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We present an approach for quantitative assessment of the arm/hand movements in 
patients with Parkinson’s disease (PD), from sensor data acquired with a wearable, 
wireless armband device (Myo sensor). We propose new Movement Performance 
Indicators that can be adopted by practitioners for the quantitative evaluation of motor 
performance and support their clinical evaluations. In addition, specific Movement 
Performance Indicators can indicate the presence of the bradykinesia symptom. The 
study includes seventeen PD patients and sixteen age-matched controls. A set of repre-
sentative arm/hand movements is defined under the supervision of movement disorder 
specialist. In order to assist the evaluations, and for progress monitoring purposes, as 
well as for assessing the amount of bradykinesia in PD, a total set of 84 Movement 
Performance Indicators are computed from the sensor readings. Subsequently, we 
investigate whether wireless armband device, with the use of the proposed Movement 
Performance Indicators can be utilized: (1) for objective and precise quantitative 
evaluation of the arm/hand movements of Parkinson’s patients, (2) for assessment of 
the bradykinesia motor symptom, and (3) as an adequate low-cost alternative for the 
sensor glove. We conducted extensive analysis of proposed Movement Performance 
Indicators and results are indicating following clinically relevant characteristics: (i) ade-
quate reliability as measured by ICC; (ii) high accuracy in discrimination between the 
patients and controls, and between the disease stages (support to disease diagnosis 
and progress monitoring, respectively); (iii) substantial difference in comparison between 
the left-hand and the right-hand movements across controls and patients, as well as 
between disease stage groups; (iv) statistically significant correlation with clinical scales 
(tapping test and UPDRS-III Motor Score); and (v) quantitative evaluation of bradykinesia 
symptom. Results suggest that the proposed approach has a potential to be adopted 
by physicians, to afford them with quantitative, objective and precise methods and data 
during clinical evaluations and support the assessment of bradykinesia.

Keywords: Parkinson’s disease, wireless sensors, arm/hand movements, bradykinesia, movement performance 
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1. inTrODUcTiOn

Contemporary approach to evaluation of the patient’s condi-
tion in Parkinson’s disease (PD), as well as assessment of the 
rehabilitation effectiveness, is based on the clinical assessment 
tools and evaluation scales, such as Hoehn and Yahr (HY) (1) 
and Unified Parkinson’s Disease Rating Scale (UPDRS) (2). 
However, although beneficial and commonly used, those scales 
are descriptive (qualitative), primarily intended to be carried out 
by a trained neurologist, and are prone to subjective rating and 
imprecise interpretation of patient’s performance.

Recent developments in the field of affordable sensing tech-
nologies have a potential to improve and support traditional 
evaluation techniques, aiming at defining quantitative movement 
indicators to assist practitioners and clinicians. Various types of 
wearable sensors have been proposed in the literature for the 
measurement and assessment of the arm/hand movements: accel-
erometers (3, 4), gyroscopes (5, 6), magnetic sensors (7, 8), force 
sensors (9, 10), and inertial sensors (11). However, these sensor 
systems only modestly contribute to the arm/hand movement 
assessment. Specifically, the use of one or two isolated sensors in 
motion acquisition restricts the movement quantification, due to 
the limited amount of the collected data.

More informative sensors are the ones that measure muscle 
activity, and the standard approach for obtaining the muscle activ-
ity information is the placement of the surface Electromyography 
(EMG) electrodes on the skin, which detect the electrical poten-
tial generated by muscles. The main drawback of the standard 
EMG electrodes is the wired connection with a device for EMG 
signal representation. Consequently, muscle activity tests are 
available only in the hospital environment. The analysis of the 
muscle activity is reported in some recent studies concerning 
PD (12–14). The authors in Ref. (12, 13) particularly observe the 
muscles’ behavior during deep brain stimulation. They report that 
Parkinson’s disease symptoms change the EMG signal properties 
and suggest that EMG analysis is able to detect differences between 
the deep brain stimulation settings. The authors in Ref. (14) use 
the EMG data, along with the readings from the accelerometer, 
to successfully differentiate essential tremor from Parkinson’s 
disease. However, all these studies collect the EMG data using 
surface electrodes relying on the wired system.

The authors have suggested many different features to charac-
terize the EMG signals in the time domain (13–21) and frequency 
domain (15, 16, 19, 21). The two most common approaches for 
the EMG signal analysis are the wavelet transform (14, 21) and 
the window approach (15, 19). In our study, we have adopted the 
window approach and the features suggested in the literature that 
emphasize the amplitude characteristics of the EMG signal. Such 
choice has been convenient for our case as it will be explained in 
detail in the Results section.

In our previous studies (22, 23), we have used a vision-
based sensor (Kinect device) to quantify full-body movements 
(gait and large-range upper body movements) and a sensor 
glove (CyberGlove II device) to quantify hand movements of 
Parkinson’s patients. We proposed novel scores called Movement 
Performance Indicators that were extracted directly from the sen-
sor data and quantify the symmetry, velocity, and acceleration of 

the movement of different body/hand parts. Our approach for 
the hand movement characterization, based on the sensor glove 
data, has demonstrated significant results and ability to support 
the diagnosis and monitoring evaluations in PD (23). Still, due 
to the high cost, it does not fit into our concept of a low-cost 
rehabilitation system for movement analysis. Another limitation 
arises from the right-hand design of the sensor glove device. 
This implies that only right-hand movements can be tested; and 
hence, only right side affected patients are taken into account. 
Consequently, left–right side analysis cannot be conducted as an 
important indicator of the disease progression.

In this study, we focus on quantification of the arm/hand 
movements from measurements acquired with a wireless wear-
able armband device—the Myo sensor,1 in order to investigate 
whether the armband sensor can assess fine movements and be 
used as a suitable alternative to the sensor glove. This device is 
placed on the forearm and outputs Electromyography (EMG) 
data from eight channels. EMG data provide insight into the 
muscle activity information. Impaired muscle activity and 
restriction of motor functions are common characteristics of 
PD. The armband device contains also three-axis accelerometer 
and three-axis gyroscope, which output acceleration and angular 
velocity information (Inertial Measurement Unit (IMU) data), 
respectively.

The accelerometer and gyroscope have been widely tested in 
studies related to PD and showed significant potential toward 
quantification of PD symptoms (14, 24–26). The authors in Ref. 
(24) use accelerometers, while the authors in Ref. (26) use both, 
accelerometers and gyroscopes, to observe the gait characteristics 
in PD patients. They state that freezing of the gait episodes can 
be detected using sensor data, along with the feedback about 
gait performance. The study (25) focuses on the quantification 
of bradykinesia from finger-tapping movement using two gyro-
scopes placed on the fingers. Although the results of bradykinesia 
quantification using gyroscope data are promising, the analysis is 
limited to one movement and two sensors. The overall conclusion 
is that signals from accelerometer and gyroscope demonstrate 
meaningful patterns in the patient’s movements and reveal the 
presence/intensity of the disease motor symptoms. Like in the 
case of EMG signals, we concentrate on the signal features from 
accelerometer and gyroscope that take into account the signal 
amplitude characteristics.

The wireless armband device has been launched very recently 
and only a few conceptual studies report some preliminary 
results concerning its inclusion into medical protocols (27–29). 
However, to the best of our knowledge, it has not been previously 
used in any study regarding the quantification of the arm/hand 
movements in PD assessment.

Our study overcomes the scope of conceptual studies published 
so far, by introducing the comprehensive processing modules 
and interpretation of the sensor measurements from armband 
device. We propose new scores for the arm/hand movement 
characterization denoted as Movement Performance Indicators 
(hereinafter, MPIs). The MPIs are intended to support diagnosis 

1 https://www.myo.com/.
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TaBle 1 | Acquired movements according to the experimental protocol and their 
acronyms used in the article.

Movements acquired according to the experimental 
protocol

acronyms 
used in the 
article

1. rotation of the hand with elbow extended RH-EE
2. rotation of the hand with elbow Flexed at 90° RH-EF
3. Object grasping, Pick and Place in the case of easy load GPP-EL
4. Object grasping, Pick and Place in the case of heavy load GPP-HL
5. The Proximal Tapping Task TT-P
6. The Distal Tapping Task TT-D
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and monitoring evaluations, as well as the assessment of the 
motor symptoms, with a special emphasis on bradykinesia. The 
MPIs we propose are built upon both domain-specific knowl-
edge (provided by movement disorder specialist), as well as 
data analysis. They are primarily designed in accordance with 
clinically relevant aspects and tested toward official clinical 
tests and scales. We thus propose an affordable, reliable, and 
portable sensor system along with an approach for movement 
quantification, with the potential to be used as a support for the 
conventional motor performance evaluations and the possibility 
of home rehabilitation.

In this article, we present extensive experiments and analysis 
conducted to address the following aspects: (1) quantitative 
evaluation of the arm/hand movements of Parkinson’s patients, 
(2) objective assessment of bradykinesia motor symptom, and (3) 
investigation whether the armband sensor can be an adequate 
low-cost alternative for the sensor glove, due to its high cost. 
Aspects addressed in (1) and (2) are worth to be investigated in 
the treatment of Parkinson’s disease, but their direct assessment 
is not possible considering the limited resources and standard 
techniques used by doctors.

2. MaTerials anD MeThODs

2.1. Participants
Seventeen Parkinson’s disease patients (age = 63.5 ± 8.3,2 disease 
duration = 4.7 ± 2.5, HY3 disease stage = 2.59 ± 0.93, UPDRS-
III4 = 31.82 ± 15.43 during ON-period) have been tested in this 
study. Patients are examined during their first ON-period in 
the morning. For ten patients, the right hand is affected by the 
disease, while seven patients have the left hand affected. A control 
group is formed by sixteen age-matched volunteers without any 
history of neurological or movement disorder. All subjects have 
been examined under the same conditions and instructed by a 
neurologist and therapists. This study was approved by the local 
ethics committee according to the Declaration of Helsinki. After 
the experimental procedures were explained, all subjects signed 
written informed consent forms.

2.2. experimental Protocol
The experimental protocol, designed by the movement disorder 
specialists (Table 1; Figure 1), includes six exercises performed 
with the left and right hand: four arm/hand movements and 
two tapping test movements, well-established experimental 
paradigm designed for bradykinesia assessment (30). The tested 
movements are chosen to closely reflect the patient’s activities of 
daily living that engage forearm muscles. The movements have 
been performed with the left and right hand, respectively, and 
acquired using the armband sensor. The subjects were instructed 
to perform the movements as fast as possible.

2 Statistics are shown as mean ± SD.
3 Parkinson’s disease stadium according to Hoehn & Yahr clinical scale (1).
4 Evaluation of the motor performance according to the Unified Parkinson’s Disease 
Rating Scale, section III—motor scores (2).

The medical procedure adopted in PD analysis includes a 
set of movements/exercises, in order to allow doctors to make 
a qualitative evaluation of the disease stage and progress. The 
first two exercises emulate the bulb screwing/unscrewing in two 
variations: Rotation of the Hand with Elbow Extended (RH-EE, 
Figure 1A) and with Elbow Flexed at 90° (RH-EF, Figure 1B). 
Those movements were acquired during the period of 10 s. The 
following two exercises relate to the object Grasping, Pick and 
Place in the case of Easy Load (GPP-EL, Figure 1C) and Heavy 
Load (GPP-HL, Figure 1D). Those movements were repeated five 
times. The last two exercises represent the tapping test. The test 
consists of the proximal and distal tapping tasks using a specially 
designed board as the one proposed in Ref. (30). The Proximal 
Tapping Task refers to the alternate pressing of two large buttons 
located 20 cm apart with the palm of the hand, during the 30 s 
interval (TT-P, Figure 1E). The Distal Tapping Task is related to 
the alternate pressing of two closely located buttons (3 cm apart) 
with the index finger while the wrist is fixed on the table during 
30 s (TT-D, Figure 1F). The acquired data consist of: (i) EMG 
data from 8 channels (sensor data rate 200 Hz) and (ii) three-axes 
IMU data—acceleration and angular velocity (sensor data rate 
50 Hz).

The armband sensor consists of eight EMG channels labeled 
as shown in Figure 2A. During the experiments, the sensor was 
placed in the same position for every subject (Figure 2B, right 
hand). It can be seen that for the right-hand channels 3, 4, and 5 
cover the upper forearm (extensors muscles), channels 7, 8, and 
1 are placed on the lower forearm (flexors muscles), channel 2 
covers the external forearm muscles, while the channel 6 is placed 
on the internal forearm muscles. As for the left hand, extensors 
and flexors are covered with the same groups of channels, while 
the channels 2 and 6 are replaced between internal (channel 2) 
and external (channel 6) forearm muscles.

2.3. Data Processing
In this section, we explain the design of the seven basic meas-
urements, based on which MPIs are grounded. The choice of 
the basic measurements is based on the properties of the sensor 
signals in the time domain (signal amplitude). The readings from 
the EMG electrodes, as well as outputs from an accelerometer and 
gyroscope, are used for movement characterization.

Before the basic measurements calculation, the signals are pre-
processed to remove the measurement noise and for performing 
temporal segmentation. In our experiments, all signals were fil-
tered with regular Butterworth low pass filter. Cutoff frequencies 

http://www.frontiersin.org/Neurology/
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FigUre 3 | Window approach for basic measurements extraction illustrated 
for the case of the acceleration signal.

FigUre 2 | Labeled channels of the armband sensor (a) and armband 
sensor placement on the right hand during experiments (B).

FigUre 1 | Movements acquired according to the experimental protocol: RH-EE (a), RH-EF (B), GPP-EL (c), GPP-HL (D), TT-P (e), and TT-D (F).
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and order of the filter were chosen in accordance with the signal 
sampling rate and the frequency characteristic of the meaningful 
signal content. EMG signals are filtered using 4th order filter 
with cutoff frequency of 20  Hz. As for the accelerometer and 
gyroscopes signals, the cutoff frequency is set to 5 Hz and filter 
order to 3. The segmentation procedure is required in order to 
remove the non-informative signal parts at the beginning and at 
the end of the signals. For this purpose, the threshold based on 
the signal energy in the time domain has been adopted (0.4 times 
the maximum signal energy).

Since the EMG signals are highly non-stationary, the most 
common approach for the processing of the EMG signals 
is the window approach (15, 19). This method implies the 
temporal segmentation of the signal into sliding windows 
and calculating the particular value of basic measurements 
for each separate window (Figure 3). The same technique has 
been applied to the signals obtained from the accelerometer 
and gyroscope. The main benefit of the window analysis is 
to characterize the temporal evolution of basic measurements 
during the movement.

Different lengths of the window and overlapping segment are 
tested and the results were not sensitive to those choices of the 
length. We set the window length to 200 ms for EMG signals and 
800 ms for signals from accelerometer and gyroscope. The length 
of the overlapping segment usually amounts 25–50% of the win-
dow length as suggested in Ref. (15, 19). We choose the length of 
the overlapping segment as 25% of the window size, hence 50 ms 
for EMG signals and 200 ms for signals from accelerometer and 
gyroscope.

2.3.1. Quantification of the EMG Signals
Various measurements have been proposed in the literature 
for characterization of the EMG signal (15–19). Our choice 
of suitable basic measurements from EMG signal relies on the 
signal amplitude properties; hence, we tested amplitude-based 
measurements that are most often used in the literature. Thus, we 
have quantified obtained EMG signals using the Mean Absolute 
Value (Emg-mav) (1), Variance (Emg-var) (2), and Waveform 

http://www.frontiersin.org/Neurology/
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Change (Emg-wc) (3). In equations  (1)–(3), Wn represents the 
window length, expressed in signal samples.
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2.3.2. Quantification of the Signals from an 
Accelerometer and Gyroscope
The accelerometer (ACC) and gyroscope (GYRO) signals are 
quantified using the same time-window approach as for EMG 
signals. The choice of basic measurements is different, in accord-
ance with the signal characteristics and the properties of its 
transformations (such as signal derivative). The accelerometer 
and gyroscope signals are not processed in their original form. 
Instead, the basic measurements are extracted from their time-
derivatives since the signal derivative enlarges the differences 
between controls and patients. Extracted basic measurements 
are Simple Square Integral (SSI) and Range (RAN), given by 
equations  (4) and (5), respectively, where x t( ) represents the 
accelerometer or gyroscope signal derivative.

 
( ) ( )Acc Gyro x tSSI

t

Wn

/ =
=
∑

1

2


 
(4)

 ( ) ( ( )) ( ( ))Acc Gyro max x t min x t t WRAN n/ = − , ∈ ,  { }1  (5)

The above specified basic measurements are directly related to 
the signal amplitude—larger amplitude indicates larger value of 
basic measurements defined by equations (4) and (5).

2.4. Data analysis
The MPIs are designed to emphasize the largest differences 
between patients and controls. We investigate whether the EMG 
data from particular channels are more discriminative than 
others. The comparative statistical analysis between patients and 
controls across six collected movements and eight EMG channels 
has been conducted using Wilcoxon rank sum test. In addition, 
we consider the difference of the group mean values as an indica-
tor of the difference between groups of interest.

The same statistical test is conducted for accelerometer and 
gyroscope sensor data. They have three axes and depending on 
the particular movement, the data from one axis are more relevant 
than the data from the remaining two. Consequently, for each 
movement, corresponding axis of interest is adopted based on the 
statistical analysis using Wilcoxon rank sum test and comparison 
between group mean values.

2.4.1. Reliability Analysis
In order to test the reliability of the extracted MPIs, the split-half 
method for reliability analysis (31) has been applied. The split-half 
method divides the conducted tests into two parts and correlates 
the scores on one-half of the test with scores on the other half 
of the test. Thus, the split-half method estimates the reliability 

based on the repetitions inside the same trial. Reliability of the 
extracted MPIs is assessed using Intraclass Correlation Coefficient 
(ICC) (31). ICC has a value inside range [0–1], whereby the 
values closer to 1 indicate higher reliability.

2.4.2. Dimensionality Reduction
Finding lower dimensional representations which still preserve 
the most relevant information contained in the original data is 
key for many machine learning and data mining applications. 
It results in reduced data needs, reduced computational cost for 
algorithms, and often even increases the predictive performance 
of the learned models. Therefore, we have used two popular 
approaches for dimensionality reduction and feature selection, 
LDA (32) and LASSO regression (33), to find most relevant MPIs. 
LDA is a dimensionality reduction approach which finds the most 
discriminative principal components (linear combination of fea-
tures), but can also rank the features by their importance. LASSO 
regression performs feature selection by assigning zero weights to 
less relevant features, giving them zero influence on the targeted 
outcome. Theoretically, the LASSO regression is more adequate 
to non-Gaussian type of data than LDA, but in practice they 
have similar predictive performance. Both algorithms have the 
same computational complexity, cubic in the number of features 
(O(k3)) and linear in the number of examples (O(k3*n)), where k 
is the number of features and n is the number of examples.

2.4.3. Classification
We want to investigate how designed MPIs can be used to dif-
ferentiate between the groups of interest. We analyze two distinct 
classification problems in order to support the diagnosis (patients 
against controls) and progress monitoring (disease stages). The 
diagnosis task is posed as discriminating the PD patients from 
the healthy controls, based on the measured values of MPIs, 
which is a well-known binary classification problem. We define 
the monitoring task as discerning among the three severity stages 
in PD patients, which is the multiclass classification problem. 
Multi-class disease stage classification problem we reduced to 
three simple binary classification problems, one for each stage, in 
a common “one vs all” manner (34).

To obtain the desired classifiers for diagnostic and monitoring 
purposes, we employed six common classification approaches: 
Logistic Regression, Decision Trees, Support Vector Machines 
(with RBF kernel), K-nearest neighbors (with number of nearest 
neighbors k = 10), Naive Bayes, and Neural Networks (multilayer 
perceptron with two hidden layers containing four nodes each).

2.4.4. Comparison between Right and Left Side
To investigate which MPIs illustrate the differences in the 
performance of the left and right hand at patients and similar 
performance of the both hands in controls, statistical comparison 
has been performed. The choice of statistical tests depends on 
the data distribution. We performed the Kolmogorov-Smirnov 
test to assess the normal distribution hypothesis. The test rejected 
the normal distribution hypothesis with a 0.05 significance level. 
Consequently, two-sided Wilcoxon rank sum test is applied 
between the MPI values obtained with the left and right hand. 
There are forty-two MPIs in total for each hand—seven different 
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FigUre 4 | Emg-mav basic measurement across eight EMG channels for RH-EE movement: right hand (a) and left hand (B). Channels 2 (right hand) and 6  
(left hand) underline the largest mean value difference between controls and patients.
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MPIs for six movements. Three groups of interest have been 
considered (patients with the right side affected, patients with the 
left side affected and controls). For the disease stage analysis, both 
groups of the left and right side affected patients are additionally 
divided into the first three stage groups according to the Hoehn 
and Yahr scale (HY) (1).

The corresponding MPI is considered as relevant for the 
left–right side analysis between patients and controls if it satisfies 
the following conditions: (i) patients group: (a) if the difference 
between the MPI values for the left and right hand is statisti-
cally significant (p < 0.05) and (b) the left-hand MPI values are 
larger than the right-hand MPI values (for the right side affected 
patients) and the opposite for left-side affected patients and (ii) 
controls: if the difference between the MPI values for the left and 
right hand is not statistically significant (p > 0.05).

The same statistical tests were conducted for the left–right 
side analysis between disease stages. Statistical investigation is 
based on the following conditions: (i) the difference between the 
MPI values of the left and right hand is statistically significant 
(p  <  0.05); (ii) the left-hand MPI values are larger than the 
right-hand MPI values (for the right side affected patients) and 
the opposite for left-side affected patients; and (iii) MPI values 
decrease with more severe disease stage, while their differences 
between the left and the right hand increase.

2.4.5. Correlation Analysis
The correlation analysis is carried out between the proposed 
MPIs and tapping test (30) and UPDRS-III clinical scale (2). The 
tapping-test outcomes and UPDRS-III values are obtained as a 
result of a neurologist’s evaluation. The tapping test consists of 
two tapping tasks—proximal and distal tapping task explained in 
the Section 2.2. In the case of UPDRS-III, we take into account 
the general UPDRS-III score (items 18–31 of UPDRS scale 
(2)) and UPDRS-III subscore related to the examination of the 
bradykinesia in the hand movements (items 23–25 of the UPDRS 
scale (2)).

Correlations were calculated using Spearman correlation 
coefficient ρ (higher values of ρ indicate better correlation), 

along with the p-value. If the correlation coefficient ρ is in the 
range [0.5–1] and p-value less than 0.05, the corresponding 
MPI is correlated with the tapping test (positive correlation). 
On the other side, the correlation coefficient ρ between −1 
and −0.5 and p-value less than 0.05, indicate the correla-
tion of the particular MPI with UPDRS-III scale (negative 
correlation).

3. resUlTs

3.1. Preliminary comparison  
between PD and controls
Figure  4 illustrates the mean absolute value and the standard 
deviation graph of Emg-mav basic measurement (1) calculated 
for patients and controls across eight EMG channels for RH-EE 
movement. The results underline the largest mean value differ-
ences between controls and patients on the channel 2 in the case 
of the right-hand movements and channel 6 for the left-hand 
movements.

Figure 2 shows that those electrodes cover the same group of 
external forearm muscles in the case of both hands. In addition, 
channels 3 and 4 (right-hand movements) and channels 4 and 
5 (left-hand movements) highlight the large differences, as well 
(external and upper flexor muscles). The data from all channels 
demonstrated statistically significant difference between patients 
and controls (p < 0.01). However, in the following analysis, we 
take into account channels that emphasize the largest difference 
between group mean values and consequently, the extraction of 
the basic measurements has been performed only for the signals 
from channel 2 for the right-hand movements and from channel 
6 for the left-hand movements. The same results are confirmed 
for remaining EMG basic measurements (2 and 3) and all other 
collected movements.

Figure 5 illustrates the mean absolute value and the standard 
deviation graph of Acc-ran and Gyro-ran basic measurement 
(5) calculated for patients and controls across three axes for 
RH-EE movement. The results underline the largest mean 
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FigUre 5 | Acc-ran basic measurement across three axes for RH-EE movement: right hand (a) and left hand (B). Y-axis underline the largest mean value difference 
between controls and patients. Gyro-ran basic measurement across three axes for RH-EE movement: right hand (c) and left hand (D). X-axis underline the largest 
mean value difference between controls and patients.

TaBle 2 | Calculated basic measurements.

calculated basic measurements acronyms 
used in the 
article

1. Mean absolute Value from eMg signal Emg-mav
2. Variance from eMg signal Emg-var
3. Waveform change from eMg signal Emg-wc
4. simple square integral from accelerometer signal derivative Acc-ssi
5. range from accelerometer signal derivative Acc-ran
6. simple square integral from gyroscope signal derivative Gyro-ssi
7. range from gyroscope signal derivative Gyro-ran
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value differences between controls and patients on the Y-axis 
for Acc-ran and on the X-axis for Gyro-ran in the case of both, 
right- and left-hand movements. The same analysis is performed 
for the other ACC and GYRO basic measurement (4) and all 
other collected movements. In contrast to EMG channels, the 
axis of interest for ACC and GYRO basic measurements is dif-
ferent across movements, but for the particular movement, the 
axis of interest is the same for right and left-hand movements. 
The data from all axes demonstrated the statistically significant 
difference between patients and controls (p < 0.01). However, in 
the following analysis, for each movement, we take into account 
the axis that emphasizes the largest difference between group 
mean values.

In total, we have extracted seven basic measurements 
(Table  2) for each movement. We characterize twelve move-
ments—six different movements (Table  1 and Figure  1) were 
performed by both left and right hand. Consequently, based on 
the seven basic measurements calculated for each movement, 
we obtained a total set of 84 Movement Performance Indicators 

(MPIs) for all movements (seven basic measurements times 
twelve movements). The design of these MPIs was grounded on 
the information provided by neurologists and therapists with 
the goal of delivering quantitative information about subject’s 
performance. In the following sections, we will reveal which 
MPIs are the most relevant and informative, from the viewpoint 
of the particular clinical aspects.
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FigUre 6 | Intraclass Correlation Coefficient (ICC) across Movement 
Performance Indicators (MPIs).

A B

C D E

FigUre 7 | Illustration of bradykinesia symptom: temporal evolution of (a) EMG-mav and (B) GYRO-ran during GPP-HL movement. Patients performed slower 
movements than controls. Temporal evolution of (c) EMG-mav, (D) ACC-ran, and (e) GYRO-ran during TT-P movement for patient data. The values of basic 
measurements sequentially drop over time (bradykinesia “sequence effect”). * Y-axes are labeled in the form: basic measurement(s) (performed movement, hand).
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3.2. reliability
The results of the reliability analysis indicate high reliability for 
all 84 MPIs, with ICC values in range [0.84–0.99], Figure 6.

3.3. Quantitative assessment  
of Bradykinesia symptom
In this section, we investigate whether our proposed MPIs can 
reveal the presence of bradykinesia symptom in patients. Two 
main properties of bradykinesia symptom are (1) slowness of 
the movements and (2) the progressive decrease in amplitude 
of sequential movements (so-called “sequence effect”). Figure 7 
illustrates the bradykinesia pattern, relying on the designed MPIs. 
The difference in movement speed between patients and controls 
is demonstrated for GPP-HL movement since this movement was 
repeated five consecutive times during the experiment. Figure 7A 
shows the temporal evolution of the EMG-mav over window 
segments, for patients and controls, during the GPP-HL move-
ment. The patients have demonstrated slower movements—they 
needed more time to perform five consecutive movements than 
controls.

In order to investigate the presence of “sequence effect” in 
the context of our proposed basic measurements, we analyze 
their evolution during the movement performance. We focus 
on the TT-P and TT-D movements since those movements are 
recorded in the period of 30  s, which enables enough sensor 
data for sequence effect analysis. Figure  7C demonstrates the 
temporal evolution of Emg-mav basic measurement during 
TT-P movement for right-hand affected patient (third disease 
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FigUre 8 | LDA Informativeness index: (a) patients–controls and (B) disease stages.

TaBle 3 | The most relevant MPIs obtained by LDA approach and LASSO 
regressiona (bolded MPIs are the ones selected by both approaches).

Patients/controls Disease stage (hY)

# lDa lassO lDa lassO

1. Gyro-ssi TT-D-R gyro-ssi TT-D-l emg-mav 
gPP-hl-r

gyro-ssi 
TT-D-l

2. gyro-ssi TT-D-l emg-mav 
gPP-el-l

Emg-mav TT-P-R emg-mav 
rh-eF-r

3. emg-mav 
gPP-el-l

emg-mav 
TT-D-r

gyro-ssi TT-D-l gyro-ran 
TT-D-l

4. emg-mav 
gPP-hl-r

emg-mav 
gPP-hl-r

emg-mav 
rh-eF-r

emg-mav 
gPP-hl-r

5. emg-mav 
TT-P-r

gyro-ssi 
gPP-el-l

gyro-ran 
TT-D-l

emg-mav 
gPP-el-r

6. gyro-ssi 
gPP-el-l

Gyro-ran 
GPP-HL-L

emg-mav 
gPP-el-r

emg-mav 
TT-D-r

7. gyro-ran 
TT-D-l

gyro-ssi 
gPP-hl-r

emg-mav 
TT-D-r

Emg-mav 
RH-EE-R

8. Gyro-ssi 
GPP-HL-L

gyro-ran 
gPP-el-l

emg-mav 
rh-ee-l

Gyro-ran 
GPP-HL-R

9. gyro-ran 
gPP-el-l

gyro-ran 
TT-D-l

Emg-mav 
GPP-HL-L

Gyro-ran TT-D-R

10. Gyro-ran TT-D-R emg-mav 
TT-P-r

Gyro-ssi 
GPP-HL-L

Emg-mav 
TT-P-L

11. Emg-mav 
GPP-HL-L

Emg-mav 
RH-EF-L

Emg-mav 
RH-EF-L

emg-mav 
rh-ee-l

12. emg-mav 
TT-D-r

Gyro-ssi 
RH-EF-D

Gyro-ran 
GPP-HL-L

Gyro-ran TT-P-L

13. gyro-ssi 
gPP-hl-r

Gyro-ssi TT-P-D Gyro-ssi TT-D-R Emg-mav 
TT-D-L

aMPIs are listed in the format MPI movement-hand (R-right or L-left).
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stage according to Hoehn and Yahr (HY) (1)). The decrease of 
Emg-mav basic measurement over time is slow, but constant 
(Figure  7C). Such outcome suggests the presence of bradyki-
nesia symptom.

The bradykinesia symptom is visible from the time evolu-
tion of ACC and GYRO basic measurements, as well. Figure 7B 
illustrates the temporal evolution of the Gyro-ran over window 
segments, for patients and controls, during the GPP-HL move-
ment. The result is the same as in the case of EMG data—slower 
movements at patients are confirmed based on the evolution 
of Gyro-ran basic measurement over time. Bradykinesia 
“sequence effect” is confirmed based on the ACC and GYRO 
basic measurements, as well. However, the decreasing pattern 
is different from EMG data. ACC-ran values are significantly 
larger in the first-half period compared to the second-half 
period (Figure  7D). Finally, GYRO-ran basic measurement 
(Figure 7E) shows the constant and significant drop in values 
over time.

3.4. Dimensionality reduction and MPis 
selection
We applied Linear Discriminant Analysis (LDA) (32) to deter-
mine the most relevant MPIs for the decision-making process 
based on the clinical group parameter, between patients and 
controls (diagnosis support) and between disease stages 
(monitoring support). The implementation of the LDA method 
is based on the procedure described in detail in our previous 
research (23). Information index plots (Figures  8A,B) show 
the importance of the MPIs for classification tasks from the 
ones most important toward less important MPIs. The LDA 
method results that, for keeping 80% of information from the 
original data set, it is sufficient to select first 13 out of 84 MPIs 
for both conditions: patients/controls (Figure 8A) and disease 
stages (Figure  8B). The selected MPIs are listed in Table  3. 
Information index plots also demonstrate that some MPIs 
have the negligible impact on the classification tasks. After 
the first 50 MPIs, adding more MPIs will not bring significant 
information.

In order to verify the results obtained by LDA, we have used 
the LASSO regression analysis (33), which performs both feature 
selection and regularization, in order to enhance the classifica-
tion accuracy. Using the LASSO regression, the response variable 
(corresponding class of the interest—patients/controls or disease 
stage) is modeled as a linear combination of the MPIs (model 
parameters). The model parameters with strongest dependence 
of the response variable will have higher coefficients, while the 
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TaBle 4 | Performance of six classification approaches in diagnostic and monitoring tasks for two sets of MPIs.

Original (Full) set (84 MPis) selected subset (13 MPis—lDa) 

classifier PD vs c Disease stages PD vs c Disease stages 

i vs. ii and iii ii vs. i and iii iii vs. i and ii i vs. ii and iii ii vs. i and iii iii vs. i and ii 

Logistic regression 1 (0) 1 (0) 1 (0) 1 (0) 0.9967 (0.0034) 0.9942 (0.0088) 0.8969 (0.0569) 0.9961 (0.0074) 
Decision trees 0.9905 (0.0114) 0.9670 (0.0286) 0.9499 (0.0582) 0.9649 (0.0441) 0.9823 (0.0091) 0.9542 (0.0504) 0.8840 (0.1074) 0.9308 (0.0344) 
Support vector 
machines 

1 (0) 1 (0) 1 (0) 0.9993 (0.0022) 0.9967 (0.0039) 0.9927 (0.0072) 0.8759 (0.0835) 0.9972 (0.0028) 

K-nearest 
neighbors 

1 (0) 0.9999 (0.0002) 1 (0) 1 (0) 0.9981 (0.0039) 0.9983 (0.0031) 0.9899 (0.0140) 0.9956 (0.0077) 

Naive Bayes 0.9948 (0.0037) 0.9908 (0.0078) 0.9757 (0.0269) 0.9743 (0.0202) 0.9878 (0.0056) 0.9903 (0.0060) 0.9158 (0.0371) 0.9798 (0.0170) 
Neural networks 1 (0) 1 (0) 0.9997 (0.0009) 0.9978 (0.0070) 0.9923 (0.0141) 0.9910 (0.0162) 0.9769 (0.0336) 0.9971 (0.0034) 

All approaches are very successful on the given tasks, although K-Nearest Neighbor and Neural Networks appear to be the best performers.

TaBle 5 | Relevant MPIs for the left–right side analysis across clinical groups of 
interesta.

Patients/controls Disease stages (hY)

2 EMG MPIs RH-EE EMG-VAR RH-EF
2 EMG MPIs RH-EF ACC MPIs RH-EF
ACC MPIs RH-EF ACC MPIs GPP-EL
GYRO MPIs RH-EF GYRO MPIs GPP-EL
EMG MPIs GPP-EL ACC-RAN MPI GPP-HL
EMG MPIs GPP-HL GYRO MPIs GPP-HL

ACC-SSI TT-P

aMPIs are listed in the format MPI movement.
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coefficients corresponding to the less important parameters will 
weight toward zero. In such way, we select the most important 
model parameters (corresponding MPIs) according to the 
classification task of interest. Results of both techniques, LDA 
and LASSO, giving the 13 most relevant MPIs (out of 84 MPIs 
in total), and for the classification criterion between groups of 
interest, are listed in Table 3.

Table 3 shows that the 13 most relevant MPIs (out of 84 MPIs) 
are Gyro-ssi, Gyro-ran and Emg-mav extracted mostly from the 
movements of object grasping, pick and place (GPP-EL and 
GPP-HL) and tapping test movements (TT-P and TT-D). The 
list of the most relevant MPIs is not the same in case of LDA and 
LASSO regression, but the majority of representative MPIs are 
selected by both methods (marked as bold text in Table 3). Such 
result can be a consequence of the adjustment of regularization 
parameter λ ∈ [0.01–0.5] during Lasso regression. This parameter 
determines the strength of the penalty. As λ increases, more coef-
ficients of the model are reduced to zero, hence more parameters 
(MPIs) are excluded from the model.

3.5. classification: Diagnosis and 
Monitoring evaluations
Classifiers were built for four tasks: (i) PD patients vs controls 
(PD vs C); (ii) stage I vs stages II and III PD; (iii) stage II vs 
stages I and III PD; and (iv) stage III vs stages I and II PD, and 
by using two sets of MPIs: (a) original (full) set of 84 MPIs and 
(b) set of 13 MPIs selected by LDA in Table 3. As a criterion 
of the classification success, the area under the ROC curve 
(AUC) is calculated (35). ROC curve represents the graph of 
the true positive rate (TPR) against the false positive rate (FPR). 
AUC is the calculated surface area under the ROC curve. AUC 
values that indicate high-performance classifiers are in the range 
[0.80–1]. The performance of each classifier is assessed in a (10-
fold) cross-validation procedure, and the results are provided in 
Table 4 in form of a mean (standard deviation) calculated from 
10-folds.

Table 4 shows that the AUC values for all employed classifica-
tion approaches are very high (near or equal to the perfect score 
of 1), suggesting that reliable decisions can be made by using the 
proposed MPIs. The most difficult task appears to be discern-
ing the stage II patients from stages I and III PD, based on the 

selected subset of 13 features. However, K-Nearest Neighbor and 
Neural Network classifiers seem to achieve quite consistent high 
performance under all tested conditions. Also, using only the 13 
features instead of all 84 results in just a slight reduction in perfor-
mance, providing another evidence in favor of informativeness of 
the selected MPIs.

3.6. left-right side analysis
Results of the statistical analysis suggest that 14 MPIs out of 84 
MPIs in total are relevant for the left-right side analysis between 
patients and controls (Table 5). Such result indicates that EMG 
MPIs for grasping, pick and place movements are the most 
relevant for the left–right side analysis, as well as MPIs extracted 
from the rotation of the hand movement while the elbow is 
flexed.

Figure  9A illustrates the mean and standard deviation 
graph for controls and right-side affected patients for Acc-ssi 
MPI (RH-EF movement). It can be seen the mean MPI values 
are almost the same in the case of controls, while in patients, 
the mean MPI value for the left hand movement is larger than 
for the right hand movement. Such outcome is expected, since 
the right side is affected by PD and consequently, has lower 
performance.

The results of the statistical analysis suggest that 11 MPIs out 
of 84 MPIs in total are relevant for the left-right side analysis 
between disease stages (Table 5). It turns out that the ACC and 
GYRO MPIs for RH-EF, GPP-EL, and GPP-HL are the most com-
mon MPIs to evaluate the difference in performance between left 
and right hand across the disease stages.
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TaBle 6 | List of MPIsa correlated with tapping testb (ρ > 0.5, p < 0.05) and 
UPDRS-III scalec ( ρ < −0.5, p < 0.05).

Tapping test UPDrs-iii scale

Proximal taping task Distal taping 
task

UPDrs-iii 
general

UPDrs-iii 
subscore

EMG MPIs RH-EE L ACC MPIs 
RH-EE R

eMg MPis 
rh-ee r l

eMg MPis 
rh-ee r l

ACC MPIs RH-EE R GYRO MPIs 
GPP-EL R

ACC-RAN 
RH-EE R

gYrO MPis 
rh-ee r l

EMG MPIs RH-EF L acc MPis 
TT-P r l

gYrO MPis 
rh-ee r l

eMg MPis 
rh-eF r l

ACC MPIs RH-EF R L gYrO MPis 
TT-P r l

eMg MPis 
rh-eF r l

acc MPis 
rh-eF l

GYRO MPIs RH-EF L acc MPis 
TT-D l

acc MPis 
rh-eF l

gYrO MPis 
rh-eF l

GYRO MPIs GPP-EL R gYrO MPis 
TT-D l

gYrO MPis 
rh-eF l

2 eMg MPis 
gPP-hl r

ACC-RAN GPP-HL R 2 eMg MPis 
gPP-hl r

gYrO MPis 
gPP-hl r

EMG MPIs TT-P L ACC-RAN 
GPP-HL R

eMg MPis 
TT-P l

acc MPis TT-P r l gYrO MPis 
gPP-hl r

acc MPis TT-P 
r l

gYrO MPis TT-P r l eMg MPis 
TT-P l

gYrO MPis 
TT-P r l

acc MPis TT-D r l acc MPis 
TT-P r l

ACC-RAN 
TT-D L

gYrO MPis TT-D r l gYrO MPis 
TT-P l

GYRO-RAN 
TT-D L

GYRO MPIs 
TT-D L

aMPIs are listed in the format MPI(s) movement hand (R-right or/and L-left).
bMPIs extracted from the tapping test movements (TT-P and TT-D) are correlated with 

both tapping tasks (bold text).
cMPIs correlated with both UPDRS-III scores are marked as bold text.

A B

FigUre 9 | Acc-ssi MPI (RH-EF movement) for controls and right side affected patients (a) and Gyro-ran (GPP-HL movement) for different disease stages (B). The 
mean MPI values for the left and right hand are similar in controls opposite to the patients (a). The mean MPI values decrease from the first to the third stage and 
their difference between the left- and the right-hand increases (B).

Figure 9B illustrates the mean and standard deviation graph 
across disease stages for Gyro-ran MPI (GPP-HL movement). 
It can be seen that the mean MPI values decrease from the first 
to the third stage and their difference between the left- and the 
right-hand increases. Such result suggests that differences in 
the performance of the left and right hand become larger with  
the disease progression. It can be seen that in the case of the left-
side affected group (first stage) the MPI values are greater for the 
right hand. The situation is opposite for the right-side affected 
group of the second and third disease stage. In both cases, MPI 
values are greater for the hand less affected by the disease, which 
is an expected outcome.

3.7. correlations with clinical scales
In this section, we want to investigate whether the proposed MPIs 
are correlated with clinical test and scales. This is particularly 
important for the possible inclusion of the proposed MPIs into 
medical protocols. All MPIs that satisfy correlation conditions 
(explained in the Section 2.4.5) for the tapping test and UPDRS-
III scale are listed in Table 6.

Scatter plots in Figure  10 illustrate a few examples of the 
correlation between MPIs and clinical parameters, where 
the line represents the regression curve. It can be seen that  
the selected MPIs have a positive correlation with the tapping 
test (Figures 10A,B), more concretely with the number of taps 
in two cases of the tapping test (procedure of the tapping test is 
explained in the Section 2.2). This is expected since the patients 
who have higher values of MPIs potentially can achieve a larger 
number of taps within defined time interval (30 s). On the other 
side, our MPIs have a negative correlation with the UPDRS-III 
general score (Figure  10C) and subscore for bradykinesya 
(Figure  10D), since the lower values of our MPIs and higher 
values on UPDRS-III scale indicate a more severe state of the 
patient, i.e., more advanced disease stage.

Results of the correlation analysis regarding the tapping test 
(Table  6) have shown that the most correlated MPIs for both 
tapping tasks are the ones extracted from the tapping test move-
ments (TT-P and TT-D). Such result is expected, since the same 

movements are tested during clinical protocol and our sensor 
measurements. Those MPIs refer to all ACC and GYRO MPIs of 
both, left- and right-hand movements. In addition to the tapping 
test movements, ACC and GYRO MPIs from the right-hand 
RH-EE and GPP-EL movements, as well as from the left hand 
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Spasojević et al. Assessment of the Arm Movements in Parkinson’s Disease

Frontiers in Neurology | www.frontiersin.org August 2017 | Volume 8 | Article 388

RH-EF movement have high values of Spearman correlation 
coefficient ρ. MPIs extracted from EMG signals are mostly poorly 
correlated with tapping test (ρ < 0.5, p > 0.05), except EMG MPIs 
in the case of the left-hand RH-EE, RH-EF, and TT-P movements 
(Table 6).

Results of the correlation analysis regarding the UPDRS-III 
scale for the general score and bradykinesia subscore highlight 

mostly the same MPIs in both cases (Table 6). The most correlated 
MPIs are the ones extracted from the rotation of the hand move-
ments (RH-EE and RH-EF), Table 6. In addition to the rotation 
of the hand movements, the MPIs from right hand GPP-HL and 
TT-P movements, as well as MPIs from the left TT-P and TT-D 
movements have high (absolute) values of Spearman correlation 
coefficient ρ. Since higher values of ρ indicate better correlation, 

A B

C D

FigUre 10 | Scatter plots of the correlation between particular MPIs and tapping test (a,B), UPDRS-III general score (c), and UPDRS-III bradykinesia subscore (D).

TaBle 7 | Importance of the MPIs and tested movements across criterions of clinical interest.

MPis Movement (left and right hand)

criterion eMg acc gYrO rh gPP TT

mav var wc ssi ran ssi ran ee eF el hl P D

1. Reliability ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
2. Classification patients-controls LDA ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
3. Classification patients-controls LASSO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
4. Classification disease stages LDA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
5. Classification disease stages LASSO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
6. Left-right side analysis patients-controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
7. Left-right side analysis disease stages ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
8. Correlation—tapping test ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
9. Correlation—UPDRS-III ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Spasojević et al. Assessment of the Arm Movements in Parkinson’s Disease

Frontiers in Neurology | www.frontiersin.org August 2017 | Volume 8 | Article 388

those MPIs are very good in terms of correlation with UPDRS-III 
scale.

3.8. summary
Table  7 summarizes the importance of the MPIs and tested 
movements across nine criterions of clinical interest. Gyro-ssi 
and Gyro-ran MPIs are relevant according to all criterions. 
Particular EMG MPIs are important for the classification aspect 
and left–right side analysis (both conditions—patients vs. con-
trols and disease stages), while the ACC MPIs are of interest for 
the left–right side analysis and correlation with clinical scales. 
Among tested movements, object grasping, pick, and place (both 
variations—easy and heavy load) turn out to be the most relevant 
for listed clinical aspects. Reliability analysis has demonstrated 
the high reliability for all proposed MPIs across all movements 
(Table 7).

4. DiscUssiOn anD cOnclUsiOn

In recent studies, the use of an armband device has been con-
sidered for medical and rehabilitation applications, especially for 
physiotherapy healthcare (27) and recovery after the stroke (28). 
The authors in Ref. (27) use MYO Diagnostics application for 
medical diagnosis and to understand how comfortable subjects 
feel while performing the movements using the armband device. 
The study (28) proposes a low-cost rehabilitation system for 
recovery after the stroke, which consists of an armband device 
and a data glove. The authors present just the concept of a reha-
bilitation system based on the virtual environment and gaming 
to enhance the patient’s motivation. Both studies (27, 28) lack 
the signal processing, feature extraction analysis, and decision-
making procedure behind the interface.

In Ref. (29) the authors propose a multi-sensory gesture-based 
occupational therapy system, which consists of a Kinect v2, a 
Leap motion sensor and a Myo armband device. The system is 
intended to support the everyday activities in the home environ-
ment and to encourage the patients to practice and obtain the 
feedback about their movement performance during usual daily 
routines. Again, as in Ref. (27, 28) only the concept of the system 
is presented, along with the general implementation details.

Lack of the sensor signal analysis and processing toward 
the extraction of the meaningful signal features, as well as the 
development of the clinically-oriented approaches based on the 
sensor movement data, are the main drawbacks of the related 
studies. We have used a wireless armband sensor to acquire arm/
hand movements defined by the PD protocol. We propose a set 
of 84 Movement Performance Indicators (MPIs) to characterize 
acquired movements. We conducted a thorough analysis of the 
properties of these MPIs, to identify their importance in terms 
of relevant clinical aspects (Table  7): (i) reliability; (ii) clas-
sification between patients and controls and between disease 
stages (support to diagnosis and monitoring, respectively); (iii) 
left–right side analysis between controls and patients, as well as 
between disease stage groups; and (iv) correlation with clinical 
scales (tapping test and UPDRS-III). The overall conclusion is 
that Gyro-ssi and Gyro-ran MPIs are relevant according to all 
clinically relevant criterions. Particular EMG MPIs are important 

for the classification aspect and left–right side analysis, while the 
ACC MPIs are of interest for the left–right side analysis and cor-
relation with clinical scales.

This study complements our previous research (23) with an 
approach for quantitative movement analysis, based on the arm/
hand movement data acquired with an EMG sensor. Our results 
show that the proposed approach has the potential to be adopted 
by therapists, to enhance objectivity and precision, during the 
diagnosis/monitoring evaluations and bradykinesia assessment. 
At the same time, it opens the possibility of the low-cost assess-
ment tool for patients with the mild to moderate PD stages (I–III 
according to the modified HY clinical scale).

The armband electromyographic sensor is worn on the 
forearm and collects the data from the four groups of mus-
cles—flexors, extensors, internal, and external forearm muscles 
(Section 2.2, Figure 2). One very important conclusion is that 
external forearm muscles of both hands in PD patients have 
demonstrated the lowest performance of all forearm muscles in 
the sense of the muscle activity compared with a control group. 
This result suggests that external forearm muscles are the most 
affected by the Parkinson’s disease. Such result is derived from 
our sensor data but requires additional clinical testing and 
confirmation.

In the Parkinson’s disease, one side of the body is more 
affected than the other. Furthermore, the first symptoms of 
the disease are observed on a particular body side. Along with 
the disease progress, both sides become affected, but the side 
on which PD symptoms were first detected, is always affected 
more. The quantitative assessment of the difference between left 
and right side of the body would be significant information for 
the neurologists, since they cannot evaluate it directly or using 
subjective clinical scales. Consequently, we investigated the 
differences in the movement performance with left and right 
hand, relying on the proposed MPIs. Our finding is that those 
differences are negligible in control subjects, while they can 
become quite large for Parkinson’s patients, depending on the 
disease stage.

Collected sensor data in the context of designed MPIs have 
revealed the bradykinesia patterns in patient movement data. The 
slowness of the movement and sequential drop of the amplitude 
over time (so-called “sequence effect”) are visible from the MPIs 
temporal evolution. Such results indicate the potential of our 
proposed MPIs to be used by therapists for quantitative assess-
ment of bradykinesia.

Finally, we conclude that sensor data collected from the 
wireless armband device successfully addressed the same set of 
relevant aspects in PD like the sensor glove data in our previ-
ous research (23). Even more, in this study, we have performed 
the left–right side analysis, which is not feasible with the sen-
sor glove data, due to its right-hand design. Consequently, our 
results suggest that the wireless armband sensor can be a possible 
alternative for high-cost data glove that we used in our previous 
research. However, the experimental setup, tested movements 
and extracted Movement Performance Indicators (MPIs) are 
different in accordance with sensor choice. The advantage of the 
sensor glove data over the armband device is the quantification 
of the fine finger movements.
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