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Background: Alexander disease (AxD) is a rare disease caused by mutations in the  
gene encoding glial fibrillary acidic protein (GFAP). The disease is characterized by pres-
ence of GFAP aggregates in the cytoplasm of astrocytes and loss of myelin.

Objectives: Determine the effect of AxD-related mutations on adult neurogenesis.

Methods: We transfected different types of mutant GFAP into neurospheres using the 
nucleofection technique.

results: We find that mutations may cause coexpression of GFAP and NG2 in neuro-
sphere cultures, which would inhibit the differentiation of precursors into oligodendro-
cytes and thus explain the myelin loss occurring in the disease. Transfection produces 
cells that differentiate into new cells marked simultaneously by GFAP and NG2 and 
whose percentage increased over days of differentiation. Increased expression of GFAP 
is due to a protein with an anomalous structure that forms aggregates throughout the 
cytoplasm of new cells. These cells display down-expression of vimentin and nestin. 
Up-expression of cathepsin D and caspase-3 in the first days of differentiation suggest 
that apoptosis as a lysosomal response may be at work. HSP27, a protein found in 
Rosenthal bodies, is expressed less at the beginning of the process although its pres-
ence increases in later stages.

conclusion: Our findings seem to suggest that the mechanism of development of 
AxD may not be due to a function gain due to increase of GFAP, but to failure in the 
differentiation process may occur at the stage in which precursor cells transform into 
oligodendrocytes, and that possibility may provide the best explanation for the clinical 
and radiological images described in AxD.

Keywords: alexander disease, glial fibrillary acidic protein, ng2, neurospheres, oligodendrocyte precursors, 
cathepsin, caspase-3, hsP27
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inTrODUcTiOn

Alexander disease (AxD), first described in 1949 by Alexander 
(1), is a rare and fatal CNS disease of genetic origin that is caused 
by a heterozygous mutation in the glial fibrillary acidic protein 
(GFAP) gene (2–4). Its pathological characteristic is the pres-
ence of inclusion bodies named Rosenthal fibers (5) that contain 
aggregated GFAP and small heat shock proteins, mainly α-β-
crystallin and HSP27 (6, 7); additionally, some have suggested 
that Rosenthal fibers could also include such other proteins as 
vimentin, p62, or plectin (8). Clinical presentation depends on 
age of onset, and the most frequent is the infantile form consist-
ing of motor impairment, cognitive decline, bulbar signs, and 
seizures (9–11). Although its mechanism is unknown, studies 
of cell lines and animal models had been suggested that AxD  
could activate stress response pathways within astrocytes due 
to increased expression of WT or mutant GFAP (12–17) that 
would potentially reduce proteasomal activity in cells (18) and 
due to oxidative stress potentially producing an antioxidant 
response mediated by the transcription factor Nrf2 (19, 20) 
However, although these models are able to replicate the astro-
cytic changes occurring in the disease, including formation 
of Rosenthal fibers, they have failed to reproduce myelin loss  
(21, 22). While AxD has historically been described as a disorder 
of myelin formation, with loss of myelin and oligodendrocytes 
appearing as demyelinated areas in MRI studies (23), the full 
mechanism underlying AxD is not yet well understood (24, 25). 
For that, other authors had proposed other possibilities (26). 
Thus, Olabarria et  al. (27) have suggested that inflammatory 
mechanism may mediate in AxD, and Kanski et al. have shown 
that histone acetylation in astrocytes is an important regulator 
of transcription as well as alternative splicing of GFAP and have 
hypothesized that it could be a mechanism that could explain 
the disease (28).

In recent years, neurogenesis in adult mammals, including 
humans, has been described in the subgranular zone of the hip-
pocampal dentate gyrus and in the subventricular zone (SVZ) 
(29–31). During development, oligodendrocyte precursor cells 
are generated in the ventricular area and subsequently migrate 
to the surrounding parenchyma while proliferating and acquir-
ing such oligodendrocyte markers as NG2 and O4. In adults, oli-
godendrocytes are generated by different progenitors depending 
on the site (32–34); these progenitors include non-differentiated 
cells such as those present in the SVZ (35–37), especially in the 
context of demyelinating disorders (38). We postulate that AxD 
may affect adult differentiation since children are initially healthy 
and the disease appears later, with mutations acting upon the 
stage in which cells express NG2 prior to differentiation (39, 40), 
at this later stage, cells express mRNA-GFAP (41), but they do 
not normally produce GFAP, since it would have been expressed 
before the onset of the differentiation process.

Since pathology studies in AxD show neuronal, astrocytic, 
and myelinic changes, we have considered the possibility that 
GFAP mutations could act upon progenitor cells. To explore this 
possibility, we have analyzed the changes resulting from trans-
fection of mutant GFAP during the neurosphere differentiation 
process.

MaTerials anD MeThODs

animals
Two-month-old CD1 Swiss male mice obtained from Charles 
Rives Laboratory (Barcelona, Spain) were used in this study 
(n  =  12; weight  =  30  g). All experiments were carried out in 
accordance with guidelines for animal experimentation under 
Spanish law (RD 1201/2005) and European directives (86/609/
EEC).

Plasmids: Procurement, site-Directed 
Mutagenesis, and Purification
We selected a representative set of hGFAP mutations to study 
their effects, choosing high-incidence mutations affecting differ-
ent protein domains. pcDNA 3.1 plasmid (Invitrogen) was used 
for eukaryotic expression assays. It contains the CMV promoter, 
which confers ubiquitous expression. Neurospheres were trans-
fected with the pcDNA3.1 empty vector (the transfection control),  
hGFAP_WT (the wild type), hGFAPR88C, and constructs 
provided by Dr. Michael Brenner (NINDS, NIH, MD, USA): 
hGFAPR 79H, hGFAPR239H and hGFAPR416W. Site-directed 
mutagenesis was performed to generate the hGFAPR88C  
construct. Com plementary primers (see below) containing the 
C262T mutation were used for PCR amplification of the pcDNA3.1 
plasmid. For this process, we used Pfu Turbopolymerase 
(Stratagene) according to the manufacturer’s instructions.

hGFAPC262TF: 5′CATCGAGAAGGTTTGCTTCCTGGA 
ACA 3′.

hGFAPC262TR: 5′CTGTTCCAGGAAGCAAACCTTCTC-
GATG 3′.

Constructs were amplified in E. coli and subsequently tested 
by analyzing their restriction patterns and using DNA sequenc-
ing. Afterward, each construct was purified using the Midiprep® 
system (Qiagen).

adult sVZ neurosphere Primary culture
Neural stem cells were isolated from the microdissected SVZs of 
two-month-old CD1 male mice. Animals were killed by cervi-
cal dislocation, and their brains promptly removed. SVZs were 
dissected as previously described by Morshead et  al. (42) and 
incubated in a 0.9  mg/ml papain solution (Worthington Ref. 
LS-003119) for 40 min at 37°C. Papain solution was then removed 
by centrifugation and inactivated by adding a control medium, 
consisting of DMEM/F12 (Gibco) supplemented with glucose 
(Panreac; Ref. 141341-1210), NaHCO3 (Gibco; Ref. 25030-024), 
1  M HEPES (Gibco; Ref. 15630-049), l-glutamine (Gibco; Ref. 
25030-024), antibiotic–antimycotic (Gibco; Ref. 15240-062), and 
hormone mix [apo-Transferrin (Sigma; Ref. T-2252), insulin 
(Sigma; Ref. I-2767), putrescine (Sigma; Ref. P-7505), proges-
terone (Sigma; Ref. P-8783), and sodium selenite (Sigma; Ref. 
S-9133)]. SVZs were mechanically disaggregated and filtered 
through a 70 µm cell strainer. Cells were plated and cultured in 
complete medium [control medium supplemented with 10 ng/ml 
of FGFb (Sigma; Ref. F0291) and 20 ng/ml of murine EGF (Gibco; 
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FigUre 1 |  Altered cell differentiation. Changes in cell differentiation are apparent at 7 days after transfection. Percentages of cells undergoing differentiation were 
similar between cultures transfected with the wild-type hGFAP protein and those observed under normal conditions. Cultures containing different transfected glial 
fibrillary acidic protein (GFAP) mutations exhibited higher percentages of GFAP-expressing cells as well as lower percentages of differentiated oligodendrocytes 
(Olig2) and neurons (Tuj1). These data are statistically significant (*p < 0.05).
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Ref. 53003-018)]. The culture was incubated at 37°C in a 5% CO2 
atmosphere.

Primary neurospheres (passage 0; P0) forming in the first 
week of cell culture were collected, enzymatically dissociated and 
replated onto uncoated 6-well dishes at a density of 10,000 cells/
cm2. Following this method, neurospheres were subsequently 
passaged every 7 days.

Transfection
Neurospheres were transfected 5 days in vitro after passage 6–7 
by means of nucleofection technology (Amaxa Nucleofector II, 
Lonza), using program A-33 and following the manufacturer’s 
instructions. Each 75  cm2 flask was transfected using 4  µg of 
plasmic DNA and cultured with complete medium. To estimate 
transfection efficiency, we used the pMAX-GFP plasmid sup-
plied in the Mouse Neural Stem Cell Amaxa Nucleofector®  
kit (Lonza).

For differentiation experiments, 36–48 h after nucleofection, 
neurospheres were seeded on poly-d-lysine (Sigma) coated 
coverslips in differentiation media, where growth factors were 
withdrawn and 1.5% FBS was added. Samples were analyzed at 
days 3 and 7 under differentiation conditions.

immunocytochemistry
Cells from neurosphere differentiation cultures were fixed in 4% 
PFA with a 30% sucrose solution for 30 min at 37°C. For immu-
nocytochemistry, cultures were preincubated for 1 h in blocking 
solution (10% goat serum, 0.1% Triton X-100, BSA), followed 
by overnight incubation with the appropriate primary antibody  
at 4°C. The following primary antibodies were used: mouse anti-
hGFAP (1:500, Sternberger Monoclonal), chicken anti-vimentin 
(1:200, Millipore), rabbit anti-NG2 (1:200, Millipore), mouse 
anti-Olig2 (1:200, Millipore), chicken anti-Tuj1 (1:200, Milli-
pore), rabbit anti-active caspase-3 (1:200, Abcam), rabbit anti- 
HSP27 (1:200, Abcam), and rabbit anti-cathepsin (1:200, Abcam). 
The corresponding secondary antibodies were incubated for 2 h 
(Alexa-Fluor 405, 488, 555, or 647 goat anti-mouse, chicken or 

rabbit; 1:500; Invitrogen), followed by incubation with DAPI 
(1:1,000, Sigma) for 10  min and rinsing before being mounted 
on glass slides with Fluorsave (Calbiochem). Analyses were per-
formed with a Nikon 80i fluorescence microscope at 40× or 63× 
magnification.

statistical analysis
For statistical analysis, up to four coverslips from two independ-
ent experiments were counted for each condition using the  
Nikon 80i microscope at magnifications of 40× or 63×. More 
than 150 transfected cells were counted per coverslip. We per-
formed a statistical analysis to determine the percentage of each 
phenotype present in transfections of each plasmid. Data were  
analyzed using one-way analysis of variance followed by a 
Tukey Multiple Comparisons test. All values are presented as 
mean ± SE. Statistical significance was set at p < 0.05.

resUlTs

gFaP Mutations result in Up-expression 
of gFaP
Transfection produced cells that differentiate into new cells 
marked simultaneously by GFAP and NG2 and displaying GFAP 
abnormalities. GFAP appeared as a protein with an anomalous 
structure that formed clots and aggregates and was distributed 
throughout the cytoplasm of the new cells; this finding was not 
observed in non-transfected cells (Figure S1 in Supplementary 
Material). Figure  1 shows a significant decrease in Olig2 and 
TuJ1 and a significant rise in GFAP expression in cells transfected 
with mutant proteins compared to the hGFAP_WT and empty 
plasmid groups; this suggests that mutations may interfere with 
neurosphere differentiation into oligodendrocytes and neurons. 
These changes occurred with all studied mutant forms. The 
reduction in oligodendrocyte and neuron markers was more 
prominent than the increase in GFAP, and it may therefore play 
a prominent role in the abnormal differentiation process caused 
by mutations.
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FigUre 2 | Continued  
Alterations in NG2 expression. Confocal microscopy images of neurospheres 
undergoing differentiation (3 days). Cultures transfected with mutant glial 
fibrillary acidic protein (GFAP) exhibited increased expression of NG2; the 
protein was anomalous and formed precipitates in the cell membrane  
[(c), arrows], compared to observations in neurospheres transfected with 
GFAPwt (B) or neurospheres under normal conditions (a). Bar = 20 µm.

FigUre 2 | Continued
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significant increases in cells expressing 
ng2 during Differentiation Were Found in 
the Mutant Protein Transfection group
We analyzed expression of the progenitor cell markers vimentin, 
nestin, and NG2 and observed significantly higher NG2 expres-
sion at day 3 of differentiation in neurospheres transfected with 
mutant GFAP, compared to those transfected with hGFAP_WT or 
empty plasmid (Figure 2). However, no differences in expression 
were found for vimentin and nestin. Figure S2 in Supplementary 
Material shows that the NG2/Vim ratio is significantly greater for 
transfected AxD mutations than for transfected hGFAP_WT or 
empty plasmid neurospheres at day 3; this also occurred with the 
NG2/GFAP ratio. In contrast, the PAX3 to GFAP marker expres-
sion ratio did not differ (Figure S3 in Supplementary Material). 
Researchers observed high numbers of NG2+/GFAP+, but not 
NES+ or Vim+ cells. Percentages of GFAP+ and NG2+ cells 
increased with additional days of differentiation (data not shown). 
The expression of GFAP that appears after transfection and in the 
differentiation is more than four times that found in WT but is 
variable depending on which is the mutation transfected (date 
not shown). The relationship between the expression of GFAP 
and NG2 is also variable depending on the severity of each muta-
tion (data not shown).

increased caspase-3 expression Was 
Observed during Differentiation
We analyzed caspase-3 expression at days 3 and 7 of differen-
tiation and observed that transfection of the mutant protein 
elicited significantly augmented expression of caspase-3. This 
was not apparent with transfections of hGFAP_WT or empty 
plasmid (Figure  3). Increases in caspase-3 were significantly 
greater (p < 0.05) in VIM+ and NG2+ cells compared to those 
in the hGFAP_WT group, but no significant differences were 
observed for Pax6+ cells (Figure S4 in Supplementary Material). 
Caspase-3 was colocated with VIM+ and NG2+ cells and to a 
lesser extent with Pax6/VIM cells. Caspase-3 levels were also 
significantly higher on days 3 and 7 of differentiation in Olig+ 
cells transfected with mutant GFAP than in the hGFAP_WT 
group (Figure 4).

expression of cathepsin D and hsP27 
rose during Differentiation
We analyzed cathepsin D expression at day 3 of differentiation 
and observed that transfection of the mutant protein resulted 
in a significant increase in expression of this protein, which 
was not observed with transfection of hGFAP_WT (Figure 5). 
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FigUre 3 | Graphs of caspase-3 expression after transfection. Cultures transfected with mutant glial fibrillary acidic protein (GFAP) protein displayed significant 
increases in expression of caspase-3, a marker for cell death by apoptosis, at 3 and 7 days. The level of caspase-3 was at least three times higher than those 
measured in the normal culture and in the culture with the WT protein. There is a direct correlation between cell death, expressed as percentage of caspase-3,  
and presence of mutant proteins (*p < 0.05).

FigUre 4 | Graphs of caspase-3 expression in the oligodendroglial lineage. Increased cell death was observed in cells transfected with mutant glial fibrillary acidic 
protein (GFAP) at days 3 and 7. The increase in cell death was more marked on day 3 in cells expressing Olig2, an oligodendrocyte marker (*p < 0.05). On day 7, 
the percentage of cell death was lower, but the difference was still statistically significant (*p < 0.05). This indicates that cell death occurs more frequently in early 
stages of cell differentiation.
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Increased cathepsin D expression indicates a lysosomal response; 
cathepsins have been implicated in the cell’s defense mechanisms 
against anomalous proteins that may contribute to cell damage 
(40). We also detected significantly higher levels of HSP27 
expression than in cells transfected with hGFAP_WT or empty 
plasmid (Figure  6), suggesting that the mutation augmented 
the expression of small heat shock proteins, as has already been 
described in AxD.

DiscUssiOn

Our study provides evidence that AxD may be able to affect myelin 
production since mutations act on oligodendrocyte differentia-
tion. Our data indicate that GFAP-NG2 cells, those expressing 
both NG2 and GFAP, are more numerous in the mutation group 
than in the WT cell line.

Astrocytes play an important role in central nervous system 
function whether under normal or pathological conditions. Adult 
astrogliogenesis occurs in neurodegenerative disorders and 

relies on changes in GFAP expression. Increased levels of GFAP 
expression are associated with more severe reactive gliosis in  
a variety of neuropathological conditions and in gliomas (43, 44); 
cell pathology studies may reveal inclusion bodies—Rosenthal 
fibers (5)—containing ubiquitinated GFAP aggregates; these 
inclusion bodies have been observed in syringomyelia, multi-
ple sclerosis (45), and certain subtypes of glioma as well as in 
AxD. Myelin loss is a characteristic diagnostic finding in AxD. 
Extensive cerebral white matter changes with frontal predomi-
nance with usual involvement of the basal ganglia, and thalamus 
is typical of radiological images in AxD; it is very intense in cases 
of great survival capacity (46). These imaging results are very 
suggestive of AxD and are not seen in other conditions related 
with Rosenthal bodies as some forms of gliomas. The past few 
years have advanced our understanding of the impact of GFAP 
levels on the disease (47), but the cause of demyelination remains 
unclear.

Glial fibrillary acidic protein has an anomalous structure, 
and it is distributed as cytoplasmic inclusions and aggregates. 
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FigUre 6 | Expression of HSP27 Anti-HSP27/glial fibrillary acidic protein (GFAP) immunocytochemistry study of transfected neurospheres after 3 days of 
differentiation. (a–D) Neurosphere transfected with the hGFAP_WT protein, showing faint marking for HSP27 protein and expression of filamentous GFAP.  
(e–h) Neurosphere transfected with mutant hGFAP, revealing high expression of HSP27 protein in the form of filamentous aggregates that colocate with  
hGFAP expression (arrows). Bar = 50 µm.

FigUre 5 | Expression of cathepsin. (a–D) Neurosphere transfected with hGFAP_WT protein. Expression of cathepsin is very low (B); glial fibrillary acidic protein 
(GFAP) markers are observed in fine, well-organized cells (a). (e–h) Neurosphere transfected with mutant hGFAP, showing expression of filamentous GFAP  
(e). Expression of cathepsin in this case appears as markings on small vesicles resembling lysosomes distributed throughout the neurosphere. Nuclei are  
apparent in panels (c,g); panels (D,h) show the sum of all channels. Bar = 50 µm.

Failure of non-differentiated cells to transform into adult oli-
godendrocytes would explain loss of myelin in this disease. 
Incomplete differentiation into oligodendrocytes is probably 
what perpetuates high levels of NG2 expression; this situation 
arises as a means of compensating for the absence of necessary 
oligodendrocytes, since higher numbers of NG2 cells will dif-
ferentiate into oligodendrocytes in the context of a demyelinat-
ing process than under normal conditions. If GFAP-NG2 cells 

are unable to produce oligodendrocytes, this could explain 
why their numbers rise as differentiation into other lineages 
decreases (38) These findings have been reported by previous 
studies performed with other non-differentiated cell lines (48). 
During differentiation, cells expressing both NG2 and GFAP 
proteins show diminished expression of vimentin and nestin. 
These data are concordant with those of Hsiao et al. (49), who 
observed that transfection of the mutant protein R232C in cells 
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with increased vimentin expression does not elicit the cell-level 
consequences appearing in AxD because GFAP aggregates 
may be decreased by vimentin (50). Taking into account that 
GFAP-null mice are essentially normal, and other intermediate 
filaments, such as vimentin, can replace most GFAP functions 
(51), Vim+ cells may be more resistant to increased GFAP 
expression.

Different studies using cell and animal models (12, 14, 15, 
52–54) have been designed to demonstrate the mechanism by 
which cell damage takes place so as to identify potential therapeu-
tic agents (55, 56). As mutant GFAP forms aggregates, it sequesters 
HSP27 and α-β-crystallin proteins and becomes phosphorylated 
and ubiquinated, generating Rosenthal bodies and initiating cel-
lular damage autophagy will probably provide the final pathway 
to cell death (57). It was postulated that impediments to GFAP 
degradation could create an imbalance between soluble and insolu-
ble proteins (58) and lead to accumulations of such other proteins 
as α-β-crystallin and plectin (59). Upregulation of α-β-crystallin 
could also constitute a defense mechanism against cell damage 
(60). However, during the differentiation process in our study, 
we observed an increase in the expression of caspase-3. Another 
recent suggestion is that a C-terminal end of the molecules in the 
mutant protein could activate caspase-3 (61) that participates in 
the proteolysis of GFAP assembly (62, 63). This activation mecha-
nism might be more frequent in cells with NG2+ or Olig2+ mark-
ers according to our data, which suggest that some cells would 
be more likely than NG2− cells to disappear after initiating the 
differentiation process.

Our data also show that the presence of small heat shock 
proteins in the cytoplasm is not an initial mechanism. HSP27 was 
up-expressed at all days of differentiation. These data, coinciding 
with those in the literature, indicate that small heat shock pro-
teins, mainly α-β-crystallin, could protect against proteasomal 
alteration caused by GFAP aggregation (18, 61). We also found 
increased expression of cathepsin D, indicating that GFAP aggre-
gates may produce a lysosomal response as others have suggested 
before (57, 64).

The alteration of the GFAP splicing and the variation of the 
different protein isoforms have been related to alterations of the 
white matter (65, 66). An patient with the disease with a muta-
tion in the GFAP gene and a mutation in the HDAC6 gene was 
associated with a more severe phenotype of the disease and with 
reduced activity of HDAC6 (67).

In conclusion, our findings seem to suggest that difficulties in 
the differentiation are to be found in the process in which precur-
sor cells transform into oligodendrocytes and would explain that 
all findings described in AxD can not be exclusively explained by 
a mechanism of gain of function by the increase of the expression 
of GFAP. And so, epigenetic (28), inflammatory (27), or post-
translational changes may be also associated (26).
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FigUre s1 | Confocal microscopy images showing expression of glial fibrillary 
acidic protein (GFAP) after transfection. (a) Cells transfected with wild-type 
protein (hGFAP_WT); (B) cells transfected with mutant form hGFAPR88C. After 
transfection, cells exhibit disorganization of the astrocyte cytoskeleton; GFAP 
protein aggregates are visible in the cytoskeleton [(B), arrow]. Bar = 20 µm.

FigUre s2 | Coexpression of NG2/VIM in cell differentiation. At day 3 of cell 
differentiation, there was an increase in the expression of markers of glial 
progenitor cells in neurospheres transfected with mutant glial fibrillary acidic 
protein (GFAP). This increase in vimentin (VIM) in cells transfected with a mutation 
may serve to compensate for the functional alteration in the mutant protein. The 
increase in expression was statistically significant (*p < 0.05).

FigUre s3 | Coexpression of PAX/glial fibrillary acidic protein (GFAP) in cell 
differentiation. At day 3, there were no changes or differences between 
transfected and non-transfected cultures for the PAX6 marker, which must be 
present for new neurons to be generated by astrocytes.

FigUre s4 | Cell death by apoptosis in glial and oligodendroglial progenitor cells. 
Based on the expression of caspase-3, cell death increased in cells transfected 
with mutant glial fibrillary acidic protein (GFAP), especially those positive for NG2 
or VIM; these markers are closely associated with glial differentiation (astrocytes 
and oligodendrocytes). Analysis of the expression of neural progenitor 
transcription factor PAX6 in cells transfected with mutant protein revealed no 
differences between the transfected wild-type group and the normal group.
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