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It is widely accepted that cerebral pathology can impair ocular motor and manual motor 
control. This is true in indolent and chronic processes, such as neurodegeneration and 
in acute processes such as stroke or those secondary to neurotrauma. More recently, 
it has been suggested that disruptions in these control systems are useful markers for 
prognostication and longitudinal monitoring. The utility of examining the relationship or 
the coupling between these systems has yet to be determined. We measured eye and 
hand-movement control in chronic, middle cerebral artery stroke, relative to healthy 
controls, in saccade-to-reach paradigms to assess eye–hand coordination. Primary 
saccades were initiated significantly earlier by stroke participants relative to control 
participants. However, despite these extremely early initial saccades to the target, 
reaches were nevertheless initiated at approximately the same time as those of control 
participants. Control participants minimized the time period between primary saccade 
onset and reach initiation, demonstrating temporal coupling between eye and hand. 
In about 90% of all trials, control participants produced no secondary, or corrective, 
saccades, instead maintaining fixation in the terminal position of the primary saccade 
until the end of the reach. In contrast, participants with stroke increased the time period 
between primary saccade onset and reach initiation. During this temporal decoupling, 
multiple saccades were produced in about 50% of the trials with stroke participants 
making between one and five additional saccades. Reaches made by participants with 
stroke were both longer in duration and less accurate. In addition to these increases in 
spatial reach errors, there were significant increases in saccade endpoint errors. Overall, 
the magnitude of the endpoint errors for reaches and saccades were correlated across 
participants. These findings suggest that in individuals with otherwise intact visual func-
tion, the spatial and temporal relationships between the eye and hand are disrupted  
poststroke, and may need to be specifically targeted during neurorehabilitation. Eye–
hand coupling may be a useful biomarker in individuals with cerebral pathology in the 
setting of neurovascular, neurotraumatic, and neurodegenerative pathology.
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inTrODUcTiOn

It is widely accepted that cerebral pathology can impair ocular 
motor and manual motor control. This is true in indolent and 
chronic processes such as neurodegeneration and in acute pro-
cesses such as stroke or those secondary to neurotrauma (1–5). 
More recently, it has been suggested that disruptions in these 
control systems are useful markers for prognostication and lon-
gitudinal monitoring (6–8). Therapeutically, neurorehabilitation 
strives to address these motor control deficits with approaches 
that restore ability at the movement level in early intervention and 
at the functional performance level in later intervention; however, 
in many cases, movement-level gains do not progress into func-
tional performance-level improvements (9). Cerebral injuries, 
such as stroke, not only lead to motoric impairments but also 
sensory limitations; these sensorimotor deficits may compromise 
visual perception secondary to decreased visuomotor function 
and lead to difficulties with visually guided action in both the 
more-affected (contralateral) and less-affected (ipsilateral) hands 
(4, 10–16). During such experiments manual motor control is 
often studied objectively and typically without simultaneous eye-
movement analysis. However, altered ocular motor function is a 
sensitive biomarker of brain injury (17, 18) in both the cognitive 
and motor domains (8, 19) and provides clinical insight into neu-
rovascular, neurotraumatic, and neurodegenerative pathology.

Vision provides primary sensory information during visually 
guided action. Ocular motor programming controls gaze, which 
in turn supports the planning of hand movements. Fixations 
target key spatial positions and are contingent on the functional 
requirements of the task at hand, such as index finger placement 
for object manipulation or prehension (20, 21). Additionally, 
vision-based feedback of the hand is critical to error correction for 
online control, as gaze updates goal localization and spatial under-
standing (22). In fact, dependencies between eye and hand have 
been demonstrated and emphasize the concept of shared planning 
resources (23, 24). In acquired brain injury (ABI), motor deficits in 
the limb (e.g., hemiparesis) may be compounded by impairments 
in ocular motor control (25–33). While manual motor deficiencies 
are normally evident during clinical examination, ocular motor 
deficiencies may necessitate objective recording for detection and 
precise characterization (34–43). If eye and hand movements are 
quantified simultaneously, an improved understanding of the 
sensorimotor coupling between vision and eye–hand movement 
is achievable, and would likely be critical in providing a complete 
picture of the underlying neurological injury.

The complexity of the coordination between the ocular and 
manual motor systems is highlighted by the large cerebral net-
work coordinating ocular and manual motor control. The neu-
roanatomy of human eye-movement control depends on a large 
interconnected system of cortical and subcortical structures, and 
includes the frontal eye field, the parietal eye field, the dorsolat-
eral prefrontal cortex, the supplementary eye field, the cingulate 
eye field, and the basal ganglia (30, 44–58). The neuroanatomy 
of human reach control depends on the primary motor cortex 
and the premotor and supplementary cortices, relaying neural 
information corticofugally through the descending corticospinal 
tracts to orchestrate hand movements (59, 60). The somatosensory 

cortex, posterior parietal cortex, cerebellum, and basal ganglia 
further supplement reach control. The posterior parietal cortex 
translates visual input and information from the somatosensory 
cortex into motor programs (60, 61). The extensiveness of these 
connected networks increases the potential sensitivity of these 
biomarkers to cerebral damage and highlights the utility of objec-
tifying eye–hand coordination in the setting of neurovascular, 
neurotraumatic, and neurodegenerative pathology.

Eye–hand coordination centers on the ability to visually 
encode details in the environment and direct goal-oriented hand 
movements, including pointing, reaching, grasping, tool use, and 
object manipulation, encompassing performance in many motor 
activities relevant to functional independence (62, 63). Precise 
ocular motor control, resulting in high acuity visual perception, 
facilitates sound manual motor control, making use of movement-
relevant visual inputs (64, 65). Multimodal sensory feedback and 
sensory predictions in feedforward motor control are essential 
to visuomotor integration during task-specific movements (66). 
In neurological injuries, whether neurovascular, neurotraumic, 
or neurodegenerative, these coordinated motor programs are 
susceptible to a breakdown or a decoupling between effectors, 
as a byproduct of specific ocular motor deficits, manual motor 
deficits, or deficits in the temporal and spatial relationships 
needed for rapid and integrated motor control. In this study, we 
tested eye and hand-movement control in chronic, middle cer-
ebral artery (MCA) stroke, relative to healthy controls, in both a 
visually guided and memory-guided saccade-to-reach paradigm 
to assess eye–hand coordination. To the investigators’ knowledge, 
in the setting of ABI, this is the first investigation of objective 
ocular motor and somatic motor control using an unrestricted, 
three-dimensional (3D) eye–hand coordination task (67). We 
hypothesized that chronic hemispheric stroke participants with-
out clinically diagnosed visual deficits on bedside testing would 
show abnormalities in saccadic and manual motor control, as 
compared to healthy controls.

MaTerials anD MeThODs

Participants
Thirty participants participated in the research study. There were 
17 participants in the control cohort (aged 26.2  ±  4.6), and 13 
participants in the stroke cohort (aged 57.4 ± 14.2). Five stroke 
participants had right hemispheric MCA strokes and eight had left 
hemispheric MCA strokes. All participants were tested for hand 
dominance based on the Edinburgh Handedness Inventory (68), 
and were right-handed. All control participants were right-handed. 
Two participants were unable to complete the entire protocol and 
were excluded from the analyses. The clinical characteristics of the 
stroke participants are presented in Table 1. All participants signed 
a consent form approved by the Institutional Review Board of New 
York University’s School of Medicine. The informed consent was 
created and obtained as per the Declaration of Helsinki (69–71).

Inclusion Criteria
Participants with stroke met the following criteria: (1) older 
than 18  years, (2) brain injury in the MCA distribution at 
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TaBle 1 | Clinical characteristics of stroke participants.

iD age (years) sex h/ha stroke characteristicsb chronicity (years) Fugl-Meyer scorec

1 78 M R/L R middle cerebral artery (MCA) distribution 2.0 66
2 61 F R/L R MCA distribution 7.0 66
3 34 M R/R L MCA distribution 1.7 66
4 39 F R/R L MCA distribution 1.4 45
5 70 M R/R L MCA distribution 2.8 58
6 60 F R/L R MCA distribution 2.6 30
7 73 M R/L R MCA distribution 6.0 58
8 51 F R/L R MCA distribution 12.2 30
9 60 M R/R L MCA distribution 4.4 63

10 39 M R/L R MCA distribution 4.7 47
11 70 M R/L R MCA distribution 2.0 66
12 47 F R/R L MCA distribution 1.5 61
13 65 F R/R L MCA distribution 0.7 66
Average (SD) 57.5 (14.3) 3.8 (3.2) 55.5 (13.3)

aH/H, handedness/hemiparesis: handedness (as assessed by Edinburgh)/hemiparesis laterality.
bStroke characteristics, lesion location obtained from medical history with participant and/or family members serving as historian; region and laterality cross-validated for consistency 
with examination findings.
cFugl-Meyer Score, a summation of the Upper Extremity Score (out of 66), which reflects the extent of poststroke motor impairment.
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least 4  months prior to enrollment, (3) ability to complete the  
Fugl-Meyer Scale to define arm motor impairment (72), (4) a full range 
of eye movements in horizontal and vertical directions, as assessed 
by the experimenter, (5) ability to perform pointing tasks as assessed 
by a clinician, (6) willingness to complete all clinical assessments, 
and (7) an ability to give informed consent and HIPPA certifications.

Exclusion Criteria
Participants were excluded for: (1) cognitive dysfunction less than 
24 on the Folstein Mini–Mental Status Exam (73), (2) significant 
injury to the eye, weakness in extraocular muscles or presence 
of visual field cuts, (3) hemi-spatial neglect, (4) major disability, 
as determined by a score greater than 4 on the modified Rankin 
scale (74), (5) previous neurological illness, confounding 
medical conditions or significant injury to the upper extremity,  
(6) significant depression determined by a score less than 11 on 
the Geriatric Depression scale (75), (7) pregnancy, and (8) electri-
cal implant devices, e.g., pacemakers or defibrillators.

A focused stroke history and neurological and musculoskeletal 
examinations were performed on all participants. Visual impair-
ments were assessed by the Beery-Buktenica Developmental Test 
of Visual-Motor Integration (Beery VMI) (76–78), by standard 
clinical tests for visual acuity (Snellen chart) (79) and visual fields 
(confrontation and if in question, Goldman or Humphrey visual 
field testing) (80). Participants were also assessed for hemi-spatial 
neglect via the Schenkenberg’s line bisection test (81) and the 
single-letter cancelation test (82). Lastly, the 25-item National Eye 
Institute Visual Functioning Questionnaire and a 10-item supple-
ment survey were completed to quantify the extent of disability 
due to perceived visual deficits (83).

apparatus
Monitor and Physical Configuration of the Rig
Participants sat at a table with a computer display (19.5″ Dell 
D2015H LED monitor, resolution 1,920  ×  1,080) 60  cm away.  
A 43.5 cm × 23.5 cm rectangle, identical in size to the computer 
monitor, was outlined on the table surface between the participant 

and the display. Participants sat centered to the horizontal length 
of the screen in a height-adjustable chair. Participants were 
seated approximately 60  cm from the screen and 40  cm from 
the table-mounted eye tracker. This physical configuration of the 
table surface and monitor allowed participants to simultaneously 
view the screen and make point-to-point reaches on the tabletop 
(Figure 1A).

Computer and Software Program
An ASUS ROG G750JM 17-Inch Gaming Laptop (AsusTek 
Computer Inc., Taipei, Taiwan) was utilized for this experiment. 
Custom Matlab (MathWorks, Inc., Natick, MA, USA) scripts, 
making use of additional functions from the Psychophysics 
Toolbox (84), were used to display visual stimuli and perform 
real-time integration of data acquired from the Tobii eyetracker 
and Polhemus limb tracker.

Eye and Limb Trackers
The Tobii X120 eyetracker (Tobii, Danderyd, Sweden) was used 
to record gaze position (120  Hz, 0.5° accuracy). Kinematics of 
the finger were measured using a Polhemus Liberty™ 240/16 
(Polhemus, Colchester, VT, USA), and Polhemus MicroSensor 1.8 
(240 Hz, 0.08 cm accuracy). The motion sensor was affixed to the 
distal aspect of the index finger of the hand on the to-be-tested arm 
(the dominant arm for controls, and both arms in participants with 
stroke). The Polhemus sensor was affixed to the finger by first plac-
ing it on the finger and securing it at three locations (proximal and 
distal phalanx and wrist), using soft flexible neoprene mini-sleeves 
that were affixed with Velcro and custom fit to each participant.

Procedure
Calibration
The Polhemus output was calibrated to the space occupied by the 
virtual screen represented on the tabletop using a 9-point calibra-
tion. The fingertip location was found relative to the sensor by 
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FigUre 1 | (a) Schematic of monitor and tabletop during a reach.  
(B) Sequencing of events within visually guided (upper) and memory-guided 
(lower) trials. Fixation (F) appears first. After an unpredictable length of time, 
the target (T) appears. The “go” signal (simultaneous offset of F and an 
auditory beep) occurs after a variable time interval following target onset 
(indicated by the light gray vertical bar). Eye (E) and hand (H) movements 
follow the go signal.
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asking participants to place their fingertip at a known tabletop 
location (relative to the calibrated “virtual screen” coordinate 
system).

An authentication procedure verified that the distance from the 
screen to the participants’ eyes was 60 cm, and an 11-point spatial 
calibration of the eyetracker was completed (1 center point and 10 
equidistant points around a 7.62-cm virtual circle were fixated in 
random order). The eyetracker calibration was performed twice 
per session, at the start of the experiment and at its halfway-point.

Experiment
After completion of the inclusion/exclusion questionnaires 
and consent forms, participants were instructed to: “touch 

a series of tabletop locations as displayed on the computer 
screen, performing combined look-and-point movements as 
accurately as possible within the allotted time.” Participants 
were also instructed to make a “true” pointing movement from 
the start position to the target (lifting the hand and finger in 
the process), rather than dragging the fingertip across the sur-
face (as if drawing). Participants initiated the task only after 
the experimenter confirmed that they understood the task and 
the 1:1 relationship between the computer screen and tabletop.

Participants performed either center-in or center-out reaches 
on the tabletop as instructed by the visual display. Start points and 
targets were chosen from a set of six locations: one at the screen 
center, and the remaining five located on a circle of diameter 
7.6 cm. Starting points (gray) and targets (blue) were displayed 
as circles of 1 cm radius. The position of the finger was repre-
sented on screen as a red dot of 4 mm radius. Finger position was 
displayed in real-time starting 500 ms after the last reach ended, 
until the following target was displayed.

At the beginning of each trial, participants moved their finger 
onto the start position, covering the start circle on the screen with 
the finger-indicator dot. Maintaining finger position, participants 
were required to fixate the start position on the screen. If at any 
time the finger or eye left the start position before the go signal, the 
screen flashed red (50 ms) and the trial restarted. Once the finger-
tip indicator and fixation were maintained at the start position for 
150 ms, a target appeared. There were two conditions (Figure 1). 
In the memory-guided condition, the target was flashed for 
100 ms. In the visually guided condition, the target was displayed 
prior to the go signal and remained illuminated until the end of 
the trial (i.e., a delayed-saccade task) (85) (note that the pattern 
of results reported below was the same in these two conditions, 
and were combined). These two saccade-to-reach paradigms were 
utilized in this experimental setting to increase exploration of the 
neuroanatomical saccade network during objective testing.

For both paradigms, participants were required to continue 
fixating the start position (not the blue target) until a “go” beep 
sounded and the start position disappeared, and then to move 
both their eyes and fingertip quickly and accurately to the 
designated target. To prevent anticipation of the go signal, the 
duration of the delay between presentation of the target and 
the go signal was unpredictable, ranging from 250 to 750 ms. 
The end location of the reach was determined by a combined 
low-velocity (<5% peak) and 3 mm z-plane threshold and was 
displayed as a white dot.

Prior to starting data acquisition, a series of familiarization 
trials was performed. The familiarization period ended when par-
ticipants successfully touched 5 of the 10 most recent targets. This 
performance criterion was meant to insure that all participants 
understood the procedure and were able to complete the required 
reaches and eye movements. Following familiarization there were 
two halves to the experiment (76 look-and-points in each). In one 
half, reaches all began at the central position and targets were 
chosen randomly from the five peripheral locations. In the other 
half, start positions were chosen randomly from the five periph-
eral locations and the target was always the central position. The 
order of the two halves of the experiment was randomized across 
participants.
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FigUre 2 | Saccade and Reach Latencies (onsets: circles, terminations: squares). Saccade onsets (blue circles) occur substantially earlier in the stroke cohort, 
although reach onsets (green circles) are nearly the same across participants regardless of cohort or laterality (with a small delay on the more-affected side). Time 
between saccade and reach onsets is shown with a light gray bar.
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Whenever possible, participants with stroke performed 
the experiment with both the more-affected and less-affected 
arms. Participants who did not feel capable of performing the 
experiment with the more-affected arm participated with the less-
affected arm only. One participant completed the more-affected 
side session and did not return for the scheduled less-affected 
side session; three participants completed the less-affected side 
session and did not return for the scheduled more-affected-side 
session. Two participants dropped out and two participants were 
unable to complete the entire protocol for a given session and 
related data were excluded.

statistical analysis
Raw eye- and hand-position data were initially filtered by a 3-point 
median filter to remove outliers. Kinematic data traces were then 
obtained by first aligning data to the time of reach onset. Velocity 
traces were unremarkable, and are not explored further.

Two-sample t-tests were used to determine whether pairs 
of means or variances differed. Our results were unchanged if 
comparisons were made using Welch’s t-test, which makes use 
of equations designed to account for possible heteroscedasticity 
and unequal sample sizes (the Welch-Satterthwaite equation 
for degrees of freedom). As a complement to traditional t-tests, 
we have plotted Bayesian 95% confidence regions around all 
computed estimates in the figures; as can be seen graphically 
in the corresponding figures by comparing confidence bounds, 
Bayesian analogs of the reported t-tests confirm our statistical 
analyses. Single proportions were compared via the z-test for 
equality of proportions (S1 of N1 vs. S2 of N2), where z is
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Finally, we note that separating temporal and spatial errors by 
target directions either toward or away from the more-affected 
side (i.e., away or toward the affected hemisphere) did not affect 
the pattern of results described below.

resUlTs

Demographics and Questionnaire 
assessments
The clinical characteristics of the participants with stroke are 
presented in Table  1. The ABI cohort had a mean unweighted 
VFQ score of 91.33 ± 13.01 vs. 94.87 ± 4.87 in healthy controls 
(p = 0.203, ns). For the 10-item supplement, the ABI cohort had a 
mean score of 95 ± 11.57 vs. 96.27 ± 6.64 in controls (p = 0.375, ns).  
For the composite and 10-item supplement, the ABI cohort 
had a mean score of 92.36 ± 12.18 vs. 95.12 ± 4.65 in controls 
(p = 0.244, ns). In the ABI cohort, the mean Fugl-Meyer Score 
was 55.54 ± 13.33, with a range of 30–66.

latencies and Durations of eye and hand 
Movements
Saccade and reach latencies are plotted in Figure 2 relative to the 
go signal. Note that the initial (primary) saccades made by par-
ticipants with stroke are significantly earlier (p < 0.05, compar-
ing controls to both less-affected and more-affected sides) than 
those of control participants [control saccade onsets: 0.529 s, CI: 
(0.514, 0.543); less-affected arm: 0.106 s, CI: (0.08 0.132); more-
affected arm: 0.082  s, CI: (0.052 0.112)]. However, despite the 
extremely early initial saccades to the target by participants with 
stroke, reaches were initiated at approximately the same time [no 
significant differences between control and either less-affected 
or more-affected reach onsets: control reach onsets: 0.556 s, CI: 
(0.544 0.568); less-affected arm: 0.545 s, CI: (0.521 0.568); more-
affected arm: 0.60 s, CI: (0.567 0.632)].

The temporal decoupling, defined as the interval between the 
primary saccade and reach onset, is clearly increased in stroke. The 
coupling between eye and fingertip onsets in controls was 27 ms [CI:  
(8.5 45)], whereas there was a 439 ms [CI: (404 474)] separation for 
the less-affected side in stroke, and a 519-ms [CI: (476 562)] sepa-
ration for the more-affected side in stroke (differences between 
pairs of coupling times were all significant, all p < 0.05). Thus, 
there was a decrease in coupling with reduction in arm motor 
capacity or an increase in arm motor impairment (from control 
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FigUre 3 | Histograms of the number of saccades in addition to the primary saccade. Control participants (upper histograms) overwhelmingly produce a primary 
saccade only (91% of trials). About 96% of trials contain either no additional saccades beyond the primary saccade, or contain a single secondary saccade (see 
inset). For stroke participants (lower histogram), the same 96% of trials contains up to five secondary saccades (see inset). Insets show the same histograms with 
re-scaled axes to highlight histogram heights for non-primary saccades. This re-scaling truncates the ordinate at p = 0.2, which allows the pattern in the smaller-
height histogram bars (those corresponding to trials that included non-primary saccades) to be seen. Heights of the first two bars in each inset are labeled to help 
emphasize the re-scaling.
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to less-affected and less- to more-affected limb reaches in stroke). 
While it is not surprising that reaches made by the more-affected 
arm in stroke were prolonged relative to controls [604  ms, CI: 
(587 622) vs. 352 ms, CI: (348 356)], reaches made with the less-
affected arm were also significantly prolonged relative to controls 
[546 ms, CI: (537 555) vs. 352 ms]. In addition, more-affected-
side reaches were prolonged relative to less-affected side reaches 
(all p < 0.05).

Frequency of eye Movements
The significant delay between initial saccade and reach onset 
in both the more- and less-affected sides of stroke participants 
relative to a minimal saccade-reach temporal separation in 
control participants suggests that an important temporal 
decoupling has occurred. Therefore, we examined the time 
period between the primary saccade and initiation of reach. 
Participants with stroke frequently made multiple saccades 
between the start and target positions (this pattern was the 
same in more- and less-affected arm reaches, and these are 
combined here), rather than a single saccade as seen in control 
trials. Figure 3 displays histograms of the number of additional 
saccades (past the initial, or primary saccade) that were made 
by each group. Note that control participants overwhelm-
ingly produced a single (primary) saccade to the target and 

maintained fixation in the terminal position of the primary 
saccade until the end of the reach in approximately 90% of 
all trials. In stark contrast, stroke participants generated this 
pattern in only about half of trials (z = 32.2, p < 0.05); these 
participants commonly produced from one to five additional 
saccades (Figure  3). Example saccade traces illustrating this 
phenomenon are shown in Figure 4.

spatial errors of the eye and  
hand Movements
Despite the increased duration of reaches in the less- and more-
affected arm trials relative to control trials (allowing for a greater 
degree of feedback control), spatial errors (reach endpoint 
distance from the target) increased in stroke participants [con-
trol: 9.3 mm, CI: (9.0 9.5); less-affected arm: 19.2 mm, CI: (18.4 
20.0); more-affected arm: 21.4 mm, CI: (20.5 21.4)] rather than 
decreased (Figure 5; all p < 0.05). In addition to these increases 
in reach error, Figure 5 shows even larger increases in saccade 
endpoint error [control: 18.3 mm, CI: (17.9 18.7); less-affected 
arm: 36.4 mm, CI: (35.2 37.6); more-affected arm: 41.6 mm, CI: 
(40.3 43.0); all p < 0.05]. Figure 6 shows the correlation between 
gaze and reach endpoint errors across subjects. Saccade and reach 
errors are correlated (r = 0.76, p < 0.05) across participants and 
levels of arm motor impairment.
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correlation between arm Motor 
impairment and eye–hand latency 
Decoupling
We then asked if the extent of eye–hand decoupling was larger in 
participants with greater arm motor impairment (lower scores) as 
assessed by the Fugl-Meyer Score. Although the predicted trend 
is in fact observed, it is not statistically significant for the less-
affected (r = −0.64, ns) or more-affected (r = −0.34, ns) arms.

DiscUssiOn

We have demonstrated a number of findings in eye–hand coordina-
tion after stroke in individuals with otherwise intact visual function. 
Most important among these results is the temporal decoupling 
between the primary saccade onset and the reach onset in the  
saccade-to-reach tasks. Saccades and reaches in stroke participants 

were also less accurate regardless of reaching limb (more- or less-
affected side), as compared to controls. We discuss each of these find-
ings in turn, paying particular attention to the clinical implications 
these results may have on eye–hand coordination in the setting of 
neurovascular, neurotraumatic, and neurodegenerative pathology.

Temporal Decoupling and latency 
abnormalities
The temporal decoupling between eye and hand is clearly noted 
in the latency differences for both the less-affected and more-
affected reaches poststroke. While there are several important 
elements to extract from the timing data, the most substantial 
finding was that saccades made by stroke participants occurred 
significantly earlier in both the less-affected and more-
affected arms, as compared to the saccade onsets of control 
participants (Figure 2). This is consistent with earlier reports 
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FigUre 5 | Average endpoint error by participant grouping and/or arm (mm 
at the screen). Green bars show average reach error, and blue bars show 
average (primary) saccade error.

FigUre 6 | Average saccade vs. reach endpoint error (mm at the screen). 
Each data point is the average error for a single participant/arm (control 
movements: black, less-affected arm: gray, more-affected arm: blue). Errors 
display a dependence on arm motor impairment, generally increasing 
across participants from control to stroke, and from less- to more-affected 
limbs (r = 0.76, p < 0.05).
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of an upper-motor-neuron-like disinhibition phenomenon, 
in which participants with cerebrovascular damage anticipate 
the movement go signal, notwithstanding instructions to the 
contrary (86). Despite extremely early primary saccades to the 
target, reaches by stroke participants were initiated at roughly 
the same time as those of control participants, yielding the 
temporal decoupling that distinguished our cohorts (Figure 2). 
Thus, temporal decoupling appears to be a result of the unusu-
ally early onset of initial saccades, rather than due to the late 
onset of arm movements.

The eyes frequently fixate an object of interest before starting a 
manual motor movement (87); though, a more invariant feature 
is that gaze is spatially directed to the target prior to the arrival of 
the hand (88), typically close to the peak acceleration of the reach 
(89–91). The ocular motor system controls the gaze that then 
provides the needed visual information to optimally direct the 
hand; this is performed so fixations are “just in time,” providing 
information at a critical moment, during which additional fovea-
based fine detail is required for the task (92). Additionally, the 
short-term memory limitations of visual features are well known 
aspects of visual function and further support the idea that 
information acquired during prior fixations factors marginally 
into the computations necessary for ongoing fine motor control 
(93, 94). The information that is used across fixations within a 
visual scene is principally semantic in nature: for example, the 
memory of a global environment but not specific details (95, 96). 
Consequently, eye movements are intimately coupled in time and 
space to the motor action of the hand (97).

Vision may be best understood through action production, 
as sensorimotor coupling involves the distillation of visual 
perception into defined benefits for the planning and execution 
of somatic behavior (98, 99). As previously detailed, gaze is 
often directed at environmental objects with relevance to future 
action; in particular, during object manipulation the line of 
sight is directed at spatial targets upon which manual interac-
tions may subsequently be focused (20, 100, 101). Complex, 
manual interactions with an object have multiple stages (e.g., 
stage 1: reach for the object; stage 2: grasp it; stage 3: lift and 
maneuver it), such as might occur when one reaches for a bottle 
of water lying on its side, then lifts it from the table and finally 
re-orients it for ease of grasp by a colleague. All stages of such 
a complex task have significance not only for the planning and 
motor control of the hand position but also for the planning of 
gaze, suggesting that manual activity “stages” can differentially 
affect eye position (59). For example, adding weight to the 
hand during a visually guided reach (in an effort to up-regulate 
the motor command and efference copy) modulates saccadic 
output (102).

These examples illustrate a two-way flow of information 
between eye–hand and hand–eye, which may be particularly 
relevant in pathology with arm motor impairments. This may 
be compounded, as demonstrated here, when visual informa-
tion is not timed correctly and is decoupled from manual motor 
activity, limiting the opportunity for relevant visual information 
to support the evolving manual motor planning necessary for 
accurate reaching. However, to understand the full progression of 
reaches (and reach errors) generated in the present experiments, 
one must understand the planning deficits and errors generated. 
These spatial accuracy compromises may be a byproduct of 
impaired planning, feedback, and/or online (feedforward) cor-
rective mechanisms.

spatial errors and Predictive control
Despite increasing reach duration in the less- and more-
affected arm trials relative to controls, theoretically allowing 
additional time for feedback control mechanisms to take effect, 
spatial errors increased. The fact that there was an increased 
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opportunity for feedback mechanisms to reduce reach errors 
and yet these errors increased may indicate that feedback 
mechanisms produced inappropriate trajectory “corrections” 
and caused increased errors, or inappropriate plans were 
activated for a given reach while feedback mechanisms were 
suppressed, or poor estimates of reach errors were generated, 
or a combination thereof. In addition to increased reach error 
in stroke, there was an even larger increase in saccade endpoint 
error from controls to less-affected and then more-affected 
limbs in stroke.

It is particularly interesting that there was such a large decre-
ment in saccade accuracy between the control and less-/more-
affected arm reaches. This increase in endpoint error may have 
been a byproduct of the increased frequency of saccades, as stroke 
participants were found to elicit multiple saccades between the 
start and target position, rather than a single saccade as was found 
in control trials. In fact, stroke participants commonly produced 
between one and five additional saccades relative to controls in 
the time period before reach termination (Figures 3 and 4). This 
behavior is akin to what might be seen under “normal” conditions 
when one, given some degree of uncertainty, attempts to visually 
estimate the length of an object or distance. Although saccadic 
dysmetria has been documented and ascribed to lesions involv-
ing the cortex, pretectum, thalamus, superior colliculus, and 
cerebellum (103–105), we are unaware of any previous example 
in the literature of the above ocular–manual behavior occurring 
under experimental conditions, nor any report of it arising in a 
participant population with ABI undergoing an investigation of 
eye–hand coordination.

Prediction is an essential component of goal-oriented somatic 
action; the physical world is constantly changing and conse-
quently an important aspect of eye–hand control. Grasping a cup 
being given to you requires both anticipating the object’s direc-
tion and motion, and planning a motor response that predicts 
the trajectory to successfully intersect with it. If visual perception 
were merely used to generate 3D cues for eye–hand coordination, 
our fingers would regularly miss their spatial goal due to poor 
predictions of objects and/or hand motion. Prediction is required 
for optimized motor control, which translates into functional 
performance (106). These principles are most clearly highlighted 
in sports, where athletes of higher skill demonstrate finely tuned 
ocular motor control with predictive capacity, driving superior, 
complex, somatic motor control (107–111). For instance, expert-
level soccer goalkeepers can more accurately predict soccer ball 
trajectories during anticipation tasks and leverage more efficient 
and effective strategies during visual search when compared to 
novices (112, 113).

As a pathologic illustration, optic ataxia manifests with an 
inability to efficiently adjust online hand trajectories targeted 
at moving spatial targets or to properly reach for/grasp objects 
under visual control. These deficits in rapid error corrections 
and their mechanistic underpinnings shed light on the coupling 
required between eye and hand during visually led function 
(114). In ABI, impairments are prominent during dynamic eye–
hand coordination tasks, emphasizing potential difficulties in 
rapidly processing sensory information, sensorimotor integra-
tion and planning, in addition to motor execution. Inefficiently 

handling sensory information may lead to difficulties in pre-
dicting target motion, a deficit in feedforward mechanisms, and 
in the integration of sensory feedback toward error correction  
(3, 115). In fact, predictive control is vital to optimized visuo-
motor planning (116). It is presently accepted that impaired 
planning is a result of an inability to program motor action 
sequences in space and time (10, 117–120), and, that post-ABI 
there are deficits in the motor programming necessary to plan 
for static or dynamically moving targets (121–124). We believe 
our findings to be consistent with these prior results and may 
suggest why these deficits are apparent in both the less- and 
more-affected sides.

clinical implications and Outcomes
Here, we describe a pattern of abnormalities following MCA 
stroke that affects both eye–hand coupling and sensory-motor 
performance, where the strength of the deficit increases for 
reaches made with the less-affected to reaches made with the 
more-affected arms of stroke participants relative to the baseline 
performance in control participants. These findings suggest 
that in individuals with otherwise intact visual function, the 
spatial and temporal relationships between the eye and hand are 
disrupted poststroke, and may need to be specifically targeted 
during neurorehabilitation. Eye–hand coupling may be a useful 
biomarker in individuals with cerebral pathology in the set-
ting of neurovascular, neurotraumatic, and neurodegenerative 
pathology.

Quantitative eye-movement analysis has proven to be a high-
value research tool within ABI (49, 125, 126); objective ocular 
motor recordings have even been used for screening in a diag-
nostic capacity (127–130). In a broader scope, eye movements 
and the upper limb have been sensitive markers of cerebral 
injury when examining visuomotor skill (131). Additionally, 
function of the eye and arm following acute ABI can predict 
outcomes in the subacute and chronic stages following injury, 
with greater performance when compared to self-reported 
health status or neuropsychologic assessment (3, 132, 133).  
These prognostic capabilities extend to the identification of 
individuals who may require more comprehensive interven-
tion or who are poor responders (6, 7). In fact, eye-movement 
findings have even been shown to be a biomarker of cognitive 
recovery beyond the times at which presumed full recovery 
had been reached, as assessed by established metrics (8). While 
the evidence is greater for neurotraumatic and neurovascular 
etiologies, the literature base also includes neurodegeneration, 
in which eye movements may be a biomarker of progression and 
useful in clinical trials of pharmacological agents to slow disease 
advancement (134–137). At the bedside, regardless of whether a 
clinical assessment of visual function is found to be remarkable 
or unremarkable, as was the case in our pathologic cohort fol-
lowing stroke, disruption of the normal coordination between 
ocular and manual motor control may lead to maladaptive com-
pensation strategies. This dysfunctional, compensatory behav-
ior, which may require objective screening, and be evidenced 
by increased saccade frequency during temporal decoupling, 
may lead to problems in either motor planning and/or control 
systems and have untoward consequences on function.
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It is paramount to remember that sensorimotor control 
strategies are critical for skilled somatic behavior in humans 
and that disruptions leading to incoordination may ultimately 
hamper recovery following ABI. Visuomotor integration is 
characterized by temporal and spatial relationships between the 
ocular and manual motor systems (138, 139); small abnormali-
ties in eye-movement timing relative to hand-movement timing, 
irregularities that could go undetected, may disrupt the frame-
work on which combined movement plans are constructed (140). 
Moreover, eye-movement execution for visually guided reaches 
may occur concurrently with motor planning for limb movement 
(141, 142). This could add in a compound fashion to the already 
known motor planning deficits in chronic stroke (123), generat-
ing computational delays and providing a potential explanation 
for stifled rehabilitation progress and recovery plateaus. As ocular 
motor control precedes and is an integral component of visually 
guided limb control (138, 139, 143, 144), eye–hand coordination 
is critical to function. Understanding the synchronous and inter-
dependent control systems that direct the eye and hand will likely 
be important to restoring upper extremity function poststroke. 
Within neurorehabilitation, one must remember that there is a 
key difference between gross motor ability and functional motor 
control. The distinction between these two sides of recovery is not 
the simple capacity to move the limb but rather the character and 
efficiency of that control.

cOnclUsiOn

Despite the robust opportunities within ocular–manual motor 
investigations in the setting of ABI, examination with quantitative 
dual-effector recordings in 3D has not been formally tested. We 
report on a number of findings in chronic, MCA stroke, relative to 
healthy controls, in visually guided (delayed) and memory-guided 

saccade-to-reach paradigms to assess eye–hand coordination. As 
compared to healthy controls, stroke participants demonstrated 
significant temporal decoupling between primary saccade and 
reach onsets, greater endpoint errors in both effector systems 
(poorer spatial performance), and an increased frequency of 
saccades during the temporal decoupling. Future studies that 
further characterize coupling objectively in unconstrained and 
naturalistic tasks with ecological validity may produce high-yield 
results for neurorehabilitation in the setting of neurovascular, 
neurotraumatic, and neurodegenerative pathology.
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