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External cueing is a potentially effective strategy to reduce freezing of gait (FOG) in 
persons with Parkinson’s disease (PD). Case reports suggest that three-dimensional 
(3D) cues might be more effective in reducing FOG than two-dimensional cues. We 
investigate the usability of 3D augmented reality visual cues delivered by smart glasses 
in comparison to conventional 3D transverse bars on the floor and auditory cueing via a 
metronome in reducing FOG and improving gait parameters. In laboratory experiments, 
25 persons with PD and FOG performed walking tasks while wearing custom-made 
smart glasses under five conditions, at the end-of-dose. For two conditions, augmented 
visual cues (bars/staircase) were displayed via the smart glasses. The control conditions 
involved conventional 3D transverse bars on the floor, auditory cueing via a metronome, 
and no cueing. The number of FOG episodes and percentage of time spent on FOG 
were rated from video recordings. The stride length and its variability, cycle time and its 
variability, cadence, and speed were calculated from motion data collected with a motion 
capture suit equipped with 17 inertial measurement units. A total of 300 FOG episodes 
occurred in 19 out of 25 participants. There were no statistically significant differences 
in number of FOG episodes and percentage of time spent on FOG across the five 
conditions. The conventional bars increased stride length, cycle time, and stride length 
variability, while decreasing cadence and speed. No effects for the other conditions were 
found. Participants preferred the metronome most, and the augmented staircase least. 
They suggested to improve the comfort, esthetics, usability, field of view, and stability 
of the smart glasses on the head and to reduce their weight and size. In their current 
form, augmented visual cues delivered by smart glasses are not beneficial for persons 
with PD and FOG. This could be attributable to distraction, blockage of visual feedback, 
insufficient familiarization with the smart glasses, or display of the visual cues in the 

Abbreviations: PD, Parkinson’s disease; FOG, freezing of gait; OFF, smart glasses switched OFF; CB, conventional bars; CM, 
conventional metronome; AB, augmented bars; AS, augmented staircase.
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central rather than peripheral visual field. Future smart glasses are required to be more 
lightweight, comfortable, and user friendly to avoid distraction and blockage of sensory 
feedback, thus increasing usability.

Keywords: Parkinson’s disease, freezing of gait, wearables, smart glasses, augmented reality, external cueing, 
visual cues

inTrODUcTiOn

In advanced disease stages, most persons with Parkinson’s disease 
(PD) experience freezing of gait (FOG): sudden paroxysmal 
gait arrests preventing effective forward movement (1, 2). FOG 
negatively impacts mobility and independence and is associated 
with falls, fall-related injuries, and emotional stress in social situ-
ations, resulting in a reduced quality of life (3, 4). Tight turns, 
narrow passages, gait initiation, and approaching a destination 
are well-known triggers for FOG (1). Apart from episodes of 
FOG, persons with PD and FOG (PD-FOG) display continuous 
gait abnormalities such as increased stride variability (5).

External cues (i.e., transverse bars on the floor or walking at 
the rhythm of a metronome) are well-known strategies to reduce 
FOG (6) and improve speed, cadence (7–9), and stride length 
variability (10–12), with an additional increase in step length for 
visual cues (7–9). Despite their potential effectiveness, the use of 
cues is limited by practical constraints such as a lack of portability 
and hindrance of bystanders (e.g., housemates). Smart glasses, 
also called augmented reality (AR) glasses, have the potential 
to provide portable, personalized cues in an AR overlay on top 
of a user’s visual field. Smart glasses have been welcomed as 
an assistive technology to facilitate daily living by a majority of 
respondents in a user requirement survey amongst persons with 
PD (13, 14).

A previous study compared the effects of rhythmic flashes, a 
visual flow, and a static placebo delivered by virtual reality glasses 
with transverse lines on the floor on FOG and gait parameters. 
This study found a deterioration of gait with rhythmic flashes, 
a marginal improvement only of task completion time with the 
virtual visual flow, and the largest improvement of FOG and gait 
parameters with transverse lines on the floor (15). In another 
study, three types of external cues (a metronome, flashing light, 
and optic flow) delivered via the Google Glass reduced the vari-
ability of cadence and stride length, suggesting a more stable gait 
pattern (12). There was no significant effect on FOG, possibly 
due to a low overall number of FOG episodes. Some participants 
disliked the placement of the display in the right upper corner, 
and instead suggested a binocular projection focally in the visual 
field. To avoid distraction, it is important to minimize interfer-
ence of augmented visual cues with normal visual perception. 
Therefore, visual cues should be displayed as if they are part of 
the environment, e.g., augmented bars (AB) that are displayed 
as if they are placed on the floor. This demands that the position 
and size of the augmented cues are updated in real time, depend-
ing on the position and orientation of the head and the walking 
speed. Also, it requires the smart glasses to have a sufficiently 
wide field of view. In addition, to enable users to adjust their 
steps to augmented visual cues, the augmented cues should start 

close to the user’s body. Furthermore, previous reports (16, 17) 
suggested that three-dimensional (3D) cues might be more effec-
tive in reducing FOG than two-dimensional cues, as were used in 
previous studies (12, 15). Equally spaced transverse bars on the 
floor as well as a staircase, either real or as painted optical illusion 
(17), can constitute such 3D cues. Whether the presentation of 
transverse bars and staircases via AR influences FOG and gait still 
needs to be explored. However, smart glasses with displays that 
are binocular (to enable 3D cues), tiltable and with a sufficient 
field of view (to allow for display of the cues close to the user), are 
not yet commercially available. For this purpose, we developed a 
prototype of custom-made smart glasses and software to provide 
3D transverse bars or a staircase in AR. For augmented visual 
cues to be useful, they should be at least as effective as commonly 
applied cueing strategies such as conventional 3D transverse bars 
on the floor (16) or auditory cueing via a metronome (18). It 
should be carefully investigated whether wearing smart glasses, 
even when switched off, interferes with the effects of external 
cues. Possibly, augmented visual cues might not only affect 
FOG provoked by spatially demanding situations such as gait 
initiation but also those provoked by temporal triggers such as 
turning while walking. Originally, visual cues were thought to 
provide spatial information that could aid patients in scaling their 
movements (18), while auditory cues are considered to provide 
an external rhythm to which movements can be coupled to in the 
presence of a disrupted internal rhythm (18–20). Interestingly, 
moving visual targets have also been shown to improve motor 
timing in finger tapping tasks in healthy individuals, thereby 
activating regions in the basal ganglia which are associated with 
motor control and temporal processing (21, 22). Whether moving 
visual cues, such as augmented visual cues updated in real time, 
can reduce both spatially and temporally triggered FOG is not yet 
known. In addition to their effectiveness, user satisfaction should 
be carefully investigated to assess the usability of 3D augmented 
visual cues delivered by smart glasses.

The present study investigates the usability of 3D augmented 
visual cues delivered by smart glasses in comparison to conven-
tional 3D transverse bars on the floor and auditory cueing via a 
metronome in reducing the occurrence of FOG, the percentage 
of time spent on FOG, and the variability of stride length and 
cycle time.

MaTerials anD MeThODs

Participant selection
This study was performed in accordance with the guidelines of the 
Declaration of Helsinki (1964) and was approved by the medical 
ethics committee Twente. All subjects provided written informed 
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FigUre 1 | Smart glasses. Illustration of the prototype of custom-made 
smart glasses (Cinoptics, Maastricht, the Netherlands) on a model. The 
prototype is specifically designed for a large field of view and adjustable angle 
to allow augmented reality visual cues to be presented as if they are placed 
on the floor. Binocular see-through displays are mounted in a black frame 
attached to adjustable head straps (not shown here).
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consent prior to their inclusion in the study. Persons aged over 
18 years, with PD according to the UK Brain Bank criteria (23), and 
subjective presence of FOG [score 1 on question 1 from the New 
Freezing of Gait Questionnaire (NFOGQ) (24)] more than once 
per day (score 3 on question 2 from the NFOGQ) were eligible 
for inclusion. Exclusion criteria were stroke in the medical history, 
psychiatric disease interfering with assessment of FOG, severe 
uncorrected visual or hearing impairments disabling the par-
ticipant to perceive visual or auditory cues, comorbidity limiting 
ambulation, inability to walk unaided, a deep brain stimulator or 
apomorphine pump, jejunal levodopa gel infusion, and severe cog-
nitive impairments [mini-mental state examination (MMSE) <24 
at the moment of inclusion]. As in several previous studies (12, 25),  
participants were tested at the end of their regular dopaminergic 
medication cycle (i.e., while experiencing the end-of-dose phe-
nomenon), because this closely resembles the real-life situation 
where the most FOG occurs during an OFF state when the dopa-
minergic medication has been wearing off. Thus, participants were 
tested at the time when they would normally take their (after-)
noon levodopa and were instructed to postpone this levodopa 
intake until after the walking trials. Prior to testing, the following 
questionnaires were taken: NFOGQ (24), MMSE (26, 27), frontal 
assessment battery (28), and Movement Disorder Society Unified 
Parkinson’s Disease Rating Scale (MDS-UPDRS) part III (29).

smart glasses system
A prototype of custom-made smart glasses (Cinoptics, Maastricht, 
the Netherlands) was used to display the augmented cues and 
was worn throughout the experiment (Figure 1). These binocular 
smart glasses contained two CE-certified see-through optical 
color displays (organic light-emitting diodes, with 1,280 × 720 
pixel resolution, a 60 Hz refresh rate, and a diagonal field of view 

of 45°), which could be tilted up to 30°. The participant’s head 
orientation was measured with an inertial measurement unit 
(IMU) with a sampling frequency of 160 Hz. The displays were 
mounted in a black frame attached to adjustable head straps, 
weighting 530  g altogether. The smart glasses were connected 
with a Microsoft Surface Pro 4 tablet carried inside a mesh pack 
worn on the participant’s back. In addition, participants wore 
an MVN Awinda motion capture system (Xsens, Enschede, the 
Netherlands) for collection of motion data. This system consisted 
of 17 IMUs with 3D gyroscopes, accelerometers, and magnetom-
eters (60  Hz sampling frequency, 30  ms latency) attached to the  
feet (2), lower legs (2), upper legs (2), pelvis (1), hands (2), forearms 
(2), upper arms (2), sternum (1), shoulders (2), and head (1) with 
Velcro straps. The sensors were calibrated without the participant 
wearing the smart glasses (to avoid magnetic disruption of orien-
tation) at the start of the experiment and recalibrated during the 
experiment if the sensor orientation was disrupted. The motion 
data were transmitted via a wireless local area network to a laptop 
with the MVN studio 4.2.0 software installed, and then to the 
tablet. Custom-made software on the tablet used the incoming 
data from the IMUs of the smart glasses and the motion capture 
system to update the position of the augmented cues displayed by 
the smart glasses in real time. This resulted in the augmented cues 
being displayed as if they were placed on the floor.

cues
The following five conditions were tested: 3D augmented 
transverse bars (AB) (see Video S1 in Supplementary Material 
for an illustration), 3D augmented staircase (AS) (Video S2 in 
Supplementary Material), equally spaced transverse conventional 
bars (CB) on the floor, auditory cueing via a conventional met-
ronome (CM) and no cues (OFF). The smart glasses were worn 
during all conditions. The dimensions of the AB were set to match 
those of the CB, which measured 914  mm (width)  ×  19  mm 
(depth) × 19 mm (height) with a distance in between the bars of 
40% of the participant’s height rounded to the nearest 5 cm, based 
on previous studies (9, 15, 30). The AS was set to match a real stair-
case measuring 914 mm (width) × 254 mm (depth) × 196 mm 
(height). The position of the AB and staircase was adjusted in real 
time according to the walking speed and head orientation of the 
participant. The bars in conditions CB and AB and the staircase in 
condition AS were all colored white. The metronome in condition 
CM was played via speakers at a clearly audible volume, at 110% 
of a participant’s preferred cadence (25, 31–33).

Walking courses
The walking trajectory consisted of a 15 m walking track along 
an empty corridor at the University of Twente, with a passage at 
7.5 m made-up by two chairs placed 50 cm apart (Figure 2). Three 
different walking courses were performed along this walking tra-
jectory. In the “walking straight” (−) course, participants walked 
along the walking trajectory without any additional task. In the 
“stop and start” (S) course, prerecorded voice commands signaled 
the participants to stop walking at three random distances along 
the track; they were instructed beforehand to resume walking 
on their own initiative. In the “turning” (T) course, participants 
were signaled by prerecorded voice commands to make a full 360° 
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FigUre 2 | Walking courses. In each of three walking courses, the 
participant walked across a 15 m long walking trajectory with a passage at 
the middle of the trajectory created by two chairs 0.5 m apart. In the walking 
straight (−) course, no additional task was performed. In the “stop and start” 
(S) course, prerecorded voice commands signaled the participants to stop 
walking at three random distances along the track. Participants were 
instructed to resume walking on their own initiative. In the “turning” (T) 
course, participants were signaled by prerecorded voice commands to make 
a full 360° turn at three random distances along the track. No stop-signals or 
turn-signals were given in the “no signal—zone” at the first and last 2 m of 
the walking trajectory. All measures in Figure 2 are given in meters.
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turn at three random distances along the track. No stop-signals 
or turn-signals were given in the “no signal—zone” at the first and 
last 2 m of the walking trajectory.

The experiment consisted of two sessions separated by a half 
an hour break. Each session consisted of five “blocks” with one 
condition (AB, AS, CB, CM, or OFF) per block. A block included 
all the walking courses (−, S, T) performed once. Hence, each 
condition–course combination was performed once per session. 
In between blocks, participants were offered to rest as long as 
needed. The order of the conditions (AB, AS, CB, CM, OFF), the 
courses (−, S, T) and the timing of the “stop” and “turn” signals 
were balanced by the experiment control software on the laptop. 
Experiments were performed in a single visit, lasting on average 
2.5–3 h.

Prior to the experiment, participants familiarized themselves 
with the smart glasses, the augmented cues, and the CB. Each walk-
ing course was explained, shown, and practiced until performed 
correctly. Participants were not instructed in explicit detail on 
how to handle the cues. After the first session, participants were 
asked whether they wanted to continue with the second session 
after the break, or quit (for example, because of tiredness).

User interview
A semi-open structured interview was performed after the 
walking trials to assess participants’ experience with the smart 
glasses and cues (Table S1 in Supplementary Material). This 
interview encompassed questions and statements regarding the 
use of technical devices, usefulness of the four different cues 
(AB, AS, CB, and CM), ease of use and learning, satisfaction with 
the glasses and cues, preferences, and suggestions regarding the 

glasses and cues. Participants were asked to rate on a 5-point 
Likert scale (1 representing “totally disagree,” 5 “totally agree”) 
how much they agreed with the statements and were invited to 
elaborate on their answer. For question 7, which asked for cueing 
condition preferences, the condition preferred the most (question 
7.1) was assigned 5 “preference points,” the second most preferred 
condition (question 7.2) 4 preference points, and so on up to the 
least preferred condition (question 7.5). Preference points were 
summed per condition.

Data analysis
A video recorder at each end of the walking trajectory recorded all 
trials on video for post hoc analysis of FOG. In accordance with the 
current working definition, FOG was defined as “brief, episodic 
absence or marked reduction of forward progression of the feet 
despite the intention to walk” (1). Two independent raters (Sabine 
Janssen and Jorik Nonnekes) were blinded for the condition 
(except for the CB) and scored the videos for number and duration 
of FOG per trial. Discrepant ratings were discussed until consen-
sus was reached. Motion data from the Awinda motion capture 
system were wirelessly transmitted to MVN studio version 4.2.0. 
Orientation and position data, calculated by MVN studio, together 
with raw accelerometer and gyroscope data were exported to 
Matlab R2014b (Mathworks, Inc., Natick, MA, USA) for the offline 
calculation of gait parameters as previously described (12).

Primary performance measures were the number of FOG 
episodes, the percentage of time spent on FOG, and the variabil-
ity (represented by the SD) of the stride length and cycle time. 
Secondary performance measures were the stride length, cycle 
time, cadence, and speed.

All statistical tests were performed in IBM SPSS version 24. 
An alpha of 0.05 was applied for all two-sided tests. Normality 
of distributions was tested with the Shapiro–Wilk test. Central 
tendency and statistical dispersion are given as the mean and SD 
if distributions were normally distributed, and otherwise as the 
median and interquartile range. The number of FOG episodes and 
the percentage of time spent on FOG (calculated as the cumula-
tive duration of FOG divided by the summed duration of trials 
multiplied with 100, per individual and per condition) were com-
pared in participants who experienced at least one FOG episode 
throughout the experiment. Sub-analyses were performed for 
FOG episodes occurring during turning and during non-turning 
events. In addition, sub-analyses were performed for the number 
of FOG episodes and the percentage of time spent on FOG in the 
participants who experienced the most FOG episodes (defined 
as a total number of FOG episodes above the median number of 
FOG episodes in all participants with at least one FOG episode).

The mean and SD of the step length and of the time to com-
plete one gait cycle (cycle time), cadence, and walking speed 
were analyzed exclusively for the “walking straight” courses, in 
all participants. Kinematic parameters were calculated as the 
median values per participant, per condition, and then com-
pared across participants for each cueing condition. A one-way 
repeated measures ANOVA was applied in the case of normally 
distributed data. If the assumption of sphericity, as assessed by 
Mauchly’s test of sphericity, was violated, a Greenhouse–Geisser 
correction was applied. The non-parametric Friedman test was 
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Table 1 | Clinical characteristics of the participants (N = 25).

Median range

Age (years) 72 65–79
Gender (% male) 76
Height (cm) 171 159–189
Body mass index (kg/m2) 27.1 21.7–37.2
Disease duration (years) 11 3–20
Years since FOG (years) 2 0.25–12
Daily levodopa dosage (mg/day) 750 0–1,200
UPDRS-part III 34 10–61
UPDRS-PIGD 6 2–12
Hoehn and Yahr 2 2–3
MMSE 28 19–30
NFOGQ 18 8–28
FAB 14 5–26

FOG, freezing of gait; UPDRS-part III, Unified Parkinson’s Disease Rating Scale part III: 
motor examination; UPDRS-PIGD, Unified Parkinson’s Disease Rating Scale—postural 
instability and gait disorder (question 3.9 up to 3.13 from UPDRS-part III); MMSE, mini-
mental state examination; NFOGQ, New Freezing of Gait Questionnaire; FAB, frontal 
assessment battery.
All questionnaires, including the UPDRS, were rated while participants were  
end-of-dose.

Table 2 | FOG and gait parameters per condition.

Parameter condition p-Value

OFF cb cM ab as

FOg parametersa

Mean number of FOG per trial 0.08 (0.11) 0.10 (0.08) 0.09 (0.14) 0.11 (0.19) 0.13 (0.15) 0.042†A

% Time spent on FOG 9.05 (12.11) 12.73 (13.08) 12.34 (16.86) 12.41 (15.28) 15.56 (13.68) 0.090†

gait parametersb

Stride length variability 0.17 (0.12) 0.21 (0.10)b 0.17 (0.13) 0.16 (0.14) 0.15 (0.07)b 0.001*
Cycle time variability 0.24 (0.06) 0.31 (0.27) 0.24 (0.12) 0.24 (0.12) 0.21 (0.13) 0.117*
Stride length (m) 0.92 (0.35) 1.19 (0.57)c,D 0.94 (0.37) 0.93 (0.32)c 0.86 (0.37)D 0.001*
Cycle time (s) 1.15 (0.16)e 1.60 (0.33)e,F,g,h 1.15 (0.16)F 1.18 (0.25)g 1.18 (0.16)h <0.0005†

Cadence (steps/min) 102.76 (13.88)i 74.41 (15.83)i,J,K,l 102.81 (14.38)J 100.40 (19.63)K 99.85 (13.41)l <0.0005†

Speed (m/s) 0.83 (0.41)M 0.72 (0.44)M,n 0.84 (0.42)n 0.78 (0.34) 0.75 (0.40) 0.001†

aFOG parameters in mean (SD), in participants with more than one FOG episode throughout the experiment (N = 19); all walking courses.
bGait parameters in median (interquartile range), in all participants (N = 25); during “straight-walking” courses.
FOG, freezing of gait; OFF, smart glasses switched OFF; CB, conventional bars; CM, conventional metronome; AB, augmented bars; AS, augmented staircase.
p-Values for within group differences are calculated with a one-way repeated measures ANOVA (*) or Friedman test (†). Statistically significant differences (adjusted p < 0.05, two-
sided tests) between pairs of cues are printed bold, with the test statistic and p-value given in the legend. AUpon post hoc pairwise comparisons no statistically significant differences 
between cue-pairs. Bχ2 2.048, p < 0.0005. Cχ2 1.571, p = 0.013. Dχ2 1.762, p = 0.003. Ep < 0.0005, 95% CI difference CB–OFF 0.30–0.55. Fp < 0.0005, 95% CI difference CB–CM 
0.31–0.54. Gp < 0.0005, 95% CI difference CB–AB 0.26– 0.49. Hp < 0.0005, 95% CI difference CB–AS 0.27–0.52. Ip < 0.0005, 95% CI difference CB–OFF −32.42 to −18.56. 
Jp < 0.0005, 95% CI difference CB–CM −31.88 to −20.07. Kp < 0.0005, 95% CI difference CB–AB −30.09 to −15.19. Lp < 0.0005, 95% CI difference CB–AS −30.99 to −17.02. 
Mp = 0.019, 95% CI difference CB–OFF −0.23 to −0.02. Np = 0.007, 95% CI difference CB–CM −0.22 to −0.03.
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used in case of non-normality. All post  hoc pairwise compari-
sons were performed with a Bonferroni correction for multiple 
comparisons.

From the exit interview, median scores are reported for ques-
tions answered on a 5-point Likert scale. Questions with open 
answers and elaborations on the closed questions were qualita-
tively assessed.

resUlTs

Clinical characteristics of the participants are summarized in 
Table  1. All 25 participants completed the first session. Five 

participants did not perform the second session because of 
physical tiredness, resulting in 20 participants who completed 
both sessions. The results of the statistical tests on FOG and gait 
parameters are summarized in Table 2.

Freezing of gait
There was a high degree of consensus between raters (Sabine 
Janssen and Jorik Nonnekes) on the rating of number 
[rs(23) = 0.979, p < 0.0005] and total duration of FOG episodes 
[rs(23)  =  0.974, p  <  0.0005] per participant. In 19 out of 25 
participants, at least one FOG episode occurred during the 
experiment, with a total of 300 FOG episodes for all persons 
together. Of these, 18 participants experienced a total of 224 
FOG episodes during turning, and 8 participants experienced 
FOG during walking straight (20 episodes), gait initiation (18 
episodes), passing the passage (21 episodes), or upon coming to 
a standstill (17 episodes). Only participants in whom at least one 
FOG episode occurred (N = 19) were included in the analysis 
of the effect of cues on FOG. The number of FOG episodes 
(Figure 3A) and the percentage of time spent on FOG (Figure 3B) 
were non-normally distributed, hence the Friedman test was 
used. Although there was a statistically significant difference 
amongst the various cues for number of FOG episodes, pairwise 
comparisons failed to show a significant difference. There was no 
statistically significant difference in the percentage of time spent 
on FOG amongst the different cues. Results were similar when 
performing a sub-analysis for FOG episodes occurring during 
turning (representing temporally triggered FOG) and during 
non-turning events (representing spatially triggered FOG). 
Sub-analyses among participants with the greatest number of 
FOG episodes (N = 10) again showed no statistically significant 
difference in number of FOG episodes nor in the percentage of 
time spent on FOG across the five conditions.
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FigUre 3 | Effects of conditions on freezing of gait (FOG) occurrence. Boxplots visualizing the effect of the five conditions on mean number of FOG episodes per 
trial (a) and percentage of time spent on FOG (b) for each condition in participants who experienced more than one FOG episode throughout the experiment 
(N = 19). Off, smart glasses worn but switched off; CB, conventional bars; CM, conventional metronome; AB, augmented bars; AS, augmented staircase.
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gait Variability
The median stride length variability was statistically significant 
higher for the CB compared to the AS (Figure 4A; Table 2). There 
was no statistically significant difference in cycle time variability 
amongst the various conditions (Figure 4B; Table 2).

stride length and cycle Time
The stride length was statistically significant larger for the 
conservative bars compared to the AB and the AS (Figure 4C; 
Table 2). The median cycle time showed one outlier for the no 
cue condition; exclusion of the outlier did not change the results, 
hence the outlier was included in the analysis. The assumption of 
sphericity was violated [χ2(9) = 28.564, p = 0.001], and therefore 
a Greenhouse–Geisser correction was applied (ε =  0.555). The 
median cycle time was statistically significant higher for the CB 
when compared to the no cue condition, the CM, the AB, and the 
AS (Figure 4D; Table 2).

cadence and speed
Cadence showed no outliers, and the assumption of sphericity 
was not violated [χ2(9) = 13.979, p = 0.124]. The median cadence 
was lower for the CB compared to the no cue condition, the CM, 
the AB, and the AS (Figure 4E; Table 2). For speed, the assump-
tion of sphericity was violated [χ2(9) = 24,325, p = 0.004], hence 
a Greenhouse–Geisser correction was applied (ε =  0.594). The 
median speed was lower for the CB compared with the no cue 
condition and the CM (Figure 4F; Table 2).

User experience
Overall, the CM was preferred the most (99 preference points), 
followed by the CB (80 preference points), AB (77 preference 
points), no cues (61 preference points), and AS (58 preference 
points). Participants indicated they could walk better with cues 
(AB/AS/CB/CM 4), that all cues except the AS made walking 
easier (AS 3; AB/CB/CM 4), and that they considered all cues 
except the AB useful (AB 3; AS/CB/CM 4). The metronome was 

considered the most well-suited cue to provide more control over 
daily life activities (CM 4; AB/AS/CB 3) and met participants’ 
needs (CM 4; AB 2; AS/CB 3) and expectations (CM 4; AB/AS 3; 
CB 2) the most. The AB and CB were considered less distracting 
than the AS and CM (AB/CB 4; AS/CM 3). Ease of use, usability, 
and willingness to use the smart glasses in everyday life were 
rated low (2). The use of smart glasses did not require additional 
effort (3), and walking with smart glasses was considered easy 
to learn (4). Participants suggested to improve the comfort, 
esthetics, usability, field of view, and stability of the smart glasses 
on the head and to reduce their weight and size. With regard to 
the augmented cues, three participants suggested to experiment 
with softer colors than the current white, and three participants 
suggested to broaden the augmented cues, and one participant 
wished for footsteps on the AS.

DiscUssiOn

The present study investigated the usability of 3D augmented 
visual cues delivered by smart glasses, conventional 3D bars on 
the floor, a metronome or no cues on the occurrence of FOG, 
the percentage of time spent on FOG, the (variability of) stride 
length and cycle time, cadence, and speed. Note that the smart 
glasses were worn during all conditions, but only switched on for 
the AB and staircase. Neither the AB and staircase, the CB on the 
floor, nor the metronome reduced the number of FOG episodes 
or the percentage of time spent on FOG. Results were similar in 
the subset of FOG episodes occurring during spatially demand-
ing situations, when the FOG episodes triggered by turning were 
excluded. The CB caused an increase in stride length, cycle time 
and stride length variability, and a decrease in cadence and speed. 
There was no effect of the other cues on gait parameters.

That the CB on the floor and the metronome failed to reduce 
FOG contradicts studies reporting a reduction in FOG by visual 
(16, 34) or auditory (34, 35) cues. The influences of CB on gait 
parameters could be attributable to the distance between the 
bars depending on the participant’s height (leading to larger and 
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slower steps if the distances between the bars were larger than a 
participants’ preferred uncued step length), and the observation 
that participants varied the number of steps in between two bars, 
increasing stride length variability. That other cues did not alter 
gait parameters does not correspond to earlier studies (7, 10, 11).

We propose several possible explanations for the lack of effects 
of cues on FOG and gait parameters. First, participants were not 
used to walking with smart glasses, and this novel experience, 

together with their experience of the smart glasses being quite 
heavy and uncomfortable, might have caused distractions. It is 
well recognized that dividing attention is impaired in PD-FOG 
(36), and FOG severity has been correlated with difficulties in 
switching attention (37). Dual tasks, which also require switch-
ing or dividing attention, are known to deteriorate FOG (38) 
and to counteract the FOG-alleviating effects of visual cues 
(39). Considering that FOG occurrence did not differ amongst 
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conditions (including with the smart glasses switched off), the 
smart glasses themselves rather than the cues might have caused 
distraction. This may have canceled out the FOG-ameliorating 
effect of cues. With regard to gait parameters, dual tasks are 
known to decrease step length, walking speed (39), and increase 
cadence (38) and step length variability (39) in PD-FOG, effects 
which are undone in the presence of visual cues (39). Because a 
condition without smart glasses was not included, we cannot rule 
out that the smart glasses induced distraction, similar to a dual 
task, altering these gait parameters. However, the previous obser-
vation that dual task-induced gait alterations could be reversed 
by visual cues (39) was not found in our study. The rather “bulky” 
design of this prototype of smart glasses was due to technical 
constraints raised by the requirements to deliver 3D augmented 
cues as if placed in the real environment. Second, the duration of 
the experiment might have been insufficient for participants to 
familiarize themselves with the smart glasses and cues. Indeed, 
in former studies, immediate effects of cues were variable, while 
longer periods of cueing training were thought to be more effec-
tive (18). Third, the frame of the smart glasses blocked part of 
the peripheral visual field. This might have reduced the visual 
feedback which persons with PD-FOG are more reliant on due 
to impaired propriocepsis (40–43). A previous study showed 
that blocking the view of the lower limbs caused an increase in 
FOG, which visual cues did not prevent (39). Hence, the frame 
of the smart glasses might have reduced visual sensory feedback, 
thereby increasing FOG occurrence in all conditions, which was 
not reversed by visual cues. In addition, blockage of the visual 
field has previously shown to decrease step length, velocity, and 
cadence, which was reversible with visual cues in one (39), but 
not in another study (41). Such difference in gait parameters 
between visually cued and un-cued conditions could not be 
confirmed in our study. Fourth, the augmented visual cues as well 
as the CB were all perceived in the central visual field. It has been 
suggested that the integration of information from the central 
and peripheral visual fields is important for the perception of 
self-movement (44) and that typically a stationary center with 
a moving periphery induces a sense of self-movement. Moving 
visual cues in the central visual field, such as in our experiment, 
constitute the opposite situation. This might influence the sense 
of self-motion, thereby affecting motor planning and potentially 
contributing to the occurrence of FOG (45). However, currently 
used visual cues such as bars on the floor or laser lights (46–48) 
are predominantly presented in the central visual field, while an 
enhanced peripheral optic flow delivered via Google Glass did 
not reduce FOG (12). Fifth, dopaminergic medication levels at 
the end-of-dose might have interfered with the effects of cueing. 
Studies finding no effects of cues on FOG and gait parameters 
were predominantly performed in the ON state (15, 49–52). 
However, rather than that medication interferes with the effects 
of cues, these studies might have been underpowered to find 
effects of cues on gait parameters that (due to the symptomatic 
effect of medication) were less severely disturbed than in the 
OFF state. Positive effects of cues have been reported by studies 
performed in the OFF (15, 34, 35, 52, 53), ON (6, 10) as well as the 
end-of-dose state (25). The role of medication state on response 
to cues remains to be established.

A limitation of this study is the absence of a control condition 
without smart glasses and cues, which would have allowed to 
distinguish distraction by the smart glasses, as discussed above. 
Furthermore, 224 out of 300 FOG episodes occurred during 
turning, which might be more receptive to temporal than spatial 
cues. The remaining 76 non-turn FOG episodes, which could 
potentially be more sensitive to visual cues, might have been too 
few to find a statistically significant effect.

In conclusion, 3D augmented visual cues delivered by custom-
ized smart glasses did not improve FOG nor gait stability in per-
sons with PD-FOG. Adjustments to smart glasses are prerequisite 
to turn them into effective cueing devices, amongst others by a 
more lightweight, comfortable, and user friendly design, a wider 
field of view and less interference with sensory visual feedback. 
Future research should investigate whether, and through which 
mechanisms, 3D cues are more effective than 2D cues; whether 
novel cues affect FOG provoked by spatial as well as temporal 
triggers; and whether visual cues should be presented in the 
central or peripheral visual field. Furthermore, it is of particular 
interest whether a larger effect of augmented visual cues can be 
obtained with a longer habituation period, or when cues are pro-
vided “on demand.” Ideally, future studies should include healthy 
control individuals to assess whether cues affect gait parameters 
differently in persons with PD and healthy controls. To avoid a 
“trial-and-error”-based development of new cueing devices, it is 
important to deepen our insights into the characteristics of effec-
tive cues, requirements for new cueing devices, and the neuronal 
mechanisms underlying externally cued (freezing of) gait.
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ViDeO s1 | Illustration of the simulation of three-dimensional (3D) transverse 
bars displayed in augmented reality (AR) perceived through the smart glasses. 
The upper half of the screen represents a top view of the walking direction of the 
user; here walking forward, turning 90° to the left and resuming to walk forward. 
The lower half of the screen represents the AR display. White 3D transverse bars 
are updated in real time upon movement of the user. The black area represents 
the part of the display where no AR images are being displayed, and the “real 
environment” is transmitted to be perceived by the user.

ViDeO s2 | Illustration of the simulation of a three-dimensional (3D) staircase 
displayed in augmented reality (AR) perceived through the smart glasses. The 
upper half of the screen represents a top view of the walking direction of the 
user; here walking forward, turning 90° to the left and resuming to walk forward. 
The lower half of the screen represents the AR display. A white 3D staircase 
is updated in real time upon movement of the user. The black area represents 
the part of the display where no AR images are being displayed, and the “real 
environment” is transmitted to be perceived by the user.
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