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The focus of multiple sclerosis research has recently turned to the relatively rare and clearly 
more challenging condition of primary progressive multiple sclerosis (PPMS). Many risk 
factors such as genetic susceptibility, age, and Epstein–Barr virus (EBV) infection may 
interdepend on various levels, causing a complex pathophysiological cascade. Variable 
pathological mechanisms drive disease progression, including inflammation-associated 
axonal loss, continuous activation of central nervous system resident cells, such as 
astrocytes and microglia as well as mitochondrial dysfunction and iron accumulation. 
Histological studies revealed diffuse infiltration of the gray and white matter as well as 
of the meninges with inflammatory cells such as B-, T-, natural killer, and plasma cells. 
While numerous anti-inflammatory agents effective in relapsing remitting multiple sclero-
sis basically failed in treatment of PPMS, the B-cell-depleting monoclonal antibody ocre-
lizumab recently broke the dogma that PPMS cannot be treated by an anti-inflammatory 
approach by demonstrating efficacy in a phase 3 PPMS trial. Other treatments aiming at 
enhancing remyelination (MD1003) as well as EBV-directed treatment strategies may be 
promising agents on the horizon. In this article, we aim to summarize new advances in 
the understanding of risk factors, pathophysiology, and treatment of PPMS. Moreover, 
we introduce a novel concept to understand the nature of the disease and possible 
treatment strategies in the near future.
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iNTRODUCTiON

Since first described by Charcot almost two centuries ago (1), the field of multiple sclerosis (MS) 
witnessed enormous advancements. Not only we know better about the pathophysiology of the 
disease but also the different risk factors, clinical subtypes, and at last but not at least how attenuate 
the pathophysiological processes leading to neuronal demise. The success cannot be better seen than 
in the field of relapsing remitting multiple sclerosis (RRMS) with more than six medications got 
approved by the FDA and EMA since 2010 (2). However, the primary progressive multiple sclerosis 
(PPMS) remains a considerable challenge. Despite having more than one study fulfilling its primary 
end point (3, 4) to the time of writing this article, we still do not have any approved medication.

Nevertheless, the recent focus on progressive MS forms [primary and secondary progressive 
multiple sclerosis (PP and SPMS)] leads to a deep insight in the different pathological aspects driving 
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the disease. In this article, we summarize the recent develop-
ments and integrate the different aspects to provide a framework 
explaining the sequence of events leading to the unique clinical 
picture.

PATHOPHYSiOLOGY OF MS

Genetic Factors
The genetic predisposition for MS is based on observations 
highlighting the role of maternal genes and epigenetic factors (5). 
Half siblings from the same mother and first degree relatives have 
a higher MS incidence (6). HLA-DR2 haplotype demonstrated 
association and linkage to MS (7). HLA-DRB1*15:01 allele is 
associated with lower age of onset, white matter lesions (WMLs) 
volume, and reduction of parenchymal volume in RRMS (8). Lack 
of difference in HLA-status between RRMS and PPMS patients 
suggests that DRB1-related mechanisms are contributing to both 
phenotypes (7). Furthermore, many loci variants outside MHC 
have been correlated to MS risk and involve pathways of like 
kappa-light-chain-enhancer’s of activated B-cells (NF-KappaB) 
mediated cytokine release and activation of immune cells both 
in the periphery and inside the central nervous system (CNS) 
(9, 10). Different loci variants may correlate with relapse rate 
(11) and cervical cord atrophy (12) indicating a possible role in 
evolving of the disease phenotype. Nevertheless, no loci so far 
have been associated with a specific clinical subtype like PPMS.

environmental Factors
The most important environmental factor is the sun exposure 
and its subsequent effect on vitamin D deficiency (13). The role 
of vitamin D is prominent only in RRMS, where serum levels of 
vitamin D are low and correlate with relapse rates (14). PPMS 
patients have normal levels of vitamin D (15) with no correla-
tion with disability progression (16). Vitamin D interacts with 
HLA-DRB1*1501 (17) influencing the proliferation, maturation 
and function of different immune cells (15). The abovementioned 
findings make it tempting to postulate a role of vitamin D in the 
evolution of the clinical phenotype of MS.

epstein–Barr virus (eBv) infection
Epstein–Barr virus is involved in different pathophysiological 
aspects of MS; RRMS patients are more frequently EBV seroposi-
tive than controls, and the risk of MS increases in seronegative 
individuals dramatically after the seroconversion (18). Delayed 
primary EBV infection and MS share many epidemiological fea-
tures like socioeconomic status, latitudinal variation, and effect of 
migration (19). Elevated anti-Epstein–Barr nuclear antigen 1 IgG 
was found also in the PPMS patients and was associated with MRI 
disease activity (20). EBV infects B cells leading to their matura-
tion into latently infected, apoptosis-resistant memory B  cells 
(21). EBV-infected B cells are found in the meningeal infiltration, 
perivascularly, WMLs and in cervical lymph nodes in PPMS (22). 
EBV involvement in the disease is extensively reviewed by Pender 
and Burrows (23). EBV induces autoreactive B  cells formation 
(BAuto) through cross reactivity with some myelin, bystander dam-
age during the immune reaction against EBV infection, immune 

reaction against αβ crystallin expressed by oligodendrocytes, and 
at last infection of some naturally present autoreactive B  cells 
leading to their maturation and initiating the immune cascade 
in CNS (23).

The immune reaction to EBV infection in healthy older sub-
jects (>50) is characterized by secretion of IFN-γ and IL-6 lead-
ing to a chronic inflammatory state with progressive activation 
of tissue-resident macrophages and monocytes (24), an immune 
state similar to PPMS. However, these similarities should be 
confirmed in further studies.

Age
Progressive phase of MS (PP and SPMS) is the result of long-lasting 
degenerative changes, which appears only when an age threshold 
is reached and progresses in similar rates (25). Generally, older MS 
patients exhibit less focal inflammation (26), with more frequent 
motor, brainstem, and cerebellar manifestations associated with 
limited recovery capacities in RRMS (27) making the distinction 
between incompletely resolving acute attacks and progressive 
worsening according to the current definition of relapses very 
challenging.

Gut Microbiome
Gut flora can provoke autoreactive CD4+ formation through 
antigenic mimicry, mostly with myelin oligodendrocytes gly-
coprotein or through innate immune signaling (28). Germ-free 
EAE mice were protected from the development of inflam-
matory lesions in brain with marked reduction in Th17  cells. 
Recolonization resulted in restoration of the Th17 and devel-
opment of the EAE symptoms (29). A concrete role of the gut 
microbiome in PPMS is still unknown.

PATHOLOGiCAL CHANGeS

The predominant lesions in PPMS are slowly expanding lesions 
with T cells, microglial, and macrophage-associated demyelina-
tion in close similar to pattern 1 demyelination (30). While the 
involvement of different CD4+ subtypes (Th1, Th17, and Th9) is 
one of the very initial events in MS (31), the main lymphocytes 
to be found in the lesions are CD8+ cells and correlate with the 
degree of axonal damage (32). sCD27, a marker of intrathecal 
inflammation secreted mainly by T cells, is elevated in PPMS (33). 
Prominent TFH and Th17 activation in serum of PPMS patients 
was reported and correlated with the progression rate (34).

Evidences for B cell involvement in PPMS are numerous: the 
intrathecal IgG production, the detection of B  cells within MS 
lesions, meningeal infiltrate, perivascular space and MS paren-
chyma, the presence of autoreactive antibodies against myelin 
and its products (32), and finally the success of B  cell-based 
therapies in PPMS (35). B  cells are scattered in the meninges 
in a diffuse manner with tertiary lymphoid follicles formation 
only in aggressive disease with active progressive disease (36). 
B- and plasma cells in PPMS lesions correlate with the severity 
of axonal damage (26). B cells are pathogenic through multiple 
pathways including antigen presentation, cytokines release, and 
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producing of the autoantibodies (37). Their role beyond the 
synthesis of autoantibodies is confirmed by the fact that highly 
effective monoclonal anti CD-20 antibodies do not eliminate the 
long-lasting antibodies producing plasma cells (37). One example 
for non-antigen-presenting B cells is the pro-inflammatory gran-
ulocyte macrophage colony-stimulating factor (GM-CSF) B cells; 
through their GM-CSF secretion they induce pro-inflammatory 
myeloid cell response promoting the release of Th1- and Th17-
differentiating cytokines like IL-6 and -12 (38).

The discovery of the Breg cells secreting IL-10, IL-35, and 
TGF-b indicates the complex role of B cells in MS. Breg can restore 
Th1/Th2 balance, inhibit Th1 and Th17 cell differentiation, and 
inhibit macrophages (37). Moreover, the secreted antibodies 
may play a role in regulating the immune system and inducing 
remyelination (39).

Phagocytic cells like the macrophages are the most com-
mon cells found in the slowly expanding lesions in PPMS (30). 
They are derived from blood monocytes and migrate into CNS 
after stimulation in the blood (40). The pro-inflammatory M1 
play central role both in the demyelination and axonal damage 
through reactive oxygen spices, nitric oxide, and glutamate (40). 
CNS-infiltrating macrophages were able to induce progressive 
EAE through sustained secretion of TNF (41). Levels of sCD14, 
a marker of macrophageal activity, were higher in patients with 
PPMS compared to healthy controls, but similar to RRMS patients 
in relapses but not in remission (42). Nevertheless, macrophages 
(anti-inflammatory M2) are essential for the remyelination by 
clearing the damaged tissues in the lesions (40).

Dendritic cells can also be found in MS lesions (32). Dendritic 
cells form SPMS patients secret much higher levels of IL-18 
than those from RRMS patients and healthy controls (43) and 
induce—in vitro—solely a Th1 cell response not Th1 and Th2 like 
in RRMS suggesting a role of dendritic cells in the disease transi-
tion into the progressive phase (44). Based on the similarities 
between SP and PPMS, a role of dendritic cells in PPMS cannot 
be excluded.

Over the last years, microglial activation (MiA) gained more 
interest as one of the key mechanisms for neurodegeneration 
and axonal demise in MS (30). In PPMS, the microglia were 
diffusely active in the lesions and in normal-appearing white 
matter (NAWM) and normal-appearing gray matter (NAGM) 
(45). Activated microglia in NAWM forms microglial nodules 
in close proximity to stressed oligodendrocytes and degenerated 
axons with profound release of oxygen-free radicals (30). MiA in 
cortical gray matter of SPMS is caused by the diffusion of inflam-
matory mediators from the meninges, especially from meningeal 
B cell infiltration and strongly correlates with clinical disability 
scores (46).

Similarly, the astrocytes are considered of particular impor-
tance in MS. Besides there well-known role in “scar formation,” 
recently the astrocytes have been identified as a potent secretor 
of different pro-inflammatory cytokines making them a possible 
target for therapeutic interventions (30).

white Matter Damage
Radiologically the white matter pathology in PPMS is divided 
into three categories as follows.

White Matter Lesions
The well-defined hyperintense T2 WMLs indicate local demy-
elination of the WM. Histopathologically, the WMLs are either 
active with hypercellular infiltrate, chronic active or inactive. 
Both active and chronic active lesions are characterized by rela-
tive preservation of the axons but the cellular infiltrate differs; in 
the former, the lymphocytes are the main cells whereas in the 
latter the myelin-laden microphages form the mainstay of the 
lesions. On the other hand, the inactive lesions are characterized 
by extensive astrogliosis (47).

Diffusely Abnormal White Matter
Diffusely abnormal white matter (DAWM) refers to the 
diffuse and subtle signal hyperintensities in the WM. The 
DAWM in PMS exhibits no acute changes like demyelination 
or blood–brain barrier (BBB) leakage, nonetheless chronic 
axonal degeneration and gliosis. DAWM most likely represents 
degenerative changes secondary to remote focal WM patholo-
gies (48).

Normal-Appearing White Matter
Normal-appearing white matter exhibits normal signal in the 
conventional T2 sequences. The NAWM changes include axonal 
injury without demyelination, low-grade inflammation, micro-
glial, and astrocytic activation without being correlated to the 
WML load excluding the possibility that they are “pure” second-
ary retrograde axonal degeneration. The degree of axonal loss in 
NAWM as well as white matter atrophy measurements correlate 
with disease severity in SPMS (49).

Gray Matter Damage (GMD)
Gray matter damage emerged over the last years as a major 
determinant of disability and disease progression (50). GMD 
involves different lesion types with damage of NAGM (51). 
Possible mechanisms are retrospective degenerative changes, 
inflammatory infiltrate in the meninges, MiA, iron accumulation, 
and primary oligodendrocytic degeneration (51). GM atrophy 
correlate better with the long-term disability than WMLs (52).

THe ROLe OF MiTOCHONDRiAL 
DYSFUNCTiON iN PPMS

Mitochondrial dysfunction and energy deficits gained interest 
as a main mechanism of neuronal demise (53). The mitochon-
drial dysfunction with subsequent cellular hypoxia is especially 
relevant for the neurodegeneration of susceptible chronically 
demyelinated axons commonly found in PMS through energy 
failure, induction of apoptosis, and enhanced production of 
oxygen species (53). Corresponding to that, positive correlation 
between CSF lactate and disease progression was reported in 
RRMS patients (54). We confirmed a similar correlation in PPMS 
patients in a large multicentric CSF cohort including 254 PPMS 
patients (unpublished data). A positive correlation between CSF 
lactate and number of inflammatory MS plaques was reported 
in another study with 33 clinically isolated syndrome (CIS) 
patients (55). Another marker, the level N-acetylaspartate (NAA) 
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measured using MRI spectroscopy, was reduced in MS patients 
and correlated to clinical severity of the disease (56).

ROLe OF iRON

Iron accumulation in PMS is an age-dependent process leading 
to free-radicals’ release, glutamate toxicity, and exacerbation of 
the neuronal demise (57). Iron-induced T2/hypointensities were 
reported in the GM, WML, and periventricularly around the veins 
(58) and is correlated with disease progression even better than 
brain atrophy (59). Iron deposition in deep gray matter was elevated 
in SPMS patients compared to controls (60). Furthermore, the 
iron-storage protein “ferritin” and soluble transferrin receptors 
were elevated in the CSF and serum of SPMS patients compared 
to controls (61). A similar role can be postulated in PPMS.

THe MeCHANiSM OF AXONAL 
DeGeNeRATiON AND THe ReLATiONSHiP 
BeTweeN THe NeUROiNFLAMMATiON 
AND NeURODeGeNeRATiON iN PPMS

Over the last years, two main hypotheses were postulated to 
explain the neuronal demise in MS (62): the inflammation-
induced neurodegeneration and the neurodegeneration-
provoked inflammation.

The inflammation-induced demyelination leads to death loss 
and subsequent neurodegeneration as in EAE models (63). APP 
axonal spheroids indicating transected injured axons are corre-
lated with T and B cell infiltrates in MS lesions (26). Furthermore, 
early focal inflammatory lesions are associated with higher 
density of transected axons than in the later phases of the disease 
(64). Moreover, the meningeal inflammation is correlated with 
the cortical axonal loss and seems to be the driving force for active 
demyelination as well as neuronal, axonal, and synaptic destruc-
tion in the cerebral cortex of MS patients (65).

The second hypothesis postulates an autonomous degen-
eration of oligodendrocytes and myelin followed by MiA and 
subsequently invasion of inflammatory cells (66).

A combination of both mechanisms where the low-degree 
inflammation provides constant insult to the susceptible oli-
godendrocytes or dysfunctional axon–glial unit like in cases of 
disturbed iron metabolism, glutamate homeostasis, and mito-
chondrial dysfunction cannot be excluded (67). Nevertheless, 
the success of the anti CD-20 in slowing the disease progression 
emphasizes the role of the inflammation leading to emergence of 
the first hypothesis as a valid explanation for the neuronal demise 
in PPMS (68).

SUMMARY OF THe SeQUeNCe OF 
PATHOLOGiCAL eveNTS iN MS

Multiple sclerosis is an autoimmune disease involving both 
autoreactive B and T  cells. EBV infection induces formation 
of autoreactive B  cells (BAuto) either through antigen mimicry 
or through infection of the normally present BAuto-forming 
apoptosis-resistant active memory BAuto cells (first hit). On the 

other hand, autoreactive CD4+ T cells (TAuto) are induced by the 
intestinal microbiome (second hit). Both BAuto and TAuto interact in 
the peripheral lymphoid tissue. TAuto cells cross the BBB and are 
further activated by perivascular BAuto sells. B and T cells recognize 
the neuronal antigens and start an inflammatory reaction leading 
to migration of CD8+ cells and macrophages through BBB as 
well as activation of the microglial cells and astrocytes leading 
to demise of the neurons (first event). The apoptotic neurons 
and oligodendrocytes release other sequestrated antigens that 
subsequently will be recognized by B and T cells accentuating the 
inflammatory reaction (second event) with wide spread low-grade 
inflammatory process. Other factors like mitochondrial dysfunc-
tion, glutamate cytotoxicity, and iron accumulation lead to 
further demise of neurons (Figure 1). We postulate that different 
predisposing factors may not only affect the MS course directly 
but also interact with each other leading to further complexifica-
tion of the pathophysiology of the disease and might contribute 
to the determination of the clinical phenotype of the disease by 
focal accentuation of the inflammatory reaction with the clinical 
symptoms of an exacerbation (Figure 2).

CURReNT AND POSSiBLe FUTURe 
TReATMeNTS

Most clinical trials in PPMS were disappointing: from methyl-
prednisolone (69), through glatiramer acetate (70), rituximab 
(71), interferon-beta (72, 73), and at last fingolimod (74). Lack 
of efficacy, inappropriate patients’ selection, short study period, 
and non-optimal primary outcome are the major causes of the 
negative results (75). The ORATORIO study was the first phase 
3 study to meet its primary endpoint in PPMS (4) (Table 1). In 
the following section, we try to summarize the most promising 
treatments in PPMS.

Ocrelizumab
The immunomodulatory agent “Ocrelizumab” is a humanized 
monoclonal anti-CD20 antibody. It attacks different epitopes 
on pre-B cells and memory B rendering it better tolerable and 
possibly more effective than Rituximab (77). Ocrelizumab acts 
mainly against antigen-presenting and cytokine-releasing B cells 
not stem cells or plasma cells (68). The resulting B cell depletion 
is mediated either through compliments, cytotoxic CD8+ or 
induced apoptosis (78).

Ocrelizumab is the first drug ever to show efficacy in slow-
ing the disease progression in a phase 3 clinical trial with PPMS 
patients (79). In the double-blinded, placebo-controlled study 
“ORATORIO” with 732 PPMS patients, ocrelizumab reduced 
time to onset of 12-week confirmed disability progression risk 
by 24% (p = 0.0321) compared with placebo. Timed 25-foot walk 
improved after 120 weeks (p = 0.04).

Biotin
Vitamin B7-biotin activates acetylCoA carboxylase, a potentially 
rate-limiting enzyme in myelin synthesis and subsequently may 
help inducing remyelination (80). Indeed, a pilot study with 23 
SPMS and PPMS patients reported improvement in clinical, 
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FiGURe 1 | Sequence of events in multiple sclerosis. (1) Autoreactive B (BAuto) cells are formed by epitopes mimicry with Epstein–Barr virus (EBV) antigens or 
through persistent activation of the naturally presence autoreactive B cells through the chronic EBV infection (first hit). (2) Autoreactive CD4+ T (TAuto) cells are formed 
through antigen mimicry with intestinal flora (second hit). (3) The autoreactive B and CD4+ T cells interact in the peripheral lymph nodes leading further activation.  
(4) After releasing into blood stream, they both cross the blood–brain barrier and interact again in the perivascular space. (5) They recognize the self-antigens 
sequestrated in the central nervous system and release cytokines to attract other inflammatory cells (macrophages, cytotoxic CD8+) from the blood as well as to 
stimulate the microglia and astrocytes.(6) and (7) The inflammatory cells attack the neurons and the oligodendrocytes leading to demyelination, neuronal death with 
release of many sequestrated intracellular antigens (first event). (8) These antigens provoke more B and T cells reaction leading to accentuation of the inflammatory 
cascade (second event). (9) Other factors like mitochondrial dysfunction, glutamate cytotoxicity, and iron accumulation play import role in the demise of neurons, 
especially in primary progressive multiple sclerosis and SPMS.
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radiological, or electrophysiological parameters in 91.3% of the 
patients receiving high dose (100–300  mg) biotin (80). Very 
recently, the results of the phase 3 MS-SPI study with its exten-
sion phase were published revealing that the primary end point 
“reversal of disability” was met in 13.2% of the study population 
(progressive MS) at month 12. Secondary end points like slowing 
of the EDSS progression were also met with acceptable tolerability 
and side effects profile (3) making biotin the first remyelinating 
agent to possibly enter the market.

Laquinimod
Laquinimod is an orally available carboxamide derivative with 
multimodal mechanism of action rendering it both anti-inflam-
matory and neuroprotective (81); laquinimod reduces inflamma-
tory cells in the brain (Th1 and Th17), shifts the cytokines into 
anti-inflammatory profile, promotes monocytes/macrophage 
maturation into regulatory subtypes, and modulates the dendritic 
cells reducing their ability to induce the CD4+ cells (82). The 
unexpected discrepancy between the modest effect on relapse 
rates and the unprecedented reduction of disease progression 

in clinical studies suggests a novel neuroprotective effect of 
laquinimod. Indeed, laquinimod increases brain-derived neuro-
protective factor (83) and inhibit the inflammatory response of 
astrocytes and microglia leading to reduction of the axonal dam-
age (84). Currently, a phase 2 clinical trial in PPMS (ARPEGGIO, 
NCT02284568) is recruiting patients, and the results are expected 
in September 2017.

Simvastatin
In the MS-STAT study, 80 mg/day simvastatin was reported to 
cut the annualized brain atrophy rates in patients with SPMS 
by almost the half in a placebo-controlled randomized clinical 
trial (85). Simvastatin exhibits its immunomodulatory action 
by impacting the Th1 and Th17 as well as by modulation the 
dendritic cells (86, 87).

eBv-Directed Therapies
Adoptive immunotherapy with autologous T  cells expanded 
in vitro with AdE1-LMPpoly increased survival in patients with 
the EBV-associated carcinoma (88). Pender et al. applied the same 
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approach in one SPMS patient with EDSS score of 8.0 leading 
to clinical and radiological improvement without serious side 
effects (89), a novel approach targets a mechanism provoking the 
autoimmune response in MS itself not the immune system gener-
ally (23). Furthermore, vaccination of seronegative individuals 
with recombinant gp350 may be considered as a novel “primary 
prophylaxis” to reduce the incidence of MS (23).

BeTTeR UNDeRSTANDiNG, BeTTeR 
TReATMeNT

Despite our increasing knowledge and better understanding 
of the underlying mechanisms, many questions remain open. 
Accumulating evidences support considering PPMS as a part of 
the MS spectrum. However, there is no solid explanation of what 
exactly drives the development of the clinical phenotypes. In our 
opinion, the core of MS may be a slowly progressive low-degree 
inflammatory process driven by autoreactive apoptosis-resistant 
EBV-infected B cells that manifests itself clinically in genetically 
predisposed individuals only after a specific age threshold is 
exceeded. In presence of other factors (like vitamin D defi-
ciency), a superimposed fluctuating high-grade inflammatory 

process appears in younger age and manifests itself in the form 
of recurrent exacerbations. Evidences supporting this hypothesis 
are (1) more than half of MS patients suffer from PMS (either as 
PPMS from the beginning or SPMS), (2) the striking clinical and 
pathological similarities between PP and SPMS, (3) the almost 
universal positive EBV status in MS patients, (4) the presence 
of EBV-infected B cells in brain and meninges of MS patients, 
perivascular spaces, and parenchyma, (5) the well-known change 
in age-dependent host response to latent EBV infection, (6) 
the success of B cell-depleting agents in RRMS and PPMS, (7) 
the “preliminary” success of T-cell-based therapy against EBV-
infected B cells in SPMS, (8) the presence of vitamin D deficiency 
in RRMS but not PPMS patients and its well-described effect 
on the relapse rate but not disease progression, and finally, (9) 
almost all pathological aspects of the progressive phase like MiA, 
iron accumulation, mitochondrial dysfunction, involvement of 
the NAWM and NAGM, cortical and cerebral atrophy, as well as 
meningeal infiltration can be detected very early in the disease 
course even in CIS patients (55, 90–93). Further work is needed to 
prove the exact role of EBV in PMS forms, to characterize the BAuto 
population and how do they differentiate, and at last to explain 
the role of different risk factors in PMS and their interactions in 
different populations.
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TABLe 1 | Overview of the major clinical trials in primary progressive multiple sclerosis.

Substance (mode of 
action)

Study name Study design Patients Study 
duration

Results regarding disease progression

Interferon b-1a 
(immunomodulatory)

– SC, R, DB, Plc-Ctrl 50 2 years There was no significant difference in disease progression between the 
individual or combined treatment arms and placebo (72)

Glatiramer acetate 
(immunomodulatory)

PROMiSe Phase 3, MC, R, 
DB, Plc-Ctrl

943 3 years The tendency for delay in the time to sustained progression of accumulated 
disability in GA-treated patients compared with PBO-treated patients did not 
achieve statistical significance {hazard ratio, 0.87 [95% confidence interval 
(CI), 0.71–1.07]; p = 0.1753} (70)

Interferon b-1b 
(immunomodulatory)

– Phase 2, SC, R, 
DB, Plc-Ctrl

73 2 years Time to neurological deterioration confirmed on two consecutive visits 
(3 months) was not different between trial arms (treatment arm 65.8% versus 
placebo arm 56.8%; p = 0.3135) (73)

Rituximab (anti-CD20, 
B-cell depletion)

OLYMPUS Phase 2/3, MC, R, 
DB, Plc-Ctrl

439 2 years There was no evidence of significant difference in time to CDP between the 
rituximab and placebo groups (p = 0.1442) (71)

Fingolimod 
(immunomodulatory)

INFORMS Phase 3, MC, R, 
DB, Plc-Ctrl

970 Up to 
5 years

Fingolimod showed no difference compared with placebo (hazard ratio 0.95, 
95% CI 0.80–1.12; p = 0.544) in the time to 3-month CDP (74)

MD1003 (biotin) 
(remyelinating agent)

MS-SPI Phase 2/3, MC, R, 
DB, Plc-Ctrl

154 1 year A total of 13 (12.6%; 95% CI: 6.9–20.6%) patients treated with MD1003 had 
a reduction in multiple sclerosis-related disability at month 9, confirmed at 
month 12, compared with none in the placebo arm (3)

Ocrelizumab (anti-CD20, 
B-cell depletion)

ORATORIO Phase 3, MC, R, 
DB, Plc-Ctrl

732 3 years The percentage of patients with 12-week confirmed disability progression 
(primary end point) was 32.9% with ocrelizumab versus 39.3% with placebo 
(hazard ratio, 0.76; 95% CI, 0.59–0.98; relative risk reduction, 24%; 
p = 0.03) (4)

Laquinimod 
(immunomodulatory, 
neuroprotective)

ARPEGGIO Phase 2, MC, R, 
DB, Plc-Ctrl

374 Ongoing Ongoing (76)

SC, single center; MC, multicenter; R, randomized; DB, double-blinded; Plc-Ctrl, placebo-controlled.
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The current therapy options for PPMS are promisingly increas-
ing with upcoming possibilities of targeting different aspects of 
the disease (Figure 3). Combination of different treatments may 
be a viable approach in the future, considering the suboptimal 
effect of every single treatment alone so far.

SUMMARY

Primary progressive multiple sclerosis is considered a 
relatively rare, but very challenging phenotype in the care of 
MS patients. Our current knowledge supports an underlying 

FiGURe 3 | Overview of the possible treatment strategies in primary progressive multiple sclerosis (PPMS). A summary of the current and possible 
treatment strategies in PPMS.
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