and functional networks. Additionally, epilepsy is associated 
with impairment in alertness, a fundamental component of attention. In this study, 
structural networks were constructed using diffusion tensor imaging tractography, and 
functional networks were obtained from resting-state functional MRI temporal series 
correlations in 20 right temporal lobe epilepsy (rTLE) patients and 19 healthy controls. 
Global network properties were computed by graph theoretical analysis, and correla-
tions were assessed between global network properties and alertness. The results 
from these analyses showed that rTLE patients exhibit abnormal small-world attributes 
in structural and functional networks. Structural networks shifted toward more regu-
lar attributes, but functional networks trended toward more random attributes. After 
controlling for the influence of the disease duration, negative correlations were found 
between alertness, small-worldness, and the cluster coefficient. However, alertness 
did not correlate with either the characteristic path length or global efficiency in rTLE 
patients. Our findings show that disruptions of the topological construction of brain 
structural and functional networks as well as small-world property bias are associated 
with deficits in alertness in rTLE patients. These data suggest that reorganization of 
brain networks develops as a mechanism to compensate for altered structural and 
functional brain function during disease progression.

Keywords: temporal lobe epilepsy, alertness, structural network, functional network, graph theory analysis

inTrODUcTiOn

Recently, complex networks theory has been widely used to investigate the structure and func-
tion of the human brain. The dynamics and architecture of brain complex networks change in a 
particular pathophysiological status. Further, changes in brain complex networks probably cause 
brain dysfunction. A complex network that is described mathematically by graph theory, such as 
a brain network based on neuroimaging or electroneuro-physiology data, has the capability to 
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provide valuable insights into not only the architecture of the 
whole-brain networks (1) but also their potential relation with 
decline in cognitive comorbidity (2).

Temporal lobe epilepsy (TLE) is the most common type of 
focal epilepsy in adults. From the viewpoint of the generation and 
propagation mechanisms of seizures, TLE could be considered a 
“network disease” (3). TLE is mainly associated with hippocam-
pal sclerosis and other temporal lobe lesions, such as isolated 
amygdala abnormalities (4). However, evidence from diffusion 
tensor imaging (DTI) studies has shown that white matter 
microstructure damage often extends beyond epileptic lesions, 
such that the distal part of nerve fiber bundles is also affected 
(5, 6). Moreover, functional connectivity (FC) abnormalities in 
epileptogenic networks have been observed in fMRI and elec-
trophysiological studies (7, 8). Therefore, focal seizures originate 
in the abnormal epileptic network rather than from localized 
lesions (9) and spread through nerve bundles to distal regions of 
the whole brain, resulting in injuries to extra-temporal lobe areas 
(2) These injuries were found to be associated with TLE patients’ 
brain dysfunction (5, 6).

Although some TLE patients have normal intelligence, some 
patients exhibit domain-specific cognitive impairment, such 
as naming difficulty, memory loss, and executive dysfunction, 
among other impairments. These domain-specific cognitive defi-
cits have been attributed to damage to the structure or function 
of the temporal lobe or to the development of abnormal epileptic 
networks within or external to the temporal lobe (3, 5). Although 
lesions outside the temporal lobe may not be detectable under 
a 3.0-T structural Magnetic Resonance Imaging scan, patients’ 
cognitive decline or psycho-behavioral abnormalities can usually 
be detected (10, 11). Lately, these types of brain dysfunctions 
have often been studied and explained by using graph theoretical 
analysis of complex networks.

Alertness in brain function is characterized as having a high 
sensitivity to an incoming stimulus and maintaining this state of 
a high-sensitivity level to respond in time. It is a prerequisite for 
more complex and capacity-demanding components of atten-
tion, such as selectivity, which is a fundamental component of 
attention (12). Attention deficit is a common symptom in patients 
with mesial temporal lobe epilepsy (13). Obviously, considering 
that attention is one of the core functions of cognition (14), it is 
important to study alertness. According to Posner, the alertness 
network may depend on the right frontal and parietal lobes as 
well as the locus coeruleus (12). In line with Posner’s model, neu-
roimaging studies have found that the alerting network involves 
the right frontal and posterior parietal areas and is probably 
modulated by the norepinephrine system (15, 16). Many clini-
cal studies have investigated patients with right parietal lesions 
who have difficulty in maintaining a state of attention and use 
warning signals to improve performance (17). Patients with 
right hemisphere stroke have a particular difficulty in sustaining 
a high level of alertness, although alertness recovers after alert-
ness training (18). These results support the involvement of the 
predominantly right-side fronto-parieto-thalamic network in 
controlling alertness. Additionally, cognitive control of alertness 
relies on a predominantly right hemisphere cortical and subcorti-
cal network (19). Our previous task-based fMRI study indicated 

that activation of alertness-related brain areas, such as the right 
occipital and right frontal lobe, was significantly attenuated in 
right temporal lobe epilepsy (rTLE) patients (20). Extension of 
resting-state functional MRI (rsfMRI) findings in rTLE patients 
demonstrated that decreased FC between the right thalamus, 
anterior cingulate cortex (ACC) (21), and right cuneus (22) was 
correlated with the alertness.

Based on the above hypotheses, clinical observations, and neu-
roimaging studies, we hypothesize that neural circuits in the right 
hemisphere, including the dorsolateral prefrontal cortex, ACC, 
inferior parietal cortex, and thalamus, are involved in TLE (17). 
Therefore, we further hypothesize that some pathophysiological 
alterations occur in the right hemisphere in brain networks of 
TLE patients and that these changes are related to the underlying 
changes of alertness. Studying right TLE patients may be more 
sensitive in its ability to detect a relationship between alertness 
and the organization of brain networks. For this purpose, we 
constructed white matter structural networks by using DTI 
tractography and established functional networks from rsfMRI 
temporal series of rTLE patients and healthy controls. Next, we 
performed comparative calculations to identify group differences 
of topological parameters. Correlation analyses between alertness 
and network organization were performed to detect the underly-
ing relational mechanism.

MaTerials anD MeThODs

subjects
Twenty rTLE patients (10 females, 10 males, age 26.35 ± 5.97) 
were recruited consecutively from Epilepsy Clinic, the First 
Affiliated Hospital of Guangxi Medical University according 
to the diagnostic manual of the International League Against 
Epilepsy classification (23). They were recruited from July 2015 to 
May 2016. All patients underwent standard clinical assessments, 
including a detailed seizure history, neurological examination, 
neuropsychological assessment, standard and video-EEG evalu-
ation, and brain MRI. Particularly, all rTLE patients met at least 
two of the following criteria (24): (1) the typical symptoms of TLE 
indicated that the epileptogenic lesion was located in the tempo-
ral lobe; (2) MRI showed right hippocampus atrophy, sclerosis, 
or other abnormality of the right temporal lobe. All of the images 
were assessed by a neuroradiologist. (3) Electroencephalogram 
(EEG) revealed ictal or interictal discharges in the right temporal 
lobe, as evaluated by an epilepsy specialist. Our patients had taken 
regular antiepileptic drugs (AEDs) and had no epileptic seizures 
in the last 3  months. Additionally, to avoid any confounding 
effects on cognition, we excluded patients with a Mini-Mental 
State Examination (MMSE) score <24 as well as any history of 
neurological or psychiatric disorder other than TLE, traumatic 
brain injury, or other serious disease.

The control group consisted of 19 age-, gender-, and mean 
educational years-matched healthy volunteers (9 females, 10 
males, age 26.47 ± 3.78). All had no history of neurological or 
psychiatric disorders. This research was approved by the Ethics 
Committee of the First Affiliated Hospital of Guangxi Medical 
University. All participants were right handed and provided 
signed informed consent prior to the study.
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Data acquisition
All MR images were performed on a 3-T Achieva MRI scanner 
(Philips, Netherlands) with a 12-channel phased array head coil. A 
3D high-resolution structural image was acquired for each subject 
with a T1-weighted spin-echo sequence (TR/TE = 3,000/10 ms, 
slice thickness  =  5  mm, slice gap  =  1  mm) for spatial brain 
normalization.

Diffusion tensor imaging images were acquired using a single-
shot echo-planar imaging-based sequence with the following 
parameters: TR/TE  =  6,100/93  ms, flip angle  =  90°; FOV  =   
240 mm × 240 mm, slice thickness = 2 mm and no gap, number 
of signals acquired = 4; data matrix = 256 × 256, flip angle = 90°, 
voxel size = 0.94 mm × 0.94 mm × 3 mm; resulting in a total of 
30 volumes with diffusion gradients applied along 30 non-linear 
directions (b  =  1,000  s/mm2) and 1 volume without diffusion 
weighting (b = 0 s/mm2). Each volume consisted of 45 contiguous 
axial slices.

The rsfMRI data were obtained using a gradient-echo echo- 
planar imaging sequence with parameters of: TR/TE = 2,000/30 ms, 
flip angle = 90°, FOV = 220 mm × 220 mm, data matrix = 64 × 64, 
slice thickness = 5 mm, slice gap = 1 mm, and voxel size = 3.4
4 mm × 3.44 mm × 6.00 mm; 31 slices and 180 volumes were 
acquired. All participants were instructed to lie still while resting 
with their eyes open and were forbidden to think of anything in 
particular.

Data Processing
The DTI data were preprocessed using PANDA1 (25) in Matlab 
including the following steps: converting DICOM files into NIfTI 
images, estimating the brain mask, cropping the raw images, cor-
recting for the eddy current effect, correcting for head motions, 
estimating the diffusion tensor models by using the linear least-
squares fitting method on each voxel, tracking whole-brain fiber 
in the native diffusion space via Fiber Assignment by using the 
Continuous Tracking algorithm, and averaging multiple acquisi-
tions and calculating diffusion tensor metrics.

The fMRI data were preprocessed using SPM82 and the 
GRETNA toolbox3 (26). The preprocessing steps included removal  
of volumes, slice timing correction, realignment, spatial nor-
malization, and temporal filtering as follows. The first 10 volumes 
of each subject were removed to ensure magnetization equilib-
rium. The remaining volumes were then executed for slice timing 
correction based on the middle slice and then realigned for head 
motion correction. Two patients were excluded from further cal-
culations due to head motion >2 mm or head rotations <2°. For 
group average and group comparison purposes, the data were spa-
tially normalized to the standard Montreal Neurological Institute 
space and resampled with a resolution of 3 mm × 3 mm × 3 mm. 
Subsequently, signals were typically band-pass (0.01–0.08  Hz) 
filtered to reduce the effects of low-frequency drift and high-
frequency physiological noise (27). Finally, confounding variables, 
including six head motion parameters, averaged global and white 
matter signals, and cerebrospinal fluid regressed out.

1 http://www.nitrc.org/projects/Panda
2 http://www.fil.ion.ucl.ac.uk/spm
3 www.brain-connectivity-toolbox.net/

construction of Brain networks
The nodes of the structural and FC networks were delimited 
according to an automated anatomical labeling (AAL) algorithm 
(AAL) algorithm (28). This algorithm scheme parcellated the 
entire cerebral cortex, except the cerebellum, into 90 anatomical 
regions (AAL-90), which resulted in 90 nodes covering the non-
cerebellar brain and 45 nodes in each hemisphere.

Structural Network Construction
Structural networks were constructed using deterministic 
tractography using the PANDA toolbox. A FA-weighted matrix 
(90 × 90) generated from PANDA was thresholded into different 
levels to create an adjacency matrix. Each matrix represented the 
white matter network of the cerebral cortex, in which each row or 
column represented a brain region of the automated anatomical 
labeling template. For each subject, the FA-weighted matrix was 
used for further graph analyses.

Functional Network Construction
Functional networks were constructed orderly using the GRETNA 
toolbox. A 90 × 90 temporal correlation matrix was assembled 
by computing Pearson’s correlation coefficient between the resid-
ual time series of each pair of the 90 nodes for each participant. 
For each ROI, the mean time series was obtained by averaging 
the fMRI time courses over all regions. The values of the inter-
regional correlation coefficients were taken as the weights of the 
edges. Thus, we constructed a weighted symmetric FC matrix 
for each participant. Because of the multiple, non-independent 
comparisons entailed by thresholding each of inter-regional 
correlations, we built the FC matrix using a FDR 0.05-corrected 
threshold (29). Based on this weighted FC matrix, the topological 
properties of the network were subsequently calculated by graph 
theoretic analyses.

graph analysis
Graph theoretical analyses of the weighted structural and func-
tional networks of rTLE patients and controls were calculated 
with routines from the GRETNA toolbox. The network topo-
logical properties at the global levels were collected, including 
(1) properties that imply network segregation of brain, such as 
the weighted clustering coefficient (γ), local efficiency (Eloc), and 
modularity; (2) properties that indicate network integration of 
the brain, such as the characteristic path length (λ) and global 
efficiency (Eglob). Eglob is defined as the average inverse shortest 
path length; Eloc is defined as the mean of the global efficiencies of 
subgraphs consisting of the immediate neighbors of a particular 
node (30). (3) Small-worldness (σ) which evaluates the balance 
of segregation and integration.

Network topological properties rely on the density of network. 
So the difference of connectivity strength may affect networks 
comparisons. When brain graphs constructed, each graph of 
subjects was thresholded to create an equal number of nodes and 
edges across subjects (31). We operated network parameters over 
a range of threshold values to guarantee high correlation coeffi-
cients of the remaining connections. As in DTI, we used FA as the 
value for threshold. And in fMRI, we used the concept of sparsity 
to analyze the network. The sparsity was defined as a density range 
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TaBle 1 | Demographic characteristics of rTle participants and controls.

characteristics rTle  
(n = 18)

control 
(n = 19)

t/χ2 
value

p-Value

Age (years) 26.35 ± 6.12 26.47 ± 3.78 0.075 0.940a

Gender (male/female) 9/9 9/10 0.027 0.869b

Education (years) 12.3 ± 1.92 12.79 ± 1.36 0.367 0.914a

Handedness (right/left) 18/0 19/0 n.a n.a
Duration of epilepsy 8.68 ± 5.99 – n.a n.a
Mini-Mental State 
Examination

27.6 ± 0.99 27.89 ± 0.74 1.05 0.302a

Age of participants and duration of the epilepsy are shown with mean ± SD.
rTLE, right temporal lobe epilepsy; n.a, not applicable.
aObtained by a two-sample two-tailed t-test.
bObtained by a two-tailed Pearson’s χ2-test.
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of 0.2–0.42, since these densities provide a reasonable trade-off 
between sparse, but not fully connected networks and highly 
linked networks, which do not show small-world properties any 
more (32, 33).

neuropsychological Test of alertness
Each participants’ alertness was assessed by attention network 
test (ANT) (34) based on the E-Prime software platform. The 
ANT is a common neuropsychological examination that is used 
to test for attentional deficits and is composed of the Flanker task 
and cued response time (RTs) task. Alertness is one of the three 
basic components of attentional function. Through this examina-
tion, alertness can be detected by changing the cue prompt and 
recording both correct and incorrect reactions as well as the 
reaction time. The correct reaction and its RTs were applied to 
evaluate alertness according to the formula: mean RTno cue − mean 
RTdouble cue. Based on the classification of alertness (12), the no cue 
condition expresses intrinsic alertness and double cue condition 
represents phasic alertness. To reduce the effect of executive 
control function on the intrinsic and phasic alertness RTs, we 
excluded in-congruent trials during the calculation (35).

statistical analysis
Statistical analyses were performed by using IBM SPSS statistics 
(version 22). A two-sample t-test was performed to analyze 
group differences in age, years of education, MMSE scores, and 
ANT scores of alertness between rTLE patients and controls. 
The Chi square test was employed to compare gender distribu-
tions between groups, and p-value less than 0.05 was considered 
statistically significant.

The graph measurements, such as γ, λ, σ, Eloc, and Eglob were 
analyzed with ANCOVA to detect differences between rTLE 
patients and controls over a wide range of threshold, with FDR 
correction. Age and gender were included in ANCOVA as nui-
sance covariates.

Pearson correlation analyses were performed to assess the 
correlations between alertness and graph theoretical measures 
of the structural and functional networks at each FA or the 
sparsity threshold value. Considering that the disease duration 
of epilepsy might be a confounding factor, we performed partial 
correlation analysis to remove the interference. As these analyses 
were exploratory in nature, we used a statistical significance level 
of p < 0.05, uncorrected.

network Visualization
The resultant group level structural and functional networks were 
displayed using Pajek.4

resUlTs

Demographic characteristics
There were no significant difference in age, sex, and educational 
level between the rTLE group and normal control group. The 
demographic details of the participants are summarized in Table 1.  

4 http://vlado.fmf.uni-lj.si/pub/networks/pajek/

rTLE patients were treated with drugs without surgery; both 
groups of subjects were right handed.

global Topology of structural and 
Functional networks
The graph measurements of the DTI network were computed 
over a series of thresholds on FA values (FA = 0.2~0.42) with a 
step of 0.02. Both rTLE patients and healthy controls showed a 
small-world organization (σ > 1, with λ close to 1 and γ higher 
than 1) (Figures 1A,B). Compared with healthy controls, rTLE 
patients had a higher clustering coefficient (γ) (Figure  2A, 
FA ≤ 0.28, p < 0.05) and the same characteristic path length (λ) 
(Figure 2B), which led to significantly elevated small-worldness 
(σ) (Figure 2C, FA ≤  0.26 and FA =  0.30). Since σ reflects an 
optimal balance between fragmentation and coalescence, our 
results indicate that there is a disturbance in the normal balance 
of network function. Therefore, network construction was more 
inclined to regular network characteristics. In addition, rTLE 
showed unchanged mean local efficiency (Eloc) (Figure 2D) and 
global efficiency (Eglob) (Figure 2E).

For the rsfMRI datasets, the correlation matrix was thresh-
olded into different sparsities to create the adjacency matrix. Since  
there is currently no definitive method of selecting a sole thresh-
old, we calculated graph measures of the rsfMRI network over a 
series of thresholds in a wide range of network sparsity (5~40%) 
with a step of 1% (Figures 1C,D). Compared with healthy controls, 
rTLE patients had s lower γ (Figure  3A, sparsity <11%) and 
higher λ (Figure 3B, 5% < sparsity < 8%), which led to s signifi-
cantly reduced σ (Figure 3C, sparsity <11%). As a result of these 
analyses, the FC network architecture tended to a more random 
organization. After controlling for the FC strength difference 
using the sparsity threshold, rTLE showed lower Eloc (Figure 3D, 
sparsity <9%), and lower Eglob (Figure 3E, 5% < sparsity < 8%).

We also analyzed the modularity of the structural and func-
tional networks of the two groups, and there was no significant 
difference (Figures 2F and 3F).

anT results of Patients and controls
Alertness did not differ significantly between the rTLE patients 
and controls. However, the RTs of no cue and double cue of 
rTLE patients were significantly longer than those of controls. 
Table 2 provides more details.

http://www.frontiersin.org/Neurology/
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FigUre 1 | structural connectivity network and functional connectivity network visualization of controls (a,c) and right temporal lobe epilepsy 
patients (B,D). (a,B) Structural network at FA = 0.28; (c,D) functional network at sparsity = 0.08.
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association of the global Topological 
Parameters and alertness
We analyzed the correlations between alertness and altered global 
topological parameters of the structural and functional networks 
in rTLE patients at each threshold value. For their structural 
networks, we found that σ and γ were significantly negatively 
correlated with alertness in the FA value range (0.34 < FA < 0.42) 
(Table  3). Similarly, after controlling for disease duration as a 
confounding variable, partial correlation analysis showed the 
same trend in the FA value range (0.36 < FA < 0.42) (Table 3). 
No correlation was found in Pearson correlation or partial cor-
relation analyses of alertness with any other parameters.

For the functional networks, σ and γ were also found to be 
significantly negatively correlated with alertness over a range 
of sparsity thresholds (for σ, 0.28  <  sparsity  <  0.40; for γ,  

0.26  <  sparsity  <  0.40; p  <  0.05), as analyzed by the Pearson  
correlation and partial correlation analyses. Eloc had no correla-
tion with the ANT scores by Pearson correlation analysis, but was 
negatively correlated with alertness at several different sparsity 
thresholds (sparsity  =  0.17, 0.24, and 0.25; p  <  0.05) when 
calculated by partial correlation analysis and controlling for the 
influence of the disease duration. However, no correlation was 
found between λ, Eglob and alertness when the above two methods 
were used (Table 4). In the control group, there was no associa-
tion between ANT scores and any network parameter.

DiscUssiOn

In the present study, we compared the global alterations of the 
network properties in parents with rTLE to those of healthy 
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FigUre 2 | structural connectivity network at different Fa threshold for right temporal lobe epilepsy (rTle) patients (the black line) and controls  
(the red line) and their statistical comparison results (ancOVa). (a) Gamma, (B) lambda, (c) sigma, (D) mean local efficiency, (e) global efficiency,  
(F) modularity. Error bars indicate standard error within each group at each threshold value. The blue triangles display the (ANCOVA) p-values.
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controls by using structural and FC and graph theoretical 
techniques. Both structural networks and functional networks 
of all subjects showed a prominent small-world property (with 
σ > 1, a higher clustering coefficient but a lower characteristic 
path length). The main results indicated that there were global 
alterations of network properties in rTLE, including structural 
networks that trended toward regular alterations and functional 
networks that trended toward random alterations. The changes 
of the topological properties of the function network were much 
greater than those of the structure network in rTLE patients. 
In addition, association analyses showed that alertness had a 
negative correlation with the clustering coefficient and small-
worldness properties in rTLE patients.

network Properties
At this time, DTI is the only non-invasive technique that provides 
tissue microstructural information in vivo. The DTI-based struc-
tural linkage provides a relatively intuitive method of describing 
the true structural network between brain regions (36). Many 
neuroimaging studies have shown that TLE is associated with 

structural abnormalities in specific brain areas. Subsequent find-
ings of white matter damage in or outside the temporal lobe were 
reported in TLE, including white matter damage in the external 
capsule, corpus callosum, cingulate gyrus, and hook beam, as 
well as the amount of the next pillow beam (37). These findings 
have ignited interest in white matter network structure studies 
in TLE that may identify experimental targets of pathophysiol-
ogy mechanisms. In this study, we found that rTLE patients, 
compared to healthy controls, exhibited an altered topological 
organization of the white matter structure network and, based 
on DTI tractography, these alterations included highly increased 
clustering coefficients and small-worldness.

The clustering coefficient represents the small range of con-
nections between adjacent brain areas, which is used to describe 
the capability to effectively interchange information and infor-
mation reprocessing in a closed feedback loop and expresses the 
constitute forms of cliquishness within network (38, 39). A higher 
clustering coefficient often indicates modularized information 
processing and an enhancement of the local specialization and 
separation of network functionally (38). At present, the increased 
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TaBle 2 | neuropsychological attention network test test performance of 
right temporal lobe epilepsy (rTle) patients and healthy controls.

characteristics rTle (n = 18) control (n = 19) t Value p-Value

RTno-cue (ms) 655.55 ± 98.49 594.70 ± 82.60* 2.041 0.049
RTdouble-cue (ms) 614.99 ± 95.16 549.44 ± 73.63* 2.351 0.024
Alertness (ms) 40.56 ± 23.91 45.25 ± 18.63 0.668 0.508

Values: the Mean ± SD.
*p < 0.05.

FigUre 3 | Functional connectivity network at different sparsity for right temporal lobe epilepsy (rTle) patients (the black line) and controls  
(the red line) and their statistical comparison results (ancOVa). (a) Gamma, (B) lambda, (c) sigma, (D) mean local efficiency, (e) global efficiency,  
(F) modularity. Error bars indicate standard error within each group at each threshold value. The blue triangles display the (ANCOVA) p-values.
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clustering coefficient and small-worldness could be interpreted 
as alterations of an efficiently organized network. Our results 
suggest that microstructure damage might occur in white mat-
ter structures because of recurrent, uncontrolled seizures. For 
instance, subtle alterations in white matter tract volumes were 
determined to be due to transneuronal degeneration in a diffuse 
underlying pathology, such as microdysgenesis (2). Aberrant local 
nerve fibers may be reconstructed as a compensatory mechanism 
in response to a decrease in long-range connections, such that 
the relatively high reentrant connectivity within the local clusters 

(“cliquishness”) increased. In this way, the efficiency of the entire 
brain network is preserved.

Unlike structural networks, we found significantly decreased 
clustering coefficients and enhanced shortest path lengths, as  
well as lower local and global efficiencies in brain functional 
networks. Our findings are consistent with those of Vlooswijk 
et al.’s (40). In studies of functional networks in TLE, the cluster-
ing coefficients have been widely reported to be either increased  
(3, 41, 42) or decreased (40, 43, 44). The reasons for these incon-
sistent findings are unclear, although it is important to account 
for the sample size, age, epilepsy phenotype, measurement of the 
connection form, and AED use. A lower clustering coefficient 
tends to indicate a weakening interconnection between local 
brain regions, suggesting a possible reduction in the separation 
function of brain processing information associated with a par-
ticular pathological condition. Some authors have observed that 
the clustering coefficient also changes during the progression of 
disease. Evidence from a graph theory study of neuron sclerosis in 
the dentate gyrus showed that the clustering coefficients increased 
during the sclerosis process and decreased at the final stage (45). 
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TaBle 4 | Pearson correlation analysis and partial correlation analysis 
(disease duration-corrected) between the topological characteristics  
of the functional network and alertness in rTle patients.

Properties sparsity Values Pearson 
correlation 

analysis

Partial 
correlation 

analysis

r-Value p-Value r-Value p-Value

Sigma 0.26 1.38 ± 0.10 – – −0.495 0.044
0.27 1.36 ± 0.09 – – −0.502 0.04
0.28 1.34 ± 0.08 0.496 0.036 −0.531 0.028
0.29 1.32 ± 0.08 −0.496 0.036 −0.52 0.032
0.3 1.30 ± 0.07 −0.488 0.04 −0.507 0.038
0.31 1.29 ± 0.06 −0.533 0.023 −0.549 0.022
0.32 1.27 ± 0.06 −0.051 0.034 −0.536 0.027
0.33 1.25 ± 0.05 −0.544 0.02 −0.579 0.015
0.34 1.24 ± 0.05 −0.572 0.013 −0.613 0.009
0.35 1.22 ± 0.05 −0.529 0.024 −0.58 0.015
0.36 1.20 ± 0.04 −0.526 0.025 −0.577 0.015
0.37 1.19 ± 0.04 −0.514 0.029 −0.574 0.016
0.38 1.18 ± 0.04 −0.487 0.04 −0.547 0.023
0.39 1.17 ± 0.04 −0.486 0.041 −0.55 0.022
0.4 1.16 ± 0.03 −0.483 0.043 −0.554 0.021

Gamma 0.26 1.40 ± 0.10 −0.478 0.045 −0.52 0.032
0.27 1.38 ± 0.09 −0.482 0.043 −0.525 0.031
0.28 1.36 ± 0.08 −0.511 0.03 −0.552 0.022
0.29 1.33 ± 0.08 −0.515 0.029 −0.538 0.026
0.3 1.31 ± 0.07 −0.505 0.032 −0.528 0.03
0.31 1.29 ± 0.06 −0.547 0.019 −0.565 0.018
0.32 1.28 ± 0.06 −0.512 0.03 −0.551 0.022
0.33 1.25 ± 0.05 −0.55 0.018 −0.589 0.013
0.34 1.24 ± 0.05 −0.576 0.012 −0.622 0.008
0.35 1.22 ± 0.05 −0.535 0.022 −0.59 0.013
0.36 1.21 ± 0.04 −0.529 0.024 −0.585 0.014
0.37 1.19 ± 0.04 −0.515 0.029 −0.578 0.015
0.38 1.18 ± 0.04 −0.489 0.039 −0.551 0.022
0.39 1.17 ± 0.04 −0.488 0.04 −0.551 0.021
0.4 1.16 ± 0.03 −0.483 0.042 −0.557 0.02

Lambda All 
sparsity

1.15 ± 0.06 – – – –

Eloc 0.17 0.67 ± 0.02 – – −0.534 0.027
0.24 0.72 ± 0.02 – – −0.512 0.035
0.25 0.72 ± 0.02 – – −0.488 0.047

Eglob All 
sparsity

0.44 ± 0.03 – – –

Values: the mean ± SD.
Correlation analysis showed negative correlation between the sigma (σ) and gamma 
(γ) of the functional network and alertness in right temporal lobe epilepsy (rTLE) 
patients over the sparsity range describing in the table (p < 0.05, Pearson correlation 
analysis and Partial correlation analysis). Moreover, partial correlation analysis showed 
a negative correlation between local efficiency (Eloc) and alertness when sparsity 
corresponded to 0.17, 0.24, and 0.25.

TaBle 3 | Pearson correlation analysis and partial correlation analysis 
(disease duration-corrected) between the topological characteristics  
of the structural network and alertness in rTle patients.

Properties Fa 
threshold

Values Pearson 
correlation 

analysis

Partial 
correlation 

analysis

r-Value p-Value r-Value p-Value

Sigma 0.34 2.90 ± 0.33 −0.47 0.049 – –
0.36 2.73 ± 0.36 −0.539 0.021 −0.53 0.028
0.38 2.59 ± 0.42 −0.612 0.007 −0.606 0.01
0.4 2.34 ± 0.50 −0.532 0.023 −0.549 0.022
0.42 2.20 ± 0.63 −0.604 0.008 −0.606 0.01

Gamma 0.34 3.19 ± 0.42 −0.486 0.041 −0.488 0.047

0.36 3.00 ± 0.46 −0.524 0.025 −0.517 0.034
0.38 2.85 ± 0.52 −0.583 0.011 −0.577 0.015
0.4 2.59 ± 0.60 −0.518 0.028 −0.531 0.028
0.42 2.43 ± 0.74 −0.589 0.01 −0.589 0.013

Lambda All 
threshold

1.42 ± 0.04 – – – –

Eloc All 
threshold

0.23 ± 0.05 – – – –

Eglob All 
threshold

0.33 ± 0.08 – – – –

Values: the mean ± SD.
FA, fiber fractional anisotropy.
Correlation analysis showed a negative correlation between the sigma (σ) and gamma 
(γ) of the functional network and alertness in right temporal lobe epilepsy (rTLE) patients 
over the FA threshold range described in the table (p < 0.05, Pearson correlation 
analysis and Partial correlation analysis).
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In combination with the enhanced shortest path lengths, which 
indicated that the global integration of the brain was decreased, 
that is, information transmissions or interactions between 
remote brain regions were less effective and slow. Therefore, the 
global information progressing efficiency of the brain functional 
network of rTLE patients was significantly diminished. Epileptic 
seizures are due to the synchronous excitability of abnormal 
neurons in the brain, such as a high synchronization between 
thalamus and remote cortical regions (46), and increased EEG 
connection between relevant brain area to the epileptic foci (7), 
etc. Changes of the above properties may be related to enhanced 
neural synchronization phenomena. Consequently, high syn-
chronization within a group of neurons in the brain often leads 
to a decline in global brain function.

The inconsistency of the alteration of the network topology 
characteristics between structural and functional networks may 
result from the following reasons. In general, functional networks 
are considered to be more resilient, while structured networks 
are considered to be relatively stable (47). We presumed that 
functional networks are probably more sensitive than structural 
networks and undergo dynamic and architecture changes at 
earlier stages of the disease. Yet, structural networks are affected 
during later stages of the disease. White matter organization is 
rebuilt to ensure proper brain function, and this reorganization is 
a compensatory mechanism of brain plasticity. It is also possible 
that reconstructions of the structure network are under restric-
tions (48). The compensatory ability of functional networks is 
limited by the white matter axon plexus structure, and because of 
these limits, the network efficiency decreases.

correlation between alertness and 
Topology in structural and Functional 
networks
Mental and behavioral disorders caused by TLE have recently 
become a prominent research topic. Alertness is one of the three 
sub-networks of attention, but it is often overlooked and rarely 
reported. Alertness consists of two components: intrinsic alert-
ness and phasic alertness. Intrinsic alertness is associated with 
the body’s internal alert and arousal states. It can respond to the 
target stimulus without external stimulate signals. Phasic alertness 
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