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The effect of spatial smoothing  
on representational similarity  
in a simple Motor Paradigm
Michelle H. A. Hendriks, Nicky Daniels, Felipe Pegado and Hans P. Op de Beeck*

Laboratory of Biological Psychology, Brain and Cognition, KU Leuven, Leuven, Belgium

Multi-voxel pattern analyses (MVPA) are often performed on unsmoothed data, which 
is very different from the general practice of large smoothing extents in standard voxel- 
based analyses. In this report, we studied the effect of smoothing on MVPA results 
in a motor paradigm. Subjects pressed four buttons with two different fingers of the 
two hands in response to auditory commands. Overall, independent of the degree of 
smoothing, correlational MVPA showed distinctive patterns for the different hands in all 
studied regions of interest (motor cortex, prefrontal cortex, and auditory cortices). With 
regard to the effect of smoothing, our findings suggest that results from correlational 
MVPA show a minor sensitivity to smoothing. Moderate amounts of smoothing (in this 
case, 1−4 times the voxel size) improved MVPA correlations, from a slight improvement 
to large improvements depending on the region involved. None of the regions showed 
signs of a detrimental effect of moderate levels of smoothing. Even higher amounts of 
smoothing sometimes had a positive effect, most clearly in low-level auditory cortex. 
We conclude that smoothing seems to have a minor positive effect on MVPA results, 
thus researchers should be mindful about the choices they make regarding the level of 
smoothing.

Keywords: functional magnetic resonance imaging, multi-voxel pattern analyses, spatial smoothing, primary 
motor cortex, auditory cortex

inTrODUcTiOn

Spatial smoothing is part of the preprocessing of functional magnetic resonance imaging (fMRI) 
data and is most often performed using a three-dimensional Gaussian filter (“kernel”) of several mil-
limeters to filter the image. In this way, high-frequency information is removed, while low-frequency 
information remains (1). Smoothing is incorporated in the analysis of neuroimaging data for several 
reasons.

A first and extensive argument is a matter of spatial resolution inherent to the method of fMRI. 
Blood oxygen level dependent (BOLD) fMRI localizes changes in oxygenation levels in the blood 
that are related to synaptic activation (2). Hence, BOLD fMRI indirectly measures brain activity 
through a hemodynamic signal that is also spatially smoothed. The smallest unit of measurement 
used in fMRI, a voxel, still contains a myriad of neurons. In addition, the vascular response measured 
with fMRI expands over various millimeters, partially resulting from “draining veins” that remove 
oxygen-rich blood from the active voxels (3). This causes the point spread function (PSF) of the 
neural response to be spatially widened, which in turn results in weaker precision and thus a smaller 
resolution (4). The signal strength and resolution also seem to depend on voxel size, and there is a 
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complex relation between voxel size and the width of the BOLD 
PSF (5). Furthermore, the spatial specificity depends upon the 
field strength of the magnet (2). This first argument shows the 
biggest limitations of fMRI as a method. Smoothing is therefore 
used to increase the signal-to-noise ratio for the larger-scale 
information that is relevant in most fMRI studies (1).

A second reason to smooth is related to its beneficial effect for 
the validity of statistical assumptions as incorporated in the well-
known Random Field Theory (6). Finally, the fact that spatial 
smoothing helps to overcome the inter-individual differences in 
anatomy is another reason to smooth (6). Although the choice of 
a smoothing-level appears to be arbitrary, it might not be without 
consequence. It is one of several parameters that are often set “by 
default,” but might nevertheless influence the outcome of statisti-
cal analyses (1).

Despite the abundant use of spatial smoothing in fMRI 
research in general, it is much less commonly used in one spe-
cific type of fMRI analysis, namely, multi-voxel pattern analysis 
or MVPA. MVPA focuses upon patterns of activity across voxels 
instead of single-voxel activations (7). There are many types of 
MVPA, but our focus will be on the type used in this report:  
correlational MVPA. Correlational MVPA entails a split of data in 
two subsets, followed by a correlation between the neural activity 
pattern for conditions in one subset with the pattern of conditions 
in the other subset (8, 9), which has since been referred to as 
representational similarity analysis (10). An important approach 
to find out whether the neural patterns contain any information 
about the different conditions is to compare the correlation 
between same conditions with the correlation between different 
conditions. If the correlation between same conditions is reliably 
higher, this means that the patterns of brain activation provide 
reliable information about which condition was presented (7).

Op de Beeck (9) studied the sensitivity of MVPA results under 
different levels of smoothing in visual cortex. The motive for this 
study was the suggestion of so-called hyperacuity. Several authors 
suggested that MVPA allows to pick up brain maps that are 
organized at a scale that is finer than the voxel size, such as pick-
ing up the signals from orientation columns at sub-millimeter 
scale through voxels of 3 mm isotropic (11, 12). The authors did 
not perform spatial smoothing on their data and indeed report 
findings that suggest hyperacuity. However, Op de Beeck (9) 
showed that the outcome of MVPA is surprisingly robust to the 
level of spatial smoothing performed during preprocessing. More 
specifically, highly smoothed data contained at least a similar 
amount of information as data that were not smoothed. When 
using correlational MVPA, the correlations even increased with a 
larger amount of smoothing. Hence, MVPA indeed did not seem 
to pick up small-scale activation patterns. Since then, an intense 
debate has unfolded about the degree to which MVPA results 
are driven by small- and large-scale selectivity maps [in favor of 
small-scale or multiple-scale selectivity maps (13–17). In favor of 
large-scale selectivity maps (18–20)].

More in detail, Chaimow et al. (5) investigated the plausibility 
of several suggested mechanisms to account for the findings that 
support hyperacuity. A first hypothesized mechanism involves 
local, irregular, and arbitrary deviations in the functional organi-
zation of the brain at the columnar level, which can cause biases 

at the level of voxels, which can be picked up when performing 
MVPA (12, 21, 22). Each voxel contains columns with different 
orientation preferences. Importantly, a bias arises because these 
preferences are distributed unevenly across voxels. First, the 
authors found evidence for a contribution of low frequency as 
well as high-frequency components underlying these random 
variations. Second, draining veins are expected to play a role  
(12, 22), as voxels can include signals from larger blood vessels, 
causing a bias in decoding. Kriegeskorte et al. (23) proposed the 
third mechanism. Third, in their model, fMRI voxels are believed 
to act like spatiotemporal filters of neural activity, as every voxel 
samples from a unique structure of blood vessels. Fourth, Boynton 
(24) considers the fact that a voxel’s responses are biased toward 
certain orientations to be evidence that decoding can capture 
small-scale activations in the brain even though the resolution of 
fMRI is limited. This “aliasing” was found to be practically impos-
sible for fMRI by Chaimow et al. (5), because features inherent 
to fMRI (width of the BOLD PSF and voxel size) behave like a 
low-pass filter, filtering out the small-scale information that this 
mechanism appears to rely upon. Finally, in contradiction with the 
previous mechanism, large-scale activations are suggested to play 
a role as well (18–20), for example, resulting from relationships 
between retinotopic location and preferences for particular orien-
tations. For full explanations of the aforementioned mechanisms, 
we refer to the article of Ref. (5). Finally, Sengupta et al. (25) stud-
ied the effect of the acquisition resolution in V1 on the decoding 
of orientation. They suggest the opposing views are not mutually 
exclusive, namely, the idea that fMRI data “is broadband in nature” 
and contains both small-scale and large-scale activation patterns.

Investigation of the effect of smoothing can also provide infor-
mation about the spatial organization of neural representations. 
To give just one example, Brants et al. (26) used a manipulation 
of spatial smoothing to study the spatial organization of ventral 
occipitotemporal cortex. They used correlational MVPA and 
found that correlations were higher when data were smoothed 
compared to non-smoothed data. Additionally, they examined 
whether this effect of smoothing was the same for all spatial 
scales, in this case contrasting conditions that are differentiated 
at the subordinate level (baby-face and elderly face, small spatial 
scale) or different categories (faces and houses, large spatial 
scale). They found an interaction effect in which the correlation 
increased less for the subordinate distinctions, suggesting that 
the selectivity maps related to these subordinate distinctions are 
organized at a finer spatial scale.

Up to now, these studies focused exclusively upon visual cor-
tex. Here we explored the effect of smoothing on MVPA results 
in other brain regions in a paradigm that did not involve visual 
stimulation. In particular, we studied this effect in motor cortex, 
prefrontal cortex, low-level auditory cortex (A1), and high-level 
auditory cortex (A2). For this purpose, a fairly basic motor 
paradigm with auditory instructions was used. The first goal 
encompassed a study of the sensitivity of MVPA results to the 
level of smoothing. For this end, we used seven levels of smooth-
ing (ranging from no smoothing to 15 mm FWHM in steps of 
2.5 mm) and compared the results. A second goal was to inves-
tigate the extent to which smoothing would affect results with 
different spatial scales. For this reason, we included conditions 
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FigUre 1 | structure of one trial. During auditory stimulus presentation, a 
black screen was shown. The auditory stimulus started 600 ms after the 
black screen appeared. After 2,500 ms, a fixation cross was shown for 
2,000 ms. Each trial lasted for 4,500 ms in total.
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that are expected to activate nearby parts of motor cortex, such 
as different fingers of the same hand, as well as conditions that 
should activate far-away parts of motor cortex in different hemi-
spheres, such as fingers of a different hand. Based on previous 
findings, we predicted that a larger amount of smoothing would 
increase the difference in correlations between same and different 
conditions, predominantly for the largest spatial scale.

MaTerials anD MeThODs

Participants
Data were acquired using eight healthy subjects (six female, 
mean age of 22.75 years, with a standard deviation of 3.06, one 
left-handed). All participants reported absence of neurological 
or psychiatric history. This study was carried out in accordance 
with the recommendations of the medical ethics committee of the 
KU Leuven with written informed consent from all subjects. All 
subjects gave written informed consent in accordance with the 
Declaration of Helsinki. The study served as a control experiment 
in a more extensive study, of which the protocol was approved by 
the medical ethics committee of the KU Leuven.

stimuli and fMri Task
Eight auditory stimuli were recorded to serve as instructions. The 
words “left middle finger,” “left index finger,” “right index finger,” 
and “right middle finger” were used in the so-called Finger runs, 
and “one,” “two,” “three,” and “four” were used in the so-called 
Number runs. Stimuli were recorded by two voices (one male, one 
female) and were in Dutch.

Brain imaging data were collected while participants received 
these spoken instructions to press one of four buttons. Buttons 
were pressed using middle- and index fingers of both hands. There 
were thus four conditions, one for each finger. One run lasted for 
504 s and consisted of 112 events of 4,500 ms, 96 of which were 
experimental events with stimulus presentation. Visually, each 
trial started with a blank screen presented for 2,500 ms, followed 
by a screen with a fixation spot for 2,000 ms (Figure 1). Although 
visual stimulation was not strictly necessary to complete the task, 
black screens and fixation crosses were used to ensure equal visual 
input for all participants throughout the experiment. The auditory 
cues were presented during the blank screen period. The experi-
ment comprised four runs per participant; two “Finger”- and two 
“Number”-runs in randomized order. In each run, 202 volumes 
were acquired, starting approximately 5 s before stimulus/fixation 

presentation and ending approximately 5 s after stimulus/fixation 
presentation ended.

fMri Data acquisition
Data were acquired using a 3  T Philips Ingenia CX scanner 
(Department of Radiology of KU Leuven). A 32-channel  
head coil was used. Functional data consisted of T2*-
weighted echoplanar images (EPIs) with voxel size 
2.52 mm × 2.58 mm × 2.5 mm, an interslice gap of 0.2 mm on 
top of the slice thickness of 2.5 mm, repetition time 2,550 ms, 
echo time 30 ms, acquisition matrix 84 × 82 voxels, 45 slices per 
volume acquired in ascending order, and a field of view (FOV) 
of 211 mm × 211 mm × 121 mm. Additionally, a high- resolution 
T1-weighted anatomical scan was acquired with voxel size 
of 0.98  mm  ×  0.98  mm  ×  1.2  mm, repetition time 9.6  ms, 
echo time 4.6  ms, acquisition matrix 256  ×  256  voxels, and 
182 slices. Stimuli were presented using Psychtoolbox 3 (27).  
Visual stimuli were projected on a screen using an NEC projec-
tor with a NP21LP lamp. The participant viewed the screen 
through a mirror attached to the head coil. Viewing distance 
was approximately 64  cm. Auditory stimuli were presented 
via headphones. Before starting, participants were asked to 
indicate whether the volume was of an acceptable level, to make 
sure they could easily understand the instructions.

fMri Data analysis
Data were analyzed using two different approaches. A first 
approach follows the most frequently used pipeline of fMRI data 
analysis, in which smoothing is performed as a step during pre-
processing. In contrast, smoothing will be performed after defin-
ing the general linear model (GLM) for the second approach, on 
anatomically masked beta-images.

Approach 1: Smoothing during Preprocessing
Preprocessing
Data were processed using the Statistical Parametric Mapping 
software package (SPM8, Wellcome Department of Cognitive 
Neurology, London, UK) and custom Matlab code (Mathworks, 
Inc.). Preprocessing involved correction of the functional images 
for slice timing differences and realignment with the mean image 
to correct for head motion. Functional and anatomical images 
were then co-registered, using the mean realigned image as refer-
ence image and normalized to the MNI template. In a final step of 
the first approach, normalized functional images were smoothed 
using Gaussian kernels with different full-width at half maxima 
(FWHM). The FWHM is related to standard deviation [2.55 times 
the standard deviation (1)]. In line with the goal of this writing, 
the data were analyzed using seven levels of smoothing ranging 
from no smoothing to a kernel of 15 mm ×  15 mm ×  15 mm 
(approximately six times the original voxel size), in steps of 
2.5  mm (approximately the voxel size). The preprocessed data 
were used in further analyses.

General Linear Model
We modeled the onset of each trial of a condition by an event 
with a duration of 400 ms centered around each subjects’ finger 
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FigUre 2 | representation of conditions. Same-fingers condition (white) entails correlations between same fingers. The same-hand condition (gray) entails 
correlations between different fingers on the same hand. Finally, the different-hand condition (black) entails correlations between fingers on different hands. In 
addition, the model used to analyze the data can be derived from this image. Diagonal (white) entails a correlation of neural activity for movement of the same 
fingers. On the non-diagonal (gray + black) cells contain a correlation between neural activation for movement of different fingers.
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movement to capture the signal in the motor cortex. This choice 
was made a priori, without further detailed analyses. The finger 
movement was operationalized by the reaction time of each indi-
vidual subject measured for every trial in the scanner. The signal 
in each voxel was modeled for every subject using a GLM. This 
model was generated for each run and contained four regressors 
of interest (one for each stimulus condition, being four fingers) 
and six additional regressors to account for head motion (realign-
ment parameters obtained during motion correction). The design 
matrix was created for each participant and contained four runs. 
After fitting the GLM, the parameter estimates were used to cal-
culate each voxel’s response in each of the four conditions. This 
resulted in so-called “beta” values, which were used to perform 
MVPA.

Definition of Regions of Interest
We examined whether movement of different fingers can be 
distinguished based on neural activation patterns, for which we 
primarily focused on motor cortex. In addition, we also included 
prefrontal cortex and low- and high-level auditory cortex. Voxels 
were first selected based on a whole-brain univariate contrast 
of all four conditions minus baseline. We used a threshold of 
p  <  0.001 (uncorrected for multiple comparisons). Voxels that 
were significantly activated by this contrast were selected for each 
participant. This selection was further restricted anatomically, by 
selecting those voxels that were conjointly present in the previous 
selection and anatomical masks of all studied regions. The ana-
tomical masks were created with the anatomical WFU PickAtlas 
Toolbox (Wake Forrest University PickAtlas, http://fmri.wfubmc.
edu/cms/software). Motor cortex was defined by Brodmann areas 
(BA) 4 (primary motor cortex) and 6 (premotor cortex) and 
contained 8,120  voxels. Prefrontal cortex was specified by the 
frontal lobe minus BA 4 and 6, which included 65,021 voxels. The 
low-level auditory cortex included BA 41 and 42 and comprised 

762 voxels. High-level auditory cortex was defined by BA 22 and 
consisted of 1,820 voxels.

Correlational MVPA
Data of every voxel within a region of interest were normalized 
for every run by cocktail blank subtraction of the mean response 
across all conditions (7, 28). The data were then split into two 
halves by randomly assigning the runs into two groups, and cor-
relations between patterns of same versus different categories of 
stimuli were computed. This yielded a 4 × 4 correlation matrix. 
We computed the mean diagonal and non-diagonal of this matrix 
for every subject. Additionally, the difference between the aver-
aged diagonal and non-diagonal was computed (Figure 2). When 
this difference is significant across subjects, we can infer that the 
multi-voxel patterns in a brain region contain information to 
distinguish between different conditions (i.e., different fingers). 
We will look how distinct levels of smoothing affect this differ-
ence between diagonal and non-diagonal.

Spatial Organization
Finally, we studied different expected scales of organization. 
Spatial scale was operationalized by comparing MVPA results 
of different conditions (Figure 2). More specifically, we looked 
at the mean correlation between same fingers (same-finger 
condition), same hand but different fingers (same-hand condi-
tion), and fingers on different hands (different-hand condi-
tion). We expected to find that the correlation between same 
fingers would be higher than the correlation between different 
fingers on the same hand, which in turn would be higher than 
the correlation between different fingers on different hands. 
This was operationalized by computing pairwise differences 
in mean correlations and studying their significance. We also 
studied whether there was an interaction between spatial scale 
and smoothing.
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Approach 2: Smoothing after Masking ROIs
Preprocessing
Except for the smoothing in approach 1, data were processed 
in the same way. In approach 2, there was no smoothing during 
preprocessing.

General Linear Model
We modeled the GLM in the same way as above, with one excep-
tion the input data. Here the input data were the unsmoothed 
preprocessed data.

Anatomical Definition of Regions of Interest
Anatomical ROI were defined identically to the procedure for the 
first approach and used for the following step.

Masking of Beta-Images
This step is unique to the second approach. We used anatomical 
masks to isolate the information within the regions of interest 
and ignore the information outside these regions by treating these 
values as missing values (13).

Smoothing
Smoothing was performed on the masked beta-images. Equal 
to the first approach, data were smoothed using Gaussian 
kernels with FWHM ranging from no smoothing to a kernel of 
15 mm × 15 mm× 15 mm in steps of 2.5 mm.

Definition of Regions of Interest
Regions of interest were defined identically to the procedure for 
the first approach.

Correlational MVPA
The multivariate analysis was performed in the same way as for 
the first approach.

Spatial Organization
The different spatial scales were examined in the exact same man-
ner as for the first approach.

resUlTs

approach 1: smoothing during 
Preprocessing
Effect of Smoothing
In correlational MVPA, we expect correlations to be higher when 
we correlate patterns of the same condition than when correlat-
ing patterns of different condition. Said otherwise, we expect the 
diagonal cells of the correlation matrices to contain higher values 
compared to the non-diagonal cells (Figure 2). To study this, we 
first compared the mean correlations on the diagonal to the mean 
correlations on the non-diagonal and found that this difference 
was significantly higher than zero for every level of smoothing in 
every region, except 2.5 mm FWHM in high-level auditory cortex 
(Figure 3, left column) (t-test across subjects with a Bonferroni 
corrected alpha-level of 0.0071 (0.05/7) per region; motor cortex: 
t(7) > 4.9726, p < 0.0016 for all levels of smoothing; prefrontal 
cortex: t(7)  >  6.5413, p  <  0.0003 for all levels of smoothing; 

low-level auditory cortex: t(7) > 3.8823, p < 0.006 for all levels of 
smoothing; high-level auditory cortex: t(7) > 3.7435, p < 0.0072 
for all levels of smoothing).

In addition, we examined whether the comparison between 
diagonal and non-diagonal was affected by smoothing within 
each region. When inspecting the graphs, we can see a positive 
trend: the difference between diagonal and non-diagonal seems to 
increase with a higher level of smoothing, which in a few regions 
increased up to the highest level of smoothing. Statistically speak-
ing, we only found a main effect of smoothing in low-level audi-
tory cortex, not in the three other areas [one-way ANOVA per 
region; motor cortex: F(6,49) = 0.09, p = 0.9974; prefrontal cortex:  
F(6,49) =  0.5, p =  0.805; low-level auditory cortex: F(6,49) =  5.81, 
p = 0.0001; high-level auditory cortex: F(6,49) = 1.05, p = 0.4078].

In a last step, we performed a two-way ANOVA with factors 
smoothing and brain region to test the presence of an interaction 
between amount of smoothing and brain region. We found a 
main effect of brain region [F(3,196) = 55.86, p < 0.0001], a main 
effect of smoothing [F(7,196) = 3, p = 0.0079], but no interaction 
[F(18,196) = 0.18, p < 0.981].

Smoothing and Spatial Scales
Next, does smoothing affect MVPA results in a different way 
when looking at different spatial scales? We computed the mean 
correlation for every condition in all regions and investigated 
the difference in correlation between conditions for every level 
of smoothing and for every subject (Figure  4, left column). 
On these data, we applied a two-way ANOVA per region and 
found a main effect of condition in each region [motor cortex: 
F(2,147) = 522.34, p < 0.0001; prefrontal cortex: F(2,147) = 1002.71, 
p < 0.0001; low-level auditory cortex: F(2,147) = 316.48, p < 0.0001; 
high-level auditory cortex: F(2,147) =  68.95, p <  0.0001], a main 
effect of smoothing in motor and prefrontal cortex [motor 
cortex: F(6,147) = 3.06, p = 0.0076; prefrontal cortex: F(6,147) = 3.31, 
p  =  0.0044] but not low-level and high-level auditory cortex 
[low-level auditory cortex: F(6,147) = 1.62, p = 0.1452; high-level 
auditory cortex: F(6,147)  =  0.85, p  =  0.5331] and an interaction 
effect in each region [motor cortex: F(12,147) =  12.7, p <  0.0001; 
prefrontal cortex: F(12,147) = 13.98, p < 0.0001; low-level auditory 
cortex: F(12,147)  =  7.27, p  <  0.0001; high-level auditory cortex: 
F(12,147) = 08.34, p < 0.0001].

In addition, we examined the results across conditions per 
region, using a Bonferroni corrected p-value of 0.0024 (0.05/21). 
There were clear similarities between the patterns in motor cor-
tex, prefrontal cortex, and low-level auditory cortex. Namely, we 
found no significant differences between the same-finger and the 
same-hand conditions [t(62) < 2.2751, p > 0.0264 in all cases], 
but a significant difference between same-finger and different-
hand conditions [t(94)  >  8.7428, p  <  0.0001 in all cases] and 
the same-hand and different-hand conditions [t(94)  >  7.1889, 
p < 0.0001 in all cases]. On the other hand, in high-level audi-
tory cortex, we only found a consistent significant difference 
between the same-finger and different-hand conditions [t(94) >, 
p < 0.0001] and between the same-finger and same-hand without 
smoothing conditions [t(62) = 3.6373, p < 0.0001]. However, we 
did not find a significant difference between the same-hand and 
different-hand conditions [t(94) < 2.7948, p > 0.0063 in all cases].
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approach 2: smoothing after Masking 
rOis
Effect of Smoothing
Identically to the results for the first approach, we compared the 
mean correlations on the diagonal to the mean correlations on 

the non-diagonal and found that this difference was significantly 
higher than zero for every level of smoothing in every region, 
except 2, 5, and 5 mm FWHM in low-level auditory cortex and 
2.5  mm FWHM in high-level auditory cortex (Figure  3, right 
column) [t-test across subjects with a Bonferroni corrected  
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FigUre 3 | Differences between mean diagonal and mean non-diagonal for different levels of smoothing in the four regions of interest and both 
approaches (left: smoothing as part of preprocessing, right: smoothing after masking of beta-images). *p < 0.0071 (Bonferroni corrected: 0.05/7), 
**p < 0.001. Error bars represent standard errors of the mean. Orange dots show data points for individual subjects.
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alpha-level of 0.0071 (0.05/7) per region; motor cortex: 
t(7) > 3.7547, p < 0.0071 for all levels of smoothing; prefrontal 
cortex: t(7)  >  6.5413, p  <  0.0003 for all levels of smoothing; 
low-level auditory cortex: t(7) > 3.3961, p < 0.0115 for all levels of 
smoothing; high-level auditory cortex: t(7) > 3.7071, p < 0.0076 
for all levels of smoothing].

In addition, we again examined whether the comparison 
between diagonal and non-diagonal was affected by smoothing 
within each region. When inspecting the graphs, we can, as 
before, see a positive trend: the difference between diagonal and 
non-diagonal seems to increase with a higher level of smoothing. 
In contrast, as for the first approach, we only found a main effect 
of smoothing in low-level auditory cortex, not in the three other 
areas [one-way ANOVA per region; motor cortex: F(6,49) = 0.12, 
p = 0.9931; prefrontal cortex: F(6,49) = 0.51, p = 0.7997; low-level 
auditory cortex: F(6,49)  =  3.96, p  =  0.0026; high-level auditory 
cortex: F(6,49) = 1.86, p = 0.1076].

In a last step, we again performed a two-way ANOVA to test 
the presence of an interaction between amount of smoothing and 
brain region. We found a main effect of brain region [F(3,196) = 34.96, 
p < 0.0001], a main effect of smoothing [F(7,196) = 2.67, p = 0.0163], 
but no interaction [F(18,196) = 0.78, p < 0.7173].

Smoothing and Spatial Scales
A next question was whether smoothing affects MVPA results 
in a different way when looking at different spatial scales. We 
computed the mean correlation for every condition in all regions 
and investigated the difference in correlation between conditions 
for every level of smoothing and for every subject (Figure 4, right 
column). On these data, we applied a two-way ANOVA per region 
and found a main effect of condition in each region [motor cortex: 
F(2,147) = 501.63, p < 0.0001; prefrontal cortex: F(2,147) = 1261.64, 
p < 0.0001; low-level auditory cortex: F(2,147) = 213.49, p < 0.0001; 
high-level auditory cortex: F(2,147) =  79.25, p <  0.0001], a main 
effect of smoothing in motor and prefrontal cortex [motor 
cortex: F(6,147) = 3.04, p = 0.0078; prefrontal cortex: F(6,147) = 4.17, 

p  =  0.0007] but not low-level and high-level auditory cortex 
[low-level auditory cortex: F(6,147) = 1.25, p = 0.2852; high-level 
auditory cortex: F(6,147)  =  1.73, p  =  0.1184], and an interaction 
effect in each region [motor cortex: F(12,147) =  13.2, p <  0.0001; 
prefrontal cortex: F(12,147) = 16.48, p < 0.0001; low-level auditory 
cortex: F(12,147)  =  5.85, p  <  0.0001; high-level auditory cortex: 
F(12,147) = 8.73, p < 0.0001].

Furthermore, we examined the results across conditions per 
region, using a Bonferroni corrected p-value of 0.0024 (0.05/21). 
Even more so than for the first approach, there were clear simi-
larities between the patterns in motor cortex, prefrontal cortex, 
and low-level auditory cortex. Namely, we found no significant 
differences between the same-finger and the same-hand condi-
tions [t(62) < 1.7469, p > 0.0856 in all cases], but a significant 
difference between same-finger and different-hand conditions 
[t(94)  >  8.3309, p  <  0.0001 in all cases], and the same-hand 
and different-hand conditions [t(94) > 7.0811, p < 0.0001 in all 
cases]. In high-level auditory cortex, we also found a consistent 
significant difference between the same-finger and different-
hand conditions [t(94)  >  5.0441, p  <  0.0001]. However, the 
difference between the same-hand and different-hand condi-
tions was only significant in the four biggest levels of smoothing 
[t(94)  >  3.2512, p  <  0.0016 in all significant cases], and the 
difference between the same-finger and same-hand conditions 
was only significant for results without smoothing and with 
smoothing of 2.5 mm FWHM [t(62) = 3.2404, p < 0.0019 for 
the two significant cases].

DiscUssiOn

To summarize, smoothing does not seem to degrade the results 
of correlational MVPA in this combined motor/auditory par-
adigm. More specifically, the difference between diagonal and 
non-diagonal was significant in almost all smoothing levels in 
almost all studied regions, in both approaches. This means we 
can reliably distinguish activity from conditions differing in 
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motor and auditory dimensions based on neural data with almost 
all smoothing levels in all studied regions in both approaches. 
Averaged across all regions, there was an overall positive effect of 
smoothing. In motor cortex, our results show a different pattern 
than the other three regions, namely, a decrease of information 
for the higher levels of smoothing (i.e., 12.5 and 15 mm FWHM). 

On the other hand, in the other three regions and most obviously 
low-level auditory cortex smoothing even with the largest kernel 
will not hurt MVPA results and if anything it seems to have a 
slight positive effect.

The effect of smoothing can be explained using various 
factors. Chaimow et  al. (5) explained several mechanisms 
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that possibly account for hyperacuity. The fact that results of  
(correlational) MVPA are fairly robust to smoothing, is at face 
value not hyperacuity (9). Sengupta et al. (25) speculated about 
the Nyquist criterion: with a particular sampling frequency, we 
can only measure frequencies up to half the sampling frequency. 
In this case, it would mean that with a voxel size of 2.5 mm, we 
could measure frequencies up to 5 mm. In all regions, the signal 
clearly increased up to 5 mm smoothing (and further), so it seems 
possible this criterion plays a role. We cannot, however, exclude 
other explanations such as draining veins or local, random varia-
tions in the brain’s functional organization. Furthermore, besides 
the effect of smoothing, clear differences between the regions of 
interest can be noticed, at least in the overall trend in the figures, 
because the regional differences did not reach significance with 
our small sample size. An obvious explanation for regional dif-
ferences could be the size of the region, operationalized by the 
number of voxels. However, only prefrontal cortex is a lot bigger 
than the other three, hence it does not seem a good explanation. 
Another possibility is that regions differ in the scale of their 
functional organization. The larger this scale is, the more benefit 
we can expect from higher levels of smoothing.

We used two approaches to analyze the data. For the first 
approach, we followed the fMRI data analysis pipeline that is 
often used, in which smoothing is part of the preprocessing. It 
is important to include this approach in order to use the current 
findings to make predictions about potential effects in other 
studies that might most frequently use this smoothing approach. 
However, there is a major drawback of this type of smoothing, 
given that noise from voxels outside an ROI (which can even 
be in white matter) could contaminate the signal from inside 
the ROI (13). This effect gets stronger the bigger the amount of 
smoothing. In the second approach, the data of voxels outside 
the ROI are excluded, thus no longer influencing the outcome 
of the smoothing, which only involves the signal from voxels 
inside the ROI. When comparing these two approaches, we did 
not notice major differences, meaning the large trends remain 
the same for the two approaches. Nevertheless, the alteration in 

the way we analyzed the data did cause some small changes in 
the results (e.g., results that are not significant for the second 
approach that were for the first one when looking at the effect 
of smoothing) and more pronounced changes in individual pat-
terns for each participants. Another possible way to approach 
the analysis of these data would be to use spatial band pass 
filtering, which has been shown to affect MVPA results as well 
(13, 25). A full exploration of all possible filtering approaches 
is beyond the scope of the current study in which we focus 
upon the most commonly used approach of spatial smoothing. 
Nevertheless, bandpass filtering is a very fruitful approach to 
obtain additional insight as to why MVPA results are influenced 
by filtering of the data.

Overall, the findings suggest that a moderate level of smooth-
ing does not hurt MVPA findings and, if anything, can provide 
a moderate improvement. The results seem to be largely in line 
with the findings of Op de Beeck (9). He found that the effect 
size of correlational MVPA was higher when using various levels 
of smoothing compared with no smoothing in primary visual 
and lateral occipital cortex. A parallel decoding MVPA approach 
showed in addition that relatively large amounts of spatial 
smoothing do not hurt results of decoding MVPA. Note, how-
ever, that at least in some studies, larger amounts of smoothing 
have been shown to induce a decrease in decoding accuracy after 
smoothing (29, 30). In addition, Misaki et al. (30) obtained a fairly 
similar finding with regard to the pattern of individual subjects 
when performing several levels of smoothing and evaluating the 
decoding accuracies: each subject’s pattern over different levels of 
smoothing was distinct from the patterns of other subjects. Note 
that in our study, there are also individual differences, but they 
could be simply due to individual noise.

When comparing different conditions, we found the same pat-
tern reoccurring for all levels of smoothing in motor, prefrontal, 
and low-level auditory cortices. Namely, we can distinguish 
between neural activity coming from different hands, but not from 
the same hand. Even without smoothing, we found no significant 
difference between the same-finger and same-hand conditions. 
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This seems to contradict the idea of hyperacuity, i.e., it is possible 
to pick up functional organization smaller than a voxel size using 
MVPA. Note that in the current study, we might simply lack the 
ability to pick up signals of the supposedly smallest spatial scale. 
Importantly, the pattern was somewhat different in the high-level 
auditory cortex. Only in high-level auditory cortex, we can distin-
guish between neural activities from same-finger and same-hand 
conditions for some smoothing levels, mostly for the second 
approach. Of course, the selectivity in auditory cortex reflects the 
auditory cues that are quite different in these conditions.

The question remains; how can researchers choose the optimal 
level of smoothing based on careful examination? Importantly, 
recommendations will transcend our data, and generalization 
is difficult because every study uses different approaches and 
techniques, and even results in distinct regions differ when 
performing the exact same analyses. For example, when looking 
at motor cortex, we see that smoothing with a 5, 7.5, or 10 mm 
kernel would probably be best in both approaches, as both the dif-
ference between mean diagonal and mean non-diagonal and the 
difference between the same- versus different-hand conditions 
are optimized. The optimal level would therefore be one of those. 
Which one exactly should not matter too much, since such small 
difference should not affect the results when findings are strong 
and consistent. For the other regions in this article, we might 
have chosen different optimal levels of smoothing (as they show 
a different trend). In general, our results show that smoothing is 
advantageous when compared to no smoothing in most regions, 
which is the most important observation to make and for readers 
to remember. Examining the effect of smoothing is vital when 
researchers suspect it to have an effect on their results based on, 
for example, the organization of the region they will study.

In conclusion, we observed minor effects of smoothing in this 
paradigm. Spatial smoothing is only one of many parameters 
chosen by researchers during their analyses, and they should be 
aware of the effect of seemingly arbitrary choices on the outcome 
of their study. In the context of robustness of results, it has been 
argued that conclusions should remain the same regardless of 
the arbitrary choices made during data analysis (31). With the 
small sample size in the current study, there were several exam-
ples where the exact choice of smoothing level affected whether 
results are found to be significant. Although it might seem helpful 
to state a general rule on the best smoothing level to use, this 
is a difficult—if not impossible—recommendation to make. The 
effect of smoothing is not necessarily the same for different brain 

regions. Hence, we emphasize the importance of thinking about 
this choice. As an interesting example, Gardumi et al. (32) studied 
the effect of smoothing on their dataset and decided to use the 
optimal smoothing level only after careful examination.
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