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Freezing of gait (FOG) is a disabling symptom that is common among patients with 
advanced Parkinson’s disease (PD). External cues such as rhythmic auditory stimulation 
can help PD patients experiencing freezing to resume walking. Wearable systems for 
automatic freezing detection have been recently developed. However, these systems 
detect a FOG episode after it has happened. Instead, in this study, a new approach 
for the prediction of FOG (before it actually happens) is presented. Prediction of FOG 
might enable preventive cueing, reducing the likelihood that FOG will occur. Moreover, 
understanding the causes and circumstances of FOG is still an open research problem. 
Hence, a quantitative characterization of movement patterns just before FOG (the pre-
FOG phase) is of great importance. In this study, wearable inertial sensors were used to 
identify and quantify the characteristics of gait during the pre-FOG phase and compare 
them with the characteristics of gait that do not precede FOG. The hypothesis of this 
study is based on the threshold-based model of FOG, which suggests that before FOG 
occurs, there is a degradation of the gait pattern. Eleven PD subjects were analyzed. Six 
features extracted from movement signals recorded by inertial sensors showed signif-
icant differences between gait and pre-FOG. A classification algorithm was developed 
in order to test if it is feasible to predict FOG (i.e., detect it before it happens). The aim 
of the classification procedure was to identify the pre-FOG phase. Results confirm that 
there is a degradation of gait occurring before freezing. Results also provide preliminary 
evidence on the feasibility of creating an automatic algorithm to predict FOG. Although 
some limitations are present, this study shows promising findings for characterizing and 
identifying pre-FOG patterns, another step toward a better understanding, prediction, 
and prevention of this disabling symptom.

Keywords: freezing of gait, wearable sensors, Parkinson’s disease, classification, prediction, inertial measurement 
unit, machine learning, data analysis
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inTrODUcTiOn

Freezing of gait (FOG) is a disabling symptom that is common 
among patients with advanced Parkinson’s disease (PD). FOG 
is clinically defined as a “brief, episodic absence or marked 
reduction of forward progression of the feet despite the inten-
tion to walk” (1). It most commonly occurs when a person 
starts to walk, during turning, when passing through narrow 
passages, and when approaching a destination such as a chair 
(1). FOG markedly impairs mobility, it is an important cause 
of falls (2–4) and reduces quality of life (1). External cues such 
as rhythmic auditory stimulation (e.g., metronome) and visual 
cues (e.g., walker or stick projecting a laser line on the floor) 
(5) can help PD patients experiencing freezing to resume 
walking.

Recently, several research studies used wearable sensors 
(mostly accelerometer and gyroscopes) in order to quantify 
the characteristics of FOG events and to implement systems 
for effective real-time FOG detection. An updated list of these 
studies can be found in Ref. (6) and in a recent review (4). 
The most frequent approach for the detection of FOG events 
is based on the fact that during FOG the acceleration signals 
recorded by inertial sensors show a pattern of high frequency 
movements (mostly given by the trembling behavior of the legs) 
(4, 6–15).

Automatic FOG detection is paramount for providing a 
cue (such as rhythmic auditory stimulation) during a FOG 
episode in order to help the person become free of the motor 
block. FOG prediction on the other hand refers to the ability 
of predicting FOG before it occurs. By identifying possible 
precursor signs of FOG (pre-FOG) the cue could be provided 
as soon as, or ideally just before, the FOG would begin, which 
might potentially help to prevent the incoming freezing event. 
Moreover, understanding the causes and circumstances of FOG 
is still an open research problem (1, 16–25) and so the char-
acterization of the pre-FOG phase, defined as a time window 
of a few seconds before FOG occurs, might have an extremely 
relevant impact.

The pre-FOG phase has been studied using different measure-
ment systems, such as camera-based motion capture systems 
(26, 27), electromyography (28), electroencephalography (29), 
functional near infrared spectroscopy (16), electrocardiography 
(17, 30), and skin conductance (30). To the best of our knowledge, 
only two exploratory studies have used wearable inertial sensors 
to analyze the pre-FOG phase (31, 32).

In this study, we aimed to use wearable inertial sensors, spe-
cifically accelerometers and gyroscopes, to identify and quantify 
the characteristics of gait during the pre-FOG phase and compare 
them with the characteristics of gait that do not precede FOG. The 
hypothesis of this study is based on the threshold-based model 
of FOG (23) which suggests that before FOG occurs, there is a 
degradation of the gait pattern. Once the level of deterioration 
crosses a critical threshold, FOG occurs (23). A classification 
algorithm was then developed in order to test if it is feasible to 
predict FOG (i.e., detect it before it happens). The aim of the 
classification procedure was to identify the pre-FOG phase. An 
evaluation of the performance of such classifier is presented.

MaTerials anD MeThODs

Overview of approach
As an initial step toward identification of the pre-FOG phase, we 
focus here on FOG episodes that take place during movement, 
excluding FOG episodes that happen after a period of inactivity 
(i.e., start hesitation). To compare gait and pre-FOG, an ad hoc 
algorithm was designed and implemented to obtain gait and 
pre-FOG time windows. Then, features which quantify pos-
sible patterns leading to FOG were extracted from the identified 
windows. Finally, a statistical analysis was performed to identify 
significant differences between gait and pre-FOG. This analysis 
was performed for each single feature. We also explored the pos-
sibility of combining the information from different features by 
training a classifier to automatically discriminate between gait 
and pre-FOG.

All the analyses were performed using Matlab (release 2016b, 
MathWorks, USA).

Data set
The CuPiD data set was used for our analyses (30). In this data set, 
18 people with PD were monitored during their “ON” medication 
state using a wearable multisensor setup (30). The study was car-
ried out in accordance with the recommendations of the Ethics 
Committee of Tel Aviv Sourasky Medical Center with written 
informed consent from all subjects. All subjects gave written 
informed consent in accordance with the Declaration of Helsinki. 
The protocol was approved by the Ethics Committee of Tel Aviv 
Sourasky Medical Center.

The subjects performed several activities which were selected 
because they are known to frequently induce FOG (e.g., turning, 
passing narrow corridors, and dual tasking). The recording pro-
tocol included resting periods and other conditions such as com-
pleting questionnaires and clinical evaluations [MDS-UPDRS 
(33), NFOG-Q (34)]. These conditions were not considered in 
this study as we aimed to analyze only conditions associated 
with motor activities. The considered conditions are reported in 
Table 1.

In this study, data from 11 subjects were analyzed; only those 
subjects who exhibited at least one FOG episode during the pro-
tocol were included. The subject characteristics are reported in 
Table 2. We considered the data registered from the two inertial 
sensors positioned on the shins right above the ankles and from 
the inertial sensor positioned on the lower back (see Figure 1). 
The three sensors [ETHOS (35), sampling frequency of 128 Hz] 
were fixed to the body with straps.

Data Processing
The start and end of each FOG event were identified off-line 
by two expert clinicians after examining the video recordings 
[further details in Ref. (30)]. The moment of arrested gait pattern 
(i.e., stop in alternating left-right stepping) was considered as the 
start of FOG. The moment when the patient resumed a regular 
gait pattern was considered as the end of the freezing event.

We defined the period of 2 s before each FOG as the pre-FOG 
window. We considered 2 s to be the appropriate window length 
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FigUre 1 | Setup that was considered for the analysis.

Table 2 | Subject characteristics.

subject iD age 
(years)

Disease 
duration 
(years)

nFOg-Q hoehn and 
Yahr

MDs-
UPDrs 
Part iii

1 89 13 17 4 43
2 55 14 21 3 38
3 63 4 27 4 55
4 68 7 15 3 24
5 63 5 14 3 54
6 60 10 24 3 36
11 64 5 24 2 38
12 77 17 28 4 55
16 81 12 23 3 43
17 49 3 17 2 44
18 76 10 15 3 42
mean 67.7 9.1 20.5 3.1 42.9
SD 11.9 4.6 5.1 0.7 9.3

NFOG-Q is the new freezing of gait questionnaire (34); MDS-UPDRS Part III is the 
score of Part III (motor examination) of the MDS-UPDRS (33).

Table 1 | Protocol conditions.

condition Description

Ziegler, Single Task The Ziegler protocol includes two 360° turns, 
one 180° turn, and passing through a narrow 
passage (44). It was performed normally (single 
task), carrying a glass of water (dual task), and 
carrying a glass of water while performing serial 
subtractions (triple task)

Ziegler, Dual Task
Ziegler, Triple Task

Figure of 8, Single Task The subject is required to walk performing a 
figure of 8 shape five times in a 3-m area. It 
was performed normally (single task) and with a 
cognitive dual task, which required to perform 
serial subtractions or to enumerate words that 
start with a specific letter

Figure of 8, Dual Task

Straight + Turns, Single Task The subject is required to walk straight for 20 m, 
turn, and walk again on the opposite direction, for 
five times. It was performed normally (single task), 
passing a narrow corridor, and with a cognitive 
dual task, which required to perform serial 
subtractions or to enumerate words that start 
with a specific letter

Straight + Turns, Narrow 
Corridor
Straight + Turns, Dual Task

Circles + Random Turns, 
First Trial

The subject is required to walk in circles, with 
random 180° and 360° turns, when asked by the 
clinicians, for a period of 3 min. The condition 
was repeated a second time for some subjects 
(second trial)

Circles + Random Turns, 
Second Trial

Hospital tour It includes approximately 10 min of free walking 
through the crowded hall of the hospital. It 
includes involuntary stops, turns, changes of 
direction, using the elevator, and passing through 
narrow spaces
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because we were interested in a period of time long enough to 
capture the last stride before the onset of freezing. In cases where 
a previous FOG event (or part of it) was present during this 2-s 
period, the pre-FOG was discarded. This was done because the 
aim of the work was to study gait before FOG.

To identify gait windows, we first removed the parts of 
recordings that cannot be considered as gait: pre-FOG windows 

and FOG events. Then, in the remaining data, we identified 
continuous portions of at least 2 s. We divided each portion in 
non-overlapping 2-s windows. In case a portion was not a mul-
tiple of 2 s, we discarded an equal period at the beginning and at 
the end of the portion.

For both gait and pre-FOG windows, we only selected win-
dows with sufficient motion.

Consequently, gait windows can be data segments composed 
of straight walking, curved-path walking (such as the one in the 
“Figure of 8” and “Circles + Random Turns” conditions), walking 
through narrow passages, and turns (while walking and in place). 
The workflow of the identification of gait and pre-FOG windows 
is presented in Figure  2. The check for sufficient motion in a 
window is as follows.

A window contains insufficient motion if more than 50% of 
the samples of that window can be considered motionless.

A sample is considered motionless if two conditions are satis-
fied simultaneously:

 (i) Both left and right ankle norms of the gyroscope signals 
(angular velocities) are less than 0.5 rad/s.

 (ii) The norm of the acceleration of the lower back sensor is in a 
specific range. To compute this range, first a reference value for 
the norm of the acceleration was computed by averaging the 
norm of the acceleration in a portion of the recordings at the 
beginning of the protocol when the subject was not moving. 
The range was then defined as a “reference value ± 10% of the 
reference value.” The reference value is a value near the gravity 
acceleration g = 9.81 m/s2 (ideally, it would be exactly g).

From each window with sufficient motion, eight features were 
computed from the signals recorded by the inertial sensors (see 
Table 3). The features objectively quantify turns (turning degrees), 
gait symmetry (left-right cross-correlation, left-right difference in 
SD), gait amplitude (left-right average SD, lower back SD), and 
frequency content (power in the locomotor band, power in the 
freezing band, and freezing index). These specific features were 
chosen because we expected them to be sensitive to FOG (1, 23, 
36, 37).

The result of this process on a representative example is 
reported in Figure 3, which includes 16 gait windows, six pre-
FOG windows, and three windows (which were candidate gait 
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FigUre 2 | Workflow of data processing.
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windows) that were discarded because of insufficient motion. 
The features extracted from the signals of the 16 gait windows 
and six pre-FOG windows were then averaged, obtaining a single 
feature value for gait and a corresponding (paired) single value 
for pre-FOG, respectively. These two paired values were then 
considered in the statistical tests.

This process was repeated for each subject, for each condition. 
Only conditions with both gait and pre-FOG windows were 
selected for further analysis (see Figure 2 and Table 4).

statistical analysis
We considered all the pairs (gait–pre-FOG) obtained from the 
procedure described above and shown in Figure 2. Each pair cor-
responds to a specific condition of a specific subject. In the pair, 
the first sample is the average of the feature values of the gait win-
dows, and the second sample is the average of the feature values of 

the pre-FOG windows in that condition. The paired samples were 
considered condition by condition to find significant differences 
that did not depend on the degree of difficulty of a condition. The 
average was performed to have, for each condition, a single value 
for gait and a single value for pre-FOG. The averaging allowed for 
dealing with the imbalance between the number of gait windows 
and pre-FOG windows. In fact, usually there were more gait 
windows than pre-FOG windows (see Figure 3). Furthermore, 
both the number of gait windows and pre-FOG windows changed 
when considering different subjects and conditions.

We used the paired t-test to perform the comparison between 
gait and pre-FOG. The level of significance p was set at p = 0.05. 
Since we performed eight testing procedures (i.e., one for each 
feature), the results were considered significant if they remained 
significant after the correction for multiple testing procedures of 
Benjamini and Yekutieli (38).
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Table 3 | Features extracted from the recorded signals.

Feature sensor signal Direction Description

Turning degrees Lower back Angular velocity Vertical In order to obtain the turning degrees, the angular velocity around the vertical axis was low-
pass filtered at 1.5 Hz, then integrated, as in Ref. (45)

Left–right 
cross-correlation

Left and right 
ankles

Angular velocity Mediolateral The cross-correlation between two signals identifies the similarity between them at different 
lags (shifting in time one signal with respect to the other). This feature is the maximum of 
cross-correlation between the left and right leg among lags from 0.25 to 1.25 s (this is 
considered as the period where a pattern of alternate stepping can be in place). If walking 
is in place there should be a peak of cross-correlation for a lag in that range. As a technical 
note, the unbiased cross-correlation was performed and the signals were detrended before 
applying cross-correlation. The angular velocity in the mediolateral direction was chosen 
because it reflects the leg forward movement during gait for sensors on the ankles  
(see Figure 3)

Left–right average 
SD

Left and right 
ankles

Angular velocity Mediolateral It is the average between the SD of the signal of the right ankle and the SD of the signal of 
the left ankle. It is a measure of overall variation and range of leg movement

Left–right difference 
in SD

Left and right 
ankles

Angular velocity Mediolateral It is the absolute difference between the SD of the signal of the right ankle and the SD of the 
signal of the left ankle. It is a measure of the difference in ranges between the left and right 
leg

Lower back SD Lower back Acceleration Anteroposterior It is a measure of overall variation and range of motion of the trunk. The anteroposterior 
direction was chosen to reflect forward motion

Power in the 
locomotor band

Left and right 
ankles

Acceleration Anteroposterior The frequency of walking movements (locomotor activity) is considered to be concentrated 
around its characteristic periodic patterns, steps, and strides, which are around 2 and 1 Hz, 
respectively. This feature is the power in the locomotor band, which is defined to be between 
0.5 and 3 Hz, as in Ref. (8). This feature was calculated for both left and right ankles and the 
two values were then averaged

Power in the 
freezing band

Left and right 
ankles

Acceleration Anteroposterior It was found that leg trembling during freezing is characterized by a higher frequency pattern 
with respect to the one that is characteristic of walking (7, 8, 14, 15). This feature is the 
power in this freezing band, which is defined to be between 3 and 8 Hz, as in Ref. (8). This 
feature was calculated for both left and right ankles and the two values were then averaged

Freezing index Left and right 
ankles

Acceleration Anteroposterior It is the ratio between the power in the freezing band and the power in the locomotor band 
(8). It is usually used in studies for detecting freezing of gait with inertial sensors. When 
freezing is already in place, this index tends to show a high value (8, 14, 15). This feature 
was calculated for both left and right ankles and the two values were then averaged
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classification
In order to develop the classifier, we selected the three best 
features in characterizing the differences between gait and pre-
FOG from the statistical analysis (the features associated with the 
lowest p-values). Then, we trained a linear discriminant analysis 
classifier (39). The classifier was trained to discriminate between 
two classes: gait and pre-FOG. The trained classifier provided the 
probability that a certain window was gait or pre-FOG. In order 
to obtain a fair estimation of the accuracy of the classifier, a leave-
one-subject-out procedure was performed: when the classifier 
was tested on a certain subject, all the data from the remaining 
subjects were used to train the classifier.

The classifier was trained and tested on all of the gait and 
pre-FOG windows of the conditions selected for the statisti-
cal analysis (i.e., the conditions with both gait and pre-FOG 
windows).

The performance of the classifier, considering the obtained 
probabilities, is quantified by the area under the curve and the 
optimal combination of sensitivity and specificity. The latter is 
calculated with Youden’s index (40). The threshold on the prob-
ability corresponding to this optimal combination of sensitivity 
and specificity is also provided in Table 5. This threshold is used 
to classify a window in one of the two classes. So, if the probability 

of being pre-FOG is higher than the threshold, the window can 
be classified as pre-FOG (i.e., the classifier predicts an incoming 
FOG), otherwise the window can be classified as gait.

resUlTs

There was a significant amount of variability with respect to 
performed conditions in the CuPiD data set (Table 4). Not every 
subject performed the same number of conditions: only one 
subject (ID 18) performed every condition. The fact that dif-
ferent subjects performed a different number of conditions was 
mainly due to their health status and disease stage. The clinician 
decided how many conditions a specific person could perform. 
For example, the subject who performed the fewest number of 
conditions (subject 12) was the one with longest PD duration 
and highest NFOG-Q and MDS-UPDRS Part III scores. The 
“Straight + Turns, Single Task” condition was the only condition 
performed by every subject. This condition was likely the easiest 
to perform (it consists only in straight walking and predefined 
turns). There was additional intersubject variability with respect 
to the conditions that had both gait and pre-FOG (i.e., the condi-
tions selected for the analysis). This was due to the episodic nature 
of FOG as well as due to the fact that different subjects, depending 
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Table 4 | The conditions that were performed by the subjects are highlighted 
in green.

condition/subject iD 1 2 3 4 5 6 11 12 16 17 18

Ziegler, Single Task x x x x x x

Ziegler, Dual Task x x  x x x

Ziegler, Triple Task x x x x x

Figure of 8, Single Task x x x x x  x

Figure of 8, Dual Task x x x

Straight + Turns, Single Task x x x xx x x

Straight + Turns, Narrow Corridor x x x x

Straight + Turns,
Dual Task

x

Circles + Random Turns, First Trial x x x x x x x x

Circles + Random Turns,  
Second Trial

x x

Hospital tour    x    x x

All the reported conditions were performed a single time with the exception of subject 
12 who performed twice the “Straight + Turns, Single Task” condition. The conditions 
that were selected for the analysis are the ones with at least one gait window and at 
least one pre-FOG window. They are marked with an “x.”

FigUre 3 | An example of the segmentation of the recorded signal in gait and pre-FOG windows. The first plot from the top shows the recorded angular velocities 
of the sensors on the left and right ankles together with the segmentation of the windows. The second plot is the norm of the angular velocity of the sensors on the 
left and right ankles. The third plot is the norm of the acceleration of the sensor on the lower back. These two norms are used to perform the check for sufficient 
motion in a window.
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on their disease stage and health status, experienced a different 
number of FOG episodes.

Fifty paired samples were obtained using the procedure 
summarized in Figure 2 (the number of paired samples corre-
sponds to the total number of x marks in Table 4). In Figure 4, 
the p-values and the significant features (corrected for multiple 
testing) obtained from the paired t-tests are reported. Six out of 
eight features showed significant differences between gait and 
pre-FOG. These features were: turning degrees, left-right cross-
correlation, left-right average SD, lower back SD, power in the 
freezing band, and freezing index.

The three features with the lowest p-values overall were 
left–right cross-correlation, left–right average SD, and freezing 
index. However, the three features selected for the classifier were 
left–right cross-correlation, turning degrees, and freezing index. 
Turning degrees (the fourth lowest p-value) was selected instead 
of left–right average SD because the latter showed high correla-
tion with left–right cross-correlation (r  =  0.95 considering gait 
windows, r = 0.94 considering pre-FOG windows). An example 
of the application of the classifier is reported in Figure 5. The per-
formance of the classifier on each subject is reported in Table 5.

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


Table 5 | Performance of the classifier.

subject iD 1 2 3 4 5 6 11 12 16 17 18 Mean

Area under the curve 0.69 0.66 0.90 0.79 0.69 0.87 0.90 0.75 0.80 0.51 0.75 0.76
Sensitivity 0.56 0.90 0.92 1.00 1.00 0.88 1.00 0.64 0.74 0.73 0.80 0.83
Specificity 0.79 0.41 0.76 0.79 0.41 0.75 0.67 0.83 0.81 0.37 0.75 0.67
Threshold 0.53 0.26 0.22 0.20 0.23 0.49 0.72 0.19 0.59 0.23 0.57 0.38
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DiscUssiOn

Using inertial sensors, we found evidence that the pre-FOG 
phase differs from gait in patients with PD who suffer from FOG. 
This finding is consistent with the threshold model of FOG (23) 
as it suggests that an abnormal movement occurs before the FOG 
event.

As expected, the higher turning degrees registered in the pre-
FOG phase reflect the fact that turning triggers FOG. Plotnik 
et al. (41) showed that subjects who experience FOG have a poor 
bilateral coordination of stepping. It was hypothesized that tasks 
requiring a high degree of left–right coordination (such as turn-
ing) could predispose to FOG events (41).

We found the left–right cross-correlation to significantly 
decrease during pre-FOG. This feature quantifies both the 
temporal symmetry between the two limbs and the movement 
amplitude of both limbs. Therefore, this result shows a reduction 
of symmetry between the two limbs and of the overall amplitude 
(range) of movement. The former is consistent with Plotnik et al. 
(37), where a reduction in symmetry was found in the gait of 
subjects who suffered from FOG. Although in Nieuwboer et al. 
(36) this reduction was not found during pre-FOG. The latter 
is confirmed by the significant reduction that was found in the 
forward range of leg movements (left–right average SD) and of 
the trunk (lower back SD). These results are consistent with that of 
Ref. (36), where a pattern of reduced movement amplitude before 
FOG was reported.

The left–right difference in SD was not significant. We decided 
to quantify a possible difference (asymmetry) in movement 
amplitude (range) between the left and right leg just before FOG; 
however, this particular difference was not observed in this study.

In the frequency domain, we sought to test the features that 
are usually used for FOG detection (i.e., after the FOG episode 
has begun) to see if there was a similar characteristic pattern 
in the pre-FOG phase. The power in the freezing band and the 
freezing index showed a significant difference between gait and 
pre-FOG, with higher values associated with the pre-FOG phase. 
This reflects a pattern of high frequency movements that is not 
only present when FOG is in place (4, 6–13) but also just before it 
starts. This is in line with the results by Ferster et al. (32), obtained 
on a subset of the subjects of this study.

The sensing modality that is more similar to the one used in 
this study is the camera-based motion capture system. There is 
a trade-off between the advantages and limitations of the two 
approaches. On one hand, with motion capture, it is possible to 
have more detailed information about the movement since it is 
possible to accurately quantify displacement features (e.g., step 
and stride length) (26), which are not yet reliably quantifiable 

with inertial sensors, especially when considering pathological 
gait such as that observed in people with advanced PD. The 
important limitation of such system, however, is the constrained 
laboratory environment and the limited working volume. On the 
other hand, wearable inertial sensors provide the possibility of 
quantifying relevant features in diverse environments, shifting 
from laboratory to unconstrained environments, and real-life 
conditions. For example, Weiss et al. (42) showed that subjects 
with PD suffering from FOG, who were recorded continuously for 
3 days during daily community living, have altered gait variability 
and consistency with respect to subjects not suffering from FOG. 
In this study, wearable sensors provided the possibility to test 
subjects in a series of diverse conditions, the hospital tour being 
the one most similar to daily living activities. Difference between 
laboratory and unconstrained activity monitoring is particularly 
important in FOG, where it is common to find subjects who are 
reporting freezing events at home, but do not experience FOG in 
the laboratory (43).

In the previous work by Nieuwboer et  al. (26) that used 
motion capture and found spatiotemporal abnormalities of gait, 
only FOG events without direction change were selected for the 
analysis. In contrast, all FOG events, except for those occurring 
at gait initiation [which were not considered in Ref. (26) either], 
were considered in this study. We did this because we were inter-
ested in quantifying the effect of turning as a trigger of FOG and 
turning is one of the main activities performed at the time of FOG 
onset (25). Another difference, which is a limitation of this study, 
is that subjects of the CuPiD data set did not perform ad hoc tasks 
of voluntary stops. Therefore, we were unable to compare the 
degradation of gait specific to pre-FOG with gait characteristics 
prior to voluntary stops.

classification
The idea behind the use of the classifier was to replicate the 
threshold model of FOG (23), by identifying when the combina-
tion of values of three gait features changes over a critical thresh-
old. The performance of the classifier varied across subjects. For 
most subjects, the performance was acceptable, for some subjects 
(such as the one presented in Figure  5), the performance was 
good, while for one subject (subject 17), the performance was not 
better than random classification (Table 5).

The optimal threshold of the classifier reported in Table  5 
and Figure  5 can be interpreted as an estimate of the critical 
threshold of gait degradation of the threshold model of FOG. The 
optimal threshold varies among subjects, suggesting that differ-
ent subjects may have different critical levels of gait degradation 
leading to imminent FOG. This is possibly connected to the 
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FigUre 4 | Paired t-test results for each feature. For each feature, two plots are present. On the left the mean and SD values are reported, together with 
corresponding p-value and statistical significance (*). On the right, the values of each pair that was considered in the statistical testing are reported.
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FigUre 5 | An example of the application of the classifier. The first plot from the top shows the recorded angular velocities of the left and right ankles together with 
the segmentation of the windows, as in Figure 3. The second plot reports the probability of incoming FOG, as predicted by the classifier. This probability is 
computed for each gait and pre-FOG window. The threshold on probability is also reported: if the probability is higher than the threshold, then the classifier predicts 
a FOG (i.e., it identifies the window as pre-FOG), otherwise, the classifier identifies the window as gait. In the last three plots, the values of the three features which 
are used in the classifier are reported.

different disease stages and functional state. Different optimal 
thresholds also imply different trade-offs between sensitivity and 
specificity.

The example in Figure 5 shows that high turning degrees, low 
left–right cross-correlation, and a high freezing index contribute 
to an increase in the probability of an incoming FOG episode. 
In particular, it can be seen that all FOGs are correctly predicted 
(the first and last one by a small margin). On the other hand, 
there are three false positives (i.e., windows predicted to be  
FOG that are actually gait). The first two false positives take place 
during a turn of approximately 100° (see Figure  5, third plot 
from the top). The high value of turning degrees, together with 
the reduction in left–right cross-correlation, pushes the probabil-
ity over the threshold. A FOG episode, however, does not occur. 
The third false positive is at the end of the “Figure of 8,” when 
the subject stops. Here, the value of turning degrees is low and the 
left–right cross-correlation shows an average value. However, the 
value of freezing index is particularly high. This combination of 
feature values still pushes the probability of incoming FOG over 
the threshold, but the subject just stops her/his gait (the freezing 
episode does not occur).

limitations and Future Developments
The main limitation of this study is the small number of subjects 
involved (11 subjects). Another limitation is that subjects with 
different disease stages performed a different number and type of 
conditions. In addition, subjects did not experience FOG in every 
condition that they performed. This was due to both the episodic 
nature of FOG and the fact that subjects were tested during their 
“ON” medication (resulting in better than usual gait performance 
and fewer FOG events).

A consequence of these limitations is that different subjects 
had a different number of conditions considered in the statistical 
analysis (Tables 4 and 6). Another consequence is that, for each 
condition, the number of gait windows that were averaged was 
higher than the number of pre-FOG windows. In total (consider-
ing all subjects, all conditions with both gait and pre-FOG) there 
were 2,128 gait windows and 137 pre-FOG windows (Table 6). 
The imbalance between the number of gait and pre-FOG win-
dows may also be attributed to the fact that there were often long 
periods of straight walking that did not elicit FOG events.

In future studies subjects should also be tested during their 
“OFF” medication state. In this case, we expect to see an increased 
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cOnclUsiOn

This work leverages wearable inertial sensors to study the patterns 
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there is a degradation of gait that occurs before freezing, suggest-
ing that there are some identifiable and quantifiable precursors to 
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how the pre-FOG phase evolves into FOG. The work also presents 
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tion using wearable inertial sensors and classification algorithms. 
Although some limitations are present, this study shows promis-
ing results for characterizing and identifying pre-FOG movement 
patterns, a first step toward a better understanding, prediction, 
and prevention of this disabling symptom.
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