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Objective: Changes in functional network connectivity following traumatic brain injury (TBI) 
have received increasing attention in recent neuroimaging literature. This study sought to 
understand how disrupted systems adapt to injury during resting and goal-directed brain 
states. Hyperconnectivity has been a common finding, and dedifferentiation (or loss of 
segregation of networks) is one possible explanation for this finding. We hypothesized that 
individuals with TBI would show dedifferentiation of networks (as noted in other clinical pop-
ulations) and these effects would be associated with cognitive dysfunction.

Methods: Graph theory was implemented to examine functional connectivity during periods 
of task and rest in 19 individuals with moderate/severe TBI and 14 healthy controls (HCs). 
Using a functional brain atlas derived from 83 functional imaging studies, graph theory was 
used to examine network dynamics and determine whether dedifferentiation accounts 
for changes in connectivity. Regions of interest were assigned to one of three groups: 
task-positive, default mode, or other networks. Relationships between these metrics were 
then compared with performance on neuropsychological tests.

results: Hyperconnectivity in TBI was most commonly observed as increased within-network 
connectivity. Network strengths within networks that showed differences between TBI and 
HCs were correlated with performance on five neuropsychological tests typically sensitive to 
deficits commonly reported in TBI. Hyperconnectivity within the default mode network (DMN) 
during task was associated with better performance on Digit Span Backward, a measure 
of working memory [R2(18) =  0.28, p =  0.02]. In other words, increased differentiation of 
networks during task was associated with better working memory. Hyperconnectivity within 
the task-positive network during rest was not associated with behavior. Negative correlation 
weights were not associated with behavior.

conclusion: The primary hypothesis that hyperconnectivity occurs through dedifferentiation 
was not supported. Instead, enhanced connectivity post injury was observed within network. 
Results suggest that the relationship between increased connectivity and cognitive function-
ing may be both state (rest or task) and network dependent. High-cost network hubs were 
identical for both rest and task, and cost was negatively associated with performance on 
measures of psychomotor speed and set-shifting.
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inTrODUcTiOn

In recent years, there has been a shift in the literature toward 
implementing neuroimaging techniques such as functional 
magnetic resonance imaging to study how the brain changes at a 
systems level after injury. This conceptual shift is based upon the 
growing interest over the past decade in examining the functional 
connectivity of the system of networks underlying brain function-
ing. Functional connectivity refers to the correlation between 
brain signals derived from distinct regions of interest (ROIs). One 
approach to examining large-scale network changes after traumatic 
brain injury (TBI) is through the use of graph theory, which is a 
branch of mathematics permitting the analysis of the connections 
between the members (nodes) of a network (1, 2). Recent focus in 
network neuroscience has been to understand the functioning of 
several large-scale networks, including the default mode network 
(DMN). The DMN has a number of regional contributions includ-
ing the posterior cingulate cortex and medial prefrontal cortex (3). 
This group of brain structures appears to be most metabolically 
demanding when an individual is awake but not engaged in goal-
oriented behavior (4, 5).

Detailed analysis of DMN functioning reveals that its compo-
nents may play a number of roles in information processing (6), 
but most commonly it maintains a reciprocal relationship with the 
task-positive or other networks supporting goal-directed behavior 
(7, 8). The organization of the brain into networks is thought to 
reflect efficient organization and functioning (9, 10) such that 
metabolic cost is minimized while maximizing efficiency. Such 
segregation of neural networks may be linked to better cognitive 
functioning (11). For example, suppression of the DMN during 
goal-oriented behavior has been associated with better task per-
formance in healthy adults (12), as well as in chronic TBI (6).

Finally, given that positive and negative connectivity may rep-
resent distinct neural processes (13, 14), to examine dedifferen-
tiation, we separate positive and negative connectivity effects (i.e., 
positive and negative correlations). This was first observed in a 
small sample of subjects during the first 6 months post injury (15) 
and later cross-sectional work demonstrated similar effects. In a 
mixed sample of mild and moderate TBI, Sharp et al. (16) reported 
that hyperconnectivity within the DMN at rest predicted less 
cognitive impairment and faster reaction time. In our prior work 
examining working memory functioning, we demonstrated that 
connectivity increases followed task load and these effects were 
more pronounced post injury (17, 18). This finding of enhanced 
connectivity has been observed elsewhere, including both longi-
tudinally during recovery (17–20) and in cross-sectional studies 
of chronic samples of TBI (21–24). In the study of Dobryakova 
et al. (22), increased interhemispheric connectivity was observed 
during a novel working memory task when comparing TBI and 
healthy control (HC) samples. In the current study, we focus on 
chronic TBI to determine if residual effects of hyperconnectivity 
can be accounted for by dedifferentiation in network functioning.

Dedifferentiation as a Mechanism for 
hyperconnectivity
Given the common finding of regional increases in functional 
connectivity post injury, we sought to understand how disrupted 

systems adapt to injury both during resting and goal-directed 
brain states, and whether dedifferentiation, or loss of segregation 
of intrinsic neural networks, is accounting for hyperconnectiv-
ity effects. The term dedifferentiation has been typically used 
to describe the loss of specialization in the response of brain 
networks and is now considered a hallmark feature of normal 
aging (25,  26). In aging, dedifferentiation has been particularly 
evident among areas such as the prefrontal cortex, hippocampus, 
and primary sensory cortices (27–30). Several models have 
been developed to explain the apparent loss of segregation of 
neural networks in aging, including the hemispheric asymmetry 
reduction in older adults model, based on the observation of 
decreased interhemispheric lateralization of the prefrontal cor-
tex. Alternatively, the compensation-related utilization of neural 
circuits hypothesis model posits that the increased involvement 
of previously differentiated regions reflects the use of alternate 
patterns of connectivity to perform a task, and that dedifferentia-
tion thus serves as a compensatory mechanism (31, 32).

In order to examine dedifferentiation as a mechanism for 
hyperconnectivity, we use task and rest to examine properties 
within networks (e.g., connectivity between nodes within an 
intrinsic network), as well as properties between networks (i.e., 
connectivity between nodes from different intrinsic networks). 
One consideration is that neurological injury results in “network 
randomization” (33), reducing differentiation of established brain 
networks. Such dedifferentiation, or reduced specificity in net-
work response between the brain’s networks, could be a marker of 
response to neural disruption and recovery. Determining whether 
connectivity changes occur within a given network, between 
networks, or both between and within networks is critical in 
order to understand what these connectivity changes mean for 
cognition and function. Thus far, studies have used graph theory 
metrics to examine TBI within rest and task, respectively, and 
have demonstrated that changes in these metrics are associated 
with cognitive deficit. This study seeks to expand upon the cur-
rent literature and implement graph theory metrics (e.g., network 
strength) to examine how the relationship between connectivity 
during rest and task differs between TBI and HCs, and how this 
relationship is associated with cognition.

To examine the relationship between dedifferentiation and 
hyperconnectivity observed in TBI, we use three approaches. First, 
in order to induce network segregation, we examine connectivity 
during periods of rest and task. Second, we examine connectivity 
changes both within and between networks (e.g., DMN and the 
task-positive network). Finally, given that dedifferentiation has 
implications for how networks relate to one another, we sepa-
rate positive and negative connectivity effects (i.e., positive and  
negative correlations), as positive and negative networks have 
been shown to have different network characteristics from one 
another (14).

To test the hypotheses regarding dedifferentiation, we created 
brain networks for graph analysis using a functional brain atlas 
derived from 83 functional imaging studies (34). We specifically 
chose this parcellation approach for two reasons. First, it is defined 
based upon the results of the most common functional imaging 
studies and we are interested in examining alterations in functional 
connectivity and implications for behavior and recovery. Second, 
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TaBle 1 | Demographic information.

sample size n age;  
mean (sD)

education;  
mean (sD)

gender glasgow coma scale;  
mean (sD)

Time postinjury (years);  
mean (sD)

Traumatic brain injury 19 29.52 (13.05) 13.35 (2.21) 8 F, 11 M 7 (4.35)  1.88 (2.5)

Health control 14 40.07 (17.49) 13.29 (1.77) 4 F, 10 M N/A  N/A
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the Power 264 parcellation provides near whole-brain coverage 
with greater specificity than most anatomical atlases. In a recent 
study, this approach afforded greater opportunity to observe 
fractionation of networks in TBI compared to a driven approach 
(35). The goal was to first replicate findings in moderate and severe 
chronic TBI, where investigators have observed hyperconnectivity 
in core networks [e.g., DMN; for review see Ref. (36, 37)]. Second, 
we aimed to determine if hyperconnectivity could be explained 
by dedifferentiation of networks by comparing network response 
during task and rest, and if so, which nodes were driving these 
altered relationships (i.e., most costly nodes, or “hubs”). Finally, we 
sought to determine if the degree of within and between network 
connectivity was a predictor of cognitive functioning.

We hypothesized that individuals with TBI will show hyper-
connectivity compared to HCs and that increased connectivity 
will be attributable to dedifferentiation of networks. Support for 
dedifferentiation would be found if the hyperconnectivity occurred 
through recruitment of ROIs from other networks with the DMN 
during rest and with recruitment of ROIs from other networks 
and the task-positive network during task. We also hypothesize 
that positive hyperconnectivity will be associated with decreased 
performance on measures sensitive to deficit in TBI. Finally, we 
predicted that less negative weighted network strength will be 
associated with worse performance on cognitive measures, based 
upon findings from the mild TBI (mTBI) literature (38, 39).

MaTerials anD MeThODs

Procedure
This study was a retrospective analysis of functional imaging data 
and neuropsychological testing data previously collected. All 
participants underwent a similar MRI protocol, which included 
a resting state scan in addition to a block design one-back task, 
followed by administration of a traditional neuropsychological 
battery outside of the scanner. Imaging data were collected on 
a Philips Achieva 3T scanner or a Siemens Magnetom Trio 3T 
whole-body scanner housed in the Department of Radiology at 
Hershey Medical Center, or either a Siemens Magnetom Trio 3T 
whole-body scanner or a Siemens Prisma 3 T whole-body scan-
ner, both housed in the Social, Life, and Engineering Sciences 
Imaging Center at The Pennsylvania State University, University 
Park. Informed consent was gathered for all participants. The 
Penn State IRB approved the informed consent form that was 
used in this study. Additionally, participants were compensated 
for participating in this study.

Participants
Participants included 19 individuals with moderate to severe 
TBI, indicated by a Glasgow Coma Scale score of 3–12 (40) or 

by positive MRI or CT finding, who were at least approximately 
1 year post injury. These individuals were recruited as part of one 
of two possible studies: a cross-sectional study at least 12 months 
post injury, and a longitudinal study examining recovery begin-
ning 3 months post injury. Data from the longitudinal study used 
was collected from the third time point, approximately 12 months 
post injury. Though this method of recruitment yields a sample in 
which a portion of the participants have previously been exposed 
to the stimuli, tests that were administered were chosen because 
they have been shown to have little effect with practice (e.g., one-
back task, Digit Span subtest from the Wechsler Adult Intelligence 
Scale-III). To examine this effect directly, an independent samples 
t-test comparing mean performance on all cognitive tests showed 
no group differences between individuals with TBI recruited 
from the cross-sectional study and those recruited from the 
longitudinal study who had been exposed to the stimuli before. 
Thus, it is unlikely that practice effects accounted for the results 
discussed below. A group of age- and education-matched HCs 
underwent the identical protocol and time 2 data for this sample 
were used in order to equilibrate exposure effects. See Table 1 for 
demographic information.

Measures
MRI Scans
T1-Weighted Magnetization-Prepared Rapid Acquisition 
with Gradient Echo
Structural data were acquired with 1 mm × 1 mm × 1 mm voxels, 
a repetition time (TR) of 2,300  ms, and an echo time (TE) of 
2.98 ms, and slices were collected interleaved.

Resting State Scan
All participants were presented with the same stimulus, were 
instructed to fixate on the white cross on the center of the screen, 
and were reminded not to fall asleep. The 34–35 slices collected 
were interleaved with 3 mm × 3 mm × 4 mm voxels and acquired 
with a TR of 2,000 ms and an TE of 30 ms. The first five volumes 
were removed prior to beginning preprocessing, leaving 145 
volumes for analysis.

One-Back Task
This task is an established block-design task with low cognitive 
demand where individuals are presented with a series of letters one 
at a time. A button press with the right hand on the right grip is 
required if the presented letter matched the letter that preceded it or 
to press the button with their left hand on the left grip if the presented 
letter did not match the letter that preceded it. Scan parameters for 
the n-back task were identical to the resting state scan, with slices col-
lected interleaved with 3 mm × 3 mm × 4 mm voxels, and have a TR 
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FigUre 1 | Schematic of calculation of network strength.

TaBle 2 | Power regions of interest (ROI) networks.

network number of rOis examples of included rOis

1. Task+ 59 Frontoparietal task control

2. Default mode network 58 Default mode

3. Other networks 147 Others
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of 2,000 ms and a TE of 30 ms. The first 10 volumes were discarded, 
resulting in 126 volumes included in analyses.

Neuropsychological Tests
In addition to completing the one-back task inside the scanner, all 
participants were administered a battery of neuropsychological 
tests outside of the scanner aimed at capturing areas of cognition 
known to be affected by TBI, such as working memory, processing 
speed, and executive functioning. The battery included Wechsler 
Adult Intelligence Test-III Digit Span Backward and Forward, 
Trail Making Test A and B, and Visual Search and Attention Task 
(VSAT).

Data analysis
Data Preprocessing
All individuals’ data underwent the same preprocessing pipeline. 
Each individual’s working memory and resting state data were 
slice-timed corrected, realigned, normalized to a standard T1 
template from the Montreal Neurological Institute, and smoothed 
to minimize signal-to-noise ratio. Data were preprocessed using 
SPM8, and motion was examined using the Artifact Repair toolbox 
(41), in order to identify subjects with large motion and correct 
for perturbations in the BOLD signal due to motion. Individuals 
with greater than 25% volumes requiring interpolation due to 
motion during either rest or task were discarded from analyses, as 
recommended by Mazaika et al. (41). As a result, of the original 22 
eligible subjects with TBI, one case was discarded due to motion 
during rest, one was discarded due to motion during task, and a 
third was excluded due to aberrant BOLD signal, yielding a sample 

of 19 subjects with TBI. Of the original sample of 15 HCs, one was 
discarded due to excessive motion during the rest scan.

ROI Selection
Power’s 264 functionally defined atlas was used to define ROIs 
(34). Whole brain connectivity was examined across these 264 
ROIs using graph theoretical methods (explained below). Power 
and colleagues’ functional labels for each ROI were then used 
to group these ROIs into five functional networks (see Table 2). 
The primary goal of grouping these ROIs into networks was to 
be able to determine whether connectivity changes observed 
in individuals with TBI compared to HCs were occurring in 
networks typically functionally associated with other brain states 
(e.g., task-related network recruited during rest).

Graph Theory
Graph theory was used to examine whole brain connectivity and 
determine patterns of response. Power ROIs (34) were correlated 
with each other to form an adjacency matrix using a code writ-
ten in R [R.3.1.1 (42)] [e.g., N ROIs will produce N*(N − 1)/2 
undirected connections]. Out of these N*(N − 1)/2 correlation 
values only those that survived FDR test at 0.05 were chosen and 
the remaining connections were set to 0. To test our hypothesis 
of dedifferentiation of networks, between and within network 
strength was calculated for each network during both rest and 
task for both positive and negative connectivity (see Figure 1). 
In order to assess whether functional connectivity differences 
were associated with better or worse recovery, several metrics, 
including network strength and degree of nodes (see Table 3), 
were correlated with cognitive functioning using SPSS (version 
24.0).

resUlTs

analysis of Whole-Brain graph Metrics
Individuals with TBI and HCs did not differ significantly in 
terms of mean path length or mean clustering among significant 
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TaBle 3 | Graph theory terms.

graph theory 
term

Definition computation

Edge Significant correlation 
between time series of two 
different nodes (i.e., regions 
of interest)

Network 
strength

Total number of edges by 
the weight of those edges 
(in weighted graph) can be 
examined globally or within 
a more specific network 
determined a priori

S w e
j N i

ij=
( )∈
∑ ( )

Degree Absolute sum or total 
number of connections 
emanating from a particular 
node

deg ( )i ijj N i
w e=

∈ ( )∑ , where N(i) is 
the set of neighbors of node i.

Clustering 
coefficient (C)

The number of edges that 
exist between a node and 
its nearest neighbors

by C
n

Cii

n= 1
1=∑ , where 

C
e j k N i e E

i

jk jk

i i

=
( ){ }
−( )
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deg deg 1

Path length (L) The average minimum 
number of edges required 
to travel between two given 
nodes

As L =
n n 1

d i j
i j

1
( )− ≠

( , )∑ , where 
d(i,j) is the shortest distance 
between node i and node j

FigUre 2 | Mean differences at a global level in terms of mean network strength between health controls (HCs) and traumatic brain injury (TBI) during rest and task. 
Individuals with TBI were negatively hyperconnected at a global level compared to HCs during rest.
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positive and negative edges in the whole brain, respectively, 
during task or rest. Of note, mean clustering during rest was 
interpreted as higher in individuals with TBI (M  =  0.023, 
SD = 0.006) than HCs (M = 0.02, SD = 0.005), Cohen’s d = 0.54, 
p = 0.069.

Whole Brain Differences in Weighted 
network strength
An independent samples t-test was used to test for global dif-
ferences in mean network strength between individuals with 
TBI and HCs. During task mean negative network strength 
was significantly higher in individuals with TBI (M = 1,297.12, 
SD  =  308.11) compared to HCs (M  =  402.19, SD  =  109.75) 
[t(31) = −11.69, Cohen’s d = 3.87, p < 0.001], whereas positive 
connectivity during task was only marginally higher in those 
with TBI (M = 2,370.24, SD = 464.54) than HCs (M = 2,059.44, 
SD = 447.41) [(t) = −1.940, Cohen’s d = 0.68, p = 0.062]. Global 
mean network strength during rest showed only marginal sig-
nificance for positive connectivity between TBI (M = 2,139.24, 
SD = 332.06) and HCs (M = 1,944.74, SD = 251.40) [(t) = −1.835, 
Cohen’s d = 0.66, p = 0.065] and for negative connectivity between 
TBI (M  =  1,183.84, SD  =  258.53) and HCs (M  =  1,036.80, 
SD =  167.53) [(t) = −1.979, Cohen’s d =  0.68, p =  0.057], see 
Figure 2.

Pairwise t-test analyses were used to test for mean differences 
in total network strength between states within each sample. 
Mean network strength of negative edges was significantly dif-
ferent in HCs, decreasing from 1,036.79 (SD =  167.53) during 
rest to 402.19 (SD = 109.75) during task [t(13) = 11.946, Cohen’s 
d =  4.48, p = <  0.001]. Positive network strength did not dif-
fer for HCs between states (M = 1,944.74, SD = 251.39 during 
rest; M = 2,059.44, SD = 447.41 during task, Cohen’s d = −0.31, 
p = 0.386). Individuals with TBI showed no significant difference 
in mean network strength in terms of positive edges during rest 
(M = 2,139.23, SD = 332.06) and task (M = 2,370.24, SD = 464.54) 
[t(18) = −1.720, Cohen’s d = −0.57, p = 0.103] and in terms of 
negative edges between rest (M = 1,183.83, SD = 258.54) and task 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


FigUre 3 | Top-power regions of interest (ROIs) recoded as the task-related 
network; bottom- Power ROIs recoded as the default mode network.
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(M = 1,297.12, SD = 308.11) [t(18) = −1.672, Cohen’s d = −0.39, 
p = 0.112]. In other words, HCs were more negatively connected 
during rest compared to task, whereas individuals with TBI 
showed no global differences between states for either positive or 
negative connection weights.

At a global level, individuals with TBI only show hyperconnec-
tivity during task for negative connectivity, but not for positive 
connectivity. There were no global differences between TBI and 
HC and the global level during rest. However, the lack of global 
mean differences in connectivity during task at the global level 
could be consistent with our hypothesis that posits hyperconnec-
tivity compared to HCs via dedifferentiation of networks; in other 
words, differences in networks at the local level may be washing 
out effects at the global level.

subnetwork Differences in Weighted 
network strength
In order to test a dedifferentiation hypothesis, Power’s 264 
ROIs (34) were assigned to one of three networks: task-related, 
default mode, and other networks (see Figure  3, Table  2). 
Analyses focused on mean weighted network strength between 
ROIs within the task-related network and within the default 

mode, respectively, in addition to internetwork mean weighted 
network strength involving the task network (i.e., valid links 
between task ROIs and ROIs from other networks) and the 
default mode (i.e., valid links between DMN ROIs and ROIs 
from other networks).

To examine the relationship between HCs and individuals 
with TBI connectivity at the local level, an independent samples 
t-test was used to compare mean weighted network strength 
between individuals with TBI and HCs during rest and task [see 
Table 4 (A, B)].

Compared to the HC sample, individuals with TBI showed 
positive hyperconnectivity within the DMN during task and 
within the task-positive network during rest. In other words, 
ROIs within the network not typically associated with a given 
state are oscillating together more strongly in TBI. The TBI 
sample showed enhanced negative connections within the DMN 
and task-positive network, respectively, and increased between 
network connectivity (dedifferentiation in terms of negative con-
nections) during task; during rest there were enhanced negative 
connections within the task-positive network and between the 
task-positive network and other ROIs.

Taken together, these findings do not support our hypothesis 
that positive hyperconnectivity would occur through dedifferen-
tiation of networks. In fact, individuals with TBI were hypercon-
nected within the DMN during task and within the task-positive 
network during rest. Increased between-network connectivity, 
which would be suggestive of dedifferentiation were it observed 
in TBI compared to HCs, did not differ between groups. In terms 
of negative connectivity, both dedifferentiation though increased 
between-network connectivity and increased differentiation 
within networks was observed compared to HCs (with the excep-
tion of within the DMN and between the DMN and other ROIs 
during rest).

relationship with Behavior
Prior to testing the relationship between connectivity and 
behavior, independent samples t-tests were implemented in order 
to observe whether group differences existed on any cognitive 
measures. No statistical group differences between TBI and HC 
were observed on any of the five measures examined.

To examine how hyperconnectivity in specific networks relate 
to behavior, weighted network strengths within networks that 
showed differences between TBI and HCs were correlated with 
performance on five neuropsychological tests typically sensitive 
to deficits commonly reported in TBI. Positive hyperconnectivity 
within the DMN during task was associated with better perfor-
mance on Digit Span Backward, a measure of working memory 
[R2(18) = 0.28, p = 0.02]. In other words, increased dedifferentia-
tion of networks during task was associated with better working 
memory. Positive hyperconnectivity within the task-positive 
network during rest was not associated with behavior. Among 
networks that differed in terms of negative connectivity between 
TBI and HCs (see Table 5), negative hyperconnectivity between 
the DMN and ROIs outside of the DMN during rest corresponded 
with better (faster) performance on the VSAT, a measure of pro-
cessing speed [R2(19) = −0.229, p = 0.045].
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TaBle 4 | (A) Positive intra- and internetwork strength; (B) negative intra- and internetwork strength.

TBi mean (sD) hc mean (sD) T cohen’s d p-Value (two-tailed)

(a) network strength (positive)

Task: DMN-self 207.59 (70.19) 167.25 (30.19) −2.24 0.75 0.03*

Task: DMN-others 642.35 (189.02) 601.69 (123.43) −0.70 0.25 0.49

Task: task+-self 182.93 (41.36) 182.27 (40.96) −0.05 0.02 0.96

Task: task+-others 759.60 (171.09) 718.28 (152.32) −0.72 0.26 0.48

Rest: DMN-self 193.11 (53.55) 159.25 (41.73) −1.97 0.71 0.06

Rest: DMN-others 556.50 (195.57) 570.63 (187.37) 0.28 −0.07 0.79

Rest: task+-self 178.73 (26.84) 154.91 (37.49) −2.13 0.71 0.04*

Rest: task+-others 649.59 (96.39) 613.42 (71.30) −1.18 0.43 0.24

(B) network strength (negative)

Task: DMN-self 37.01 (16.90) 0.00 (0.00) −9.55 3.10 <0.001*

Task: DMN-others 495.48 (132.42) 233.62 (68.31) −7.38 2.49 <0.001*

Task: task+-self 64.75 (20.50) 0.00 (0.00) −13.77 4.47 <0.001*

Task: task+-others 480.50 (124.12) 135.92 (43.55) −11.20 3.70 <0.001*

Rest: DMN-self 34.30 (14.58) 37.25 (15.09) 0.57 −0.20 0.58

Rest: DMN-others 439.02 (84.59) 408.76 (93.19) −0.97 0.34 0.34

Rest: task+-self 57.35 (22.05) 44.87 (10.66) −2.15 0.72 0.04*

Rest: task+-others 461.08 (105.50) 392.75 (71.73) −2.21 0.76 0.03*

DMN, default mode network; HC, health control; TBI, traumatic brain injury.
*p < 0.05.
**p < 0.001.

TaBle 5 | Relationship between cost and behavior among hubs.

hub neuropsychological measure 

Trails aa Trails Ba Digit span 
forward

Digit span 
backward

Task 

Middle frontal 
gyrus

r = 0.554*; 
p = 0.017

r = 0.613*; 
p = 0.007

r = −0.147; 
p = 0.562

r = 0.163; 
p = 0.517

Middle temporal 
gyrus

r = 0.377; 
p = 0.123

r = 0.484*; 
p = 0.041

r = 0.037; 
p = 0.883

r = 0.383; 
p = 0.117

Angular gyrus r = 0.396; 
p = 0.104

r = 0.455; 
p = 0.058

r = 0.078; 
p = 0.760

r = 0.040; 
p = 0.875

rest
Middle frontal 
gyrus

r = 0.471*; 
p = 0.048

r = 0.578*; 
p = 0.012

r = −0.064; 
p = 0.800

r = 0.289; 
p = 0.245

Middle temporal 
gyrus

r = 0.377; 
p = 0.123

r = 0.485*; 
p = 0.041

r = 0.037; 
p = 0.883

r = 0.383; 
p = 0.117

Angular gyrus r = 0.396; 
p = 0.104

r = 0.455; 
p = 0.058

r = 0.078; 
p = 0.760

r = 0.040; 
p = 0.875

aHigher scores are indicative of worse performance; therefore, positive correlations indicate 
a negative relationship between cost and behavior. No correlations survive statistical 
corrections. Data are interpreted based upon effect size and consistency of findings.
*p < 0.05.
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hubs Driving network changes and Their 
relationship with Behavior
We examined the most costly nodes, defined as the sum of the 
products of Euclidean distance of positive significant edges and 
their correlation strength, to determine the hubs accounting for 
changes at the network level within individuals with TBI. Costly 

nodes were defined as nodes that were greater than 1.5 SDs above 
the grand mean in terms of cost during both rest and task, respec-
tively. Interestingly, results revealed that the mostly costly hubs 
were the same five during both rest and task (see Figure 4). Hubs 
identified a priori were then correlated with performance on four 
neuropsychological tests (see Table 5). To limit the number of 
comparisons made, the relationship between cost of two hubs 
related to sensory processing, the precentral gyrus and the lateral 
occipital gyrus, and behavior was not tested.

Of the five most costly hubs, cost within the middle frontal 
gyrus and middle temporal gyrus was correlated with worse 
behavior during both rest and task, while greater cost within 
the angular gyrus and the lateral occipital gyrus during task was 
marginally associated with worse performance (see Table 5 for 
correlations and p-values). Though one of the most costly hubs 
during both rest and task, the precentral gyrus cost did not cor-
respond with behavioral performance.

DiscUssiOn

Neural networks are thought to be structured in a way that 
maximizes efficiency while minimizing cost (2, 9, 11), and 
differentiation of networks during different cognitive states 
could be reflective of such organization (43). The present study 
demonstrated hyperconnectivity at the whole brain level in 
individuals with TBI compared to HCs, with significant dif-
ferences in connectivity at the network level. Connectivity in 
the DMN during task was found to be a predictor of cognitive 
performance. Overall, network analyses do not support dediffer-
entiation of networks in individuals with TBI. Rather, these data 

http://www.frontiersin.org/Neurology/
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FigUre 4 | Most costly hubs during both rest and task. Asterisk indicates correlation with behavior (see Table 5). An asterisk (*) indicates a relationship between 
cost during task and performance; a plus sign (+) indicates a relationship between cost during rest and performance.
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indicate that increased connectivity was most evident, possibly 
counterintuitively, within the DMN during task and within the 
task-positive network during rest.

One of the primary differences between groups with regard 
to network response was in measurement of negative func-
tional connectivity. Results of negative connectivity analyses 
somewhat mirrored positive connectivity in that during 
rest, the task-positive network showed hyperconnectivity, 
as did the DMN during task. However, in addition, the task-
positive network was negatively hyperconnected during task. 
Furthermore, there was support for increased differentiation 
for negative connectivity; within network hyperconnectivity 
was noted between the task-positive network and other ROIs 
during both rest and task and between the DMN and other 
ROIs during task.

In general, brain injury can result in enhanced connectivity 
of large-scale network hubs (44). However, contrary to our 
hypothesis that hyperconnectivity would occur through dedif-
ferentiation of networks, our results reveal stronger intranet-
work positive connectivity in the TBI sample. This finding was 
perhaps counterintuitively observed in the DMN during task 
and the task-positive network during rest. Though our results 
did not support our hypothesis, they are congruent with results 
reported in a recent study by Sours et al. (45), in which individu-
als with mTBI showed increased functional connectivity within 
the DMN, but not task-positive network during a two-back 
task. Interestingly, this group also found decreased segregation 
between task-positive networks and the DMN, which could 

be interpreted as dedifferentiation of networks with increased 
cognitive load. The one-back task has relatively low cognitive 
load, and it is possible that we would have observed dedif-
ferentiation with greater cognitive load. In the current study, 
negative hyperconnectivity occurred through both increased 
within-network connectivity and between-network connectiv-
ity, potentially indicative of enhanced differentiation. This is 
inconsistent with findings reported by other groups who have 
examined negative functional connectivity in TBI. For example, 
Kasahara et al. (46) found that individuals with TBI showed 
reduced negative connectivity between motor regions that were 
negatively connected in HCs, suggesting reduced dissociation 
of these networks. As the authors note, because they did not 
examine these differences in the context of behavior (e.g., 
frequency of errors in motor tasks), it is difficult to determine 
the relationship of the lack of negative connectivity with behav-
ior. Sours et  al. (39) observed negative connectivity in mTBI 
between the DMN and bilateral insular cortex, left premotor, 
and bilateral supramarginal gyrus in HCs, but not individuals 
with mTBI during resting state. These results would be sugges-
tive of dedifferentiation of networks since the networks would 
be less segregated, yet our results only partially support this 
finding.

Positive hyperconnectivity within the DMN during task was 
associated with better working memory, but similar effects in 
the task-positive network during rest showed no relationship 
with cognition. Greater between-network negative connectivity 
between the DMN and other ROIs during rest was associated 

http://www.frontiersin.org/Neurology/
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with faster processing speed within individuals with TBI. Other 
measures of negative connectivity did not show a relationship 
with behavior. In the mTBI literature, negative connectivity was 
associated with measures of episodic memory (39), which were 
not included in this study.

The most costly hubs among individuals with TBI were the 
same during rest and task. Cost of four of the five hubs each 
showed a strong negative relationship with a measure of set-
shifting, an area of cognition often impaired following injury 
(see Figure 4 and Table 5). Cost within the middle frontal gyrus 
was associated with worse performance on a measure of psycho-
motor speed. No relationship was observed between hub cost 
and measures of attention and working memory. That increased 
connectivity within the DMN during task was associated with 
better cognitive functioning, while increased cost was associated 
with worse cognition is somewhat surprising. The apparent 
discrepancy may be due to network cost being more strongly 
related to different cognitive domains (i.e., connectivity more to 
the domain of working memory, whereas cost is more sensitive 
to psychomotor speed and set-shifting, involving a component 
of speed that might be more strongly influenced by Euclidean 
distance).

The findings presented above are consistent with the broader 
literature, where hyperconnectivity is a response to neural dis-
ruption (36, 37), and specifically with the TBI literature, where 
hyperconnectivity has been observed in humans (15–19, 23) as 
well as animal models (47) in TBI. However, unlike the aging 
literature, which shows a pattern of more distributed network 
representation through dedifferentiation of networks (26–31), 
our findings show a strengthening of connections within net-
works. This is consistent with other findings where patterns 
of enhanced connectivity within specific networks such as the 
DMN have been positively linked to behavior (6, 16, 45). The 
current study expands upon this literature by characterizing 
changes during both rest and task within and between specific 
networks during both rest and task and establishing relation-
ships with behavior.

limitations and Future Directions
While the use of graph theory to explore functional connectiv-
ity has been shown to be a sensitive marker postinjury, there is 
concern that graph theory metrics of functional connectivity are 
somewhat limited as a specific marker, given the multifactorial 
mechanisms that result in hyperconnectivity (36). Though this 
study was limited in terms of sample size, perhaps with greater 
power, distinct cognitive profiles may be linked to specific func-
tional connectivity responses post injury. It should be noted the 
study sample was taken from distinct studies, and therefore had 
different exposures to the MRI environment. Direct examina-
tion of the two TBI subgroups (i.e., previous exposure and no 
previous exposure) revealed nearly identical network findings 
(e.g., within DMN connectivity during task for TBI participants 
with previous task exposure, M  =  210.12, SD  =  91.89, and 
TBI participants without previous task exposure, M = 206.92, 
SD  =  67.25, did not differ p  =  0.94). Therefore, we do not 

anticipate that exposure to the MRI environment accounts for 
the findings reported here.

The direction of the relationship between connectivity and 
cognitive functioning remains largely unknown. Though our 
results suggest that increased connectivity is associated with 
better performance, we anticipate this relationship is likely 
nonlinear. Given our results, and as studies continue to eluci-
date specific relationships between connectivity and cognitive 
functioning (i.e., establishing within/between which networks, 
during which state, and specific hubs), future directions might 
consider exploring whether manipulating functional connec-
tivity impacts cognitive functioning via transcranial magnetic 
stimulation (48, 49).

cOnclUsiOn

Differences in connectivity between TBI and HC are most sali-
ent at the network level, which may be most relevant to specific 
cognitive changes after injury. Results suggest that the relation-
ship between increased connectivity and cognitive functioning 
depends on which state and within which network the hypercon-
nectivity occurs, with evidence for positive connectivity increases 
within the DMN being associated with better performance 
during task and increased negative between-network connectiv-
ity between the DMN and other ROIs associated with better 
performance during rest.
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